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Abstract: Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting 
sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still 
not completely understood, recent findings suggest that an altered composition of the gut 
microbiota might play a role. Here we aimed to explore potential differences in the composition of 
the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible 
signatures of treatment response by analyzing two groups of MDD patients characterized as 
treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 
MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S 
metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify 
bacterial populations that best discriminate the diagnostic groups. Statistically significant 
differences were identified for the families of Paenibacillaceae and Flavobacteriaceaea, for the genus 
Fenollaria, and the species Flintibacter butyricus, Christensenella timonensis, and Eisenbergiella 
massiliensis among others. The phyla Proteobacteria, Tenericutes and the family Peptostreptococcaceae 
were more abundant in TR, whereas the phylum Actinobacteria was enriched in R patients. 
Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others 
were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that 
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microbiota of TR patients significantly differs from responders to antidepressants. This finding 
further supports the relevance of an altered composition of the gut microbiota in the 
etiopathogenesis of MDD, suggesting a role in response to antidepressants. 

Keywords: major depressive disorder; antidepressant resistance; microbiota; gut-brain axis 
 

1. Introduction 

Major depressive disorder (MDD) is a commonly occurring psychiatric condition exerting an 
enormous clinical and socio-economic burden [1]. The large estimated lifetime prevalence of 20% in 
the general population [1,2] is associated with a substantial disability burden. Indeed, MDD 
represented the 11th cause of global disability-adjusted life-years (DALYs) in 2017 [3]. This translates 
in cumbersome direct and indirect healthcare costs; MDD in 2004 was estimated to cost EUR 118 
billion in Europe alone, corresponding to a cost of EUR 253 per inhabitant [4]. In this context, 
reducing the burden of MDD is vital. This is achievable through the application of accurate risk 
prediction tools, which could enable the early identification of individuals more prone to the 
development of MDD [5]. For instance, alexithymia, a trait characterized by the difficulty of 
identifying feelings and emotions and by lack of motivation, may be considered a risk factor for the 
development of MDD, as well as suicide attempts [6]. 

Similarly, treatment response prediction, if informed by reliable clinical and biological data, 
could increase the success of pharmacological treatment of MDD, reducing the quandary of the trial 
and error approach and ultimately leading to the identification of the most effective drug on an 
individual basis in a timely manner [7]. However, although research on risk prediction has produced 
clinically relevant models [8], treatment response prediction remains lacking8 [9]. Indeed, there have 
been several attempts to develop predictive algorithms of treatment resistance to antidepressants. 
Perlis [10] tested the performance of predictive algorithms based on a series of clinical variables 
drawn from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study 
identifying subsets of patients at higher risk of treatment resistance with reasonable accuracy [10]. 
Similar predictive performances using different machine-learning approaches applied on STAR*D 
data were identified by Nie and coauthors [11]. Since the accuracy of predictive models informed 
solely by clinical data remains inadequate for clinical use, researchers have attempted to combine 
phenotypic and biological data to increase the performance of such models. For example, Athreya et 
al. added multi-omic (genomic and metabolomic) data to psychometric measures and 
sociodemographic factors in their model, increasing the prediction accuracy of treatment response to 
antidepressants from around 52% to 64% compared to a model using only clinical predictors [12]. 
Although other groups have proposed predictive models of TR with higher performances in 
accuracy and precision, [13] there is lack of replication of these results, and although encouraging, 
they remain distant from clinical significance. 

To date, most of the studies implementing predictive models of response used information from 
gene sequence variants [7], while dynamic biological processes, such as modifications in the 
transcriptome, epigenome, proteome, metabolome or gut microbiota have been less explored. Of 
particular interest is the recent literature suggesting that altered gut microbiota composition might 
indeed interfere with the mechanism of action of antidepressants and in modulating their clinical 
efficacy [14]. There is extensive evidence that the microbiota is part of a bidirectional neurohumoral 
communication system, known as the gut–brain axis, that integrates the host gut and brain activities [15]. 
This system could be significantly altered in severe psychiatric disorders such as MDD, although 
most evidence supporting this hypothesis derives from animal models [16,17]. Some studies in 
humans have highlighted the presence of specific alterations of the microbiota in patients affected by 
MDD compared to healthy individuals. Naseribafrouei et al. found a general underrepresentation of 
Bacteroidetes in 37 patients with mild to severe MDD compared to healthy individuals [18] Jiang et al. 
found that in patients with MDD Enterobacteriaceae and Alistipes were over-represented, while 
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Faecalibacterium were less abundant compared to healthy controls; moreover, Faecalibacterium were 
inversely correlated with symptoms severity [19]. Of interest they focused on response to 
antidepressants, but not on treatment resistance, finding that fecal bacterial α-diversity was 
increased in non-responsive but not in responsive MDD patients when compared to healthy controls 
[19]. Finally, Valles-Colomer et al. found that MDD corresponded to a higher prevalence of 
Bacteroides enterotype 2 [20]. However, little is known on the relationship between treatment 
resistance to antidepressants and microbiota variation. Studies have so far focused either on 
different phenotypes (clinical response to antidepressants) [19], or have been hampered by a limited 
sample size (n = 7 in [20]). Thus, it appears timely to investigate if and how composition of the gut 
microbiota might influence and correlate with treatment resistance in MDD. 

In this scenario, our study had a two-fold aim. First, we explored differences in microbiota 
composition in patients affected by MDD compared to healthy controls (HC) (H0: microbiotaMDD = 
microbiotaHC). Second, we tested whether a specific microbiota composition was associated with the 
presence of treatment resistance (TR) to antidepressants (H0: microbiotaTR = microbiotaR). 

2. Subjects and Methods 

2.1. Participants 

Thirty-four patients affected by MDD were recruited at the community mental health center of 
the Section of Psychiatry of the Department of Medical Science and Public Health, University of 
Cagliari and University Hospital Agency of Cagliari and the Unit of Clinical Pharmacology, University 
Hospital Agency, Cagliari, Italy. In addition, twenty healthy control (HC) subjects were recruited 
through word of mouth among hospital staff, their families, and university students. Assessment 
procedures have been detailed in Manchia et al. [21]. Briefly, patients were included in the study if: (1) 
they had a diagnosis of MDD according to Diagnostic and statistical manual of mental disorders 
DSM-IV-TR (DSM IV-TR) [22] criteria; (2) were able to express a consent to participate formulated by 
signing the consent form; (3) were of age between 18 and 70 years old; (4) were in euthymic phases. 
Patients with (1) presence of acute infections; (2) presence of chronic autoimmune inflammatory 
conditions (e.g., rheumatoid arthritis, thyroiditis); (3) presence of eating disorders; (4) presence of 
post-traumatic stress disorder; (5) presence of current substance use disorders; (6) presence of 
neurological disorders; (7) presence of past traumatic brain injury; (8) presence of severe 
co-morbidities that may influence microbiota variation were excluded. The following exclusion criteria 
were applied to patients with MDD and HC: (1) use of antibiotics in the three months preceding the 
sampling procedure, (2) chronic use of probiotics. At the time of recruitment, patients were assessed 
by trained mental-health professionals (psychiatry residents or senior clinical staff). We collected 
detailed clinical information through direct interview as well as with a systematic assessment of 
existing medical records. Treatment resistance for MDD was defined according to the criteria of 
Souery et al. [23] consisting of the presence of a poor response to at least two adequate trials of 
different classes of antidepressants. The assessment of TR was based on a retrospective assessment of 
longitudinally collected information of the clinical course as well as on evaluation of treatment 
response patterns. All socio-demographic and clinical information, as well as dietary, lifestyle and 
smoking habits, were collected at the moment of recruitment when the stool specimen was also 
collected. Given the bidirectional relationship between gut microbiota and drug treatment (i.e., gut 
microbiota could modulate treatment response and, conversely, pharmacological treatments could 
impact on gut microbiota), and the need to identify the specific signatures associated with TR, we 
analyzed three subgroups of MDD patients (treatment responsive, TR and untreated at the moment of 
sampling). The study protocol was approved by the Ethics Committee of the University Hospital 
Agency of Cagliari (PG/2018/11693) on 5 September 2018. The study was conducted in accordance 
with the principles of good clinical practice, with the Declaration of Helsinki and in compliance with 
the national legislation. Written, informed consent was obtained from all participants. 

2.2. Sample Collection and DNA Extraction 
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Collection tubes with a DNA stabilization buffer (Canvax Biotech, Cordoba, Spain) were filled 
with fresh stool by each participant. A total of 250 µL of each sample was used to perform DNA 
microbial extraction using the QIAamp DNA Stool Mini Kit (Qiagen, Milan, Italy) according to the 
manufacturer’s protocol. After assessing DNA concentration and purity, samples were stored at −80° 
until processing. 

2.3. Next-Generation Sequencing of Bacterial 16S rRNA Gene 

The V3-V4 region of 16S rRNA gene was amplified using specific primers selected from Klindworth 
et al. [24] with Illumina adapter sequences, followed by index PCR according to the Illumina MiSeq 16S 
Metagenomic Sequencing Library preparation protocol, as described elsewhere [25]. Libraries were 
purified, quantified on a Qubit 3.0 Fluorometer (Thermo Scientific, Milan, Italy), pooled and paired-end 
sequenced (2 × 300 cycles) on an Illumina MiSeq (San Diego, CA, USA) platform. 

2.4. Bioinformatic Analysis 

De-multiplexed FASTQ files generated by MiSeq were analyzed using the 16S Metagenomics 
GAIA 2.0 software (http://www.metagenomics.cloud, Sequentia Biotech (Barcelona, Spain) 2019; 
Benchmark of Gaia 2.0 using published datasets available online at: 
http://gaia.sequentiabiotech.com/benchmark). Read pairs were quality-controlled (i.e., trimming, 
clipping and adapter removal) based on FastQC and BBDuk and mapped with BWA-MEM against 
the custom databases (based on NCBI). 

2.5. Statistical Analysis 

Clinical characteristics of patients with MDD and HC were reported as median along with 
interquartile range (i.e., first-third quartiles) and observed frequencies (and percentages) for 
continuous and categorical variables, respectively. For each continuous variable, the assumption of 
normality distribution was checked by means of quantile–quantile (Q–Q) plots and Shapiro–Wilks 
test. In the presence of non-normal distributions, comparisons between groups were performed by 
Mann–Whitney U test (or Kruskal–Wallis test as appropriate) and χ2 test (or Fisher exact test, as 
appropriate) for continuous and categorical variables, respectively. Stacked bar charts were used to 
show the gut microbiota composition (i.e., mean relative abundance %) at phylum, family, genus 
and species levels between MDD and HC. To identify pathways of bacterial populations that best 
discriminated groups (i.e., MDD versus HC or comparisons among MDD subgroups according to 
presence/absence of TR to antidepressants), we applied the penalized logistic regression analysis 
(PELORA) algorithm [26]. This algorithm is mainly used to find predictive gene signatures from 
microarray data by using supervised grouping techniques. To this purpose, the relative abundance 
(%) of each bacterium was first logistic transformed (i.e., by calculating the natural logarithm of the 
ratio between the relative abundance proportion and its complimentary) and then standardized 
(computing a Z-score) by subtracting its mean and dividing by its standard deviation (SD). Both 
mean and SD were computed in the sample which included all the subjects involved in the 
comparison. When the relative abundance was exactly 0%, the logistic transformation could not be 
performed for that value and, to overcome this issue, such percentage was replaced by 0.001% for 
the computation of Z-score only. Once a pattern was identified, its centroid was computed by the 
mean of the Z-scores of the involved bacteria. To calculate centroids, Z-scores of some bacteria could 
be sign-flipped (reversed) in order to put their values in the same direction suggested by the 
centroid. The PELORA algorithm was also set to accommodate clinical variables: when a new 
predictor is added to the model, this can either be a group centroid or a clinical variable, depending 
on which yields better predictive value [26]. In detail, when comparing patients with MDD versus 
HC, penalized logistic models which included centroid as predictor were adjusted for the effect of 
age at the sample collection, gender and body mass index (BMI), whereas, when comparing 
subgroups of patients with MDD, models were adjusted for the effect of age at MDD onset, illness 
duration, gender, BMI, treatment duration and the presence of concomitant drugs. Moreover, when 
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comparing patients with MDD versus HC, covariates related to lifestyle (i.e., diet, smoke and drink 
habits or presence of physical activity) were not considered because they were intrinsically related to 
the HC profile. In accordance with the analysis protocol, two different free parameters were set in 
the PELORA algorithm: the number of centroids and the penalty parameter (λ). The number of 
centroids was set to 1, because we were mainly interested to detect only one informative pathway 
for each scenario, whereas a number of different combinations of λ = 0, 1/32, 1/16, 1/8, 1/4, 1/2, 1 were 
evaluated, performing 200 bootstrap resampling of data and recording the overall misclassification 
rate. For each specific scenario, the penalty parameter that achieved the lowest median 
misclassification rate (across the bootstrap samples) was chosen. Comparisons between Z-scores 
were performed using the two-sample t-test. Heatmaps of normalized Z-scores (from 0 to 1) of 
relative abundance of bacterial populations identified by the PELORA algorithm along with the 
corresponding centroid and boxplots of centroid Z-scores were produced. Two-sided p < 0.05 was set 
as the statistically significance threshold. All statistical analyses and plots were performed by the 
computing environment R (version 3.6, R Core Team (2020). R: A language and environment for 
statistical computing, Vienna, Austria), [27] (packages: supclust, ggplot2, gridExtra). 

3. Results 

3.1. Sample Characteristics 

Since it is known that gut bacteria may influence drug metabolism, possibly affecting response 
to treatments and, conversely, that pharmacological treatments might alter gut microbiota 
composition, the study participants affected by MDD were classified in three subgroups, according 
to whether they had treatment-resistance to antidepressants or not or were untreated at the time of 
enrollment. Clinical and demographic characteristics of these three subgroups of MDD patients as 
well as of HC are summarized in Table 1. The four groups were homogeneous for all the examined 
characteristics except for gender distribution (p = 0.036), physical activity (p = 0.032), history of 
suicide attempt (p = 0.014) and intake of any concomitant drugs other than antipsychotics (p = 0.011). 
Two untreated MDD patients had a history of treatment with antipsychotics and/or mood 
stabilizers, but treatments were stopped a minimum of six months before the sampling procedure.
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Table 1. Demographic and clinical characteristics of patients with major depressive disorder (MDD) classified according to the presence of treatment-resistant 
depression (TR), responsive depression (R) and healthy controls (HC). 

Variable Level 
TR MDD 

(n = 8) 
R MDD 
(n = 19) 

Untreated 
MDD 
(n = 7) 

HC 
(n = 20) 

p-Value 

Age (years) Median [IQR] 58.8 [43.7–61.6] 53.7 [43.3–59.6] 57.0 [49.1–60.9] 37.7 [30.6–58.0] 0.189 * 

Gender—n(%) 
Males 4 (50.0) 5 (26.3) 1 (14.3) 13 (65.0) 

0.036 # 
Females 4 (50.0) 14 (73.7) 6 (85.7) 7 (35.0) 

BMI (Kg/m2) Median [IQR] 23.0 [21.9–27.8] 24.6 [21.0–28.8] 23.3 [23.1–25.2] 22.7 [21.2–23.8] 0.484 * 

Family history for mental disorders—n (%) 
No 1 (14.3) 8 (47.1) 3 (42.9) 11 (68.8) 

0.117 # 
Yes 6 (85.7) 9 (52.9) 4 (57.1) 5 (31.2) 

Diet—n (%) 

Mediterranean only 5 (62.5) 10 (52.6) 4 (57.1) 18 (90.0) 

0.254 # 

Carbohydrates only 0 (0.0) 1 (5.3) 0 (0.0) 0 (0.0) 
Vegetarian only 0 (0.0) 2 (10.5) 1 (14.3) 0 (0.0) 

Mediterranean + hyperproteic 1 (12.5) 2 (10.5) 1 (14.3) 0 (0.0) 
Mediterranean + hypercaloric 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.0) 

Mediterranean + carbohydrates 1 (12.5) 1 (5.3) 0 (0.0) 1 (5.0) 
Mediterranean + hyperproteic + 

carbohydrates 
0 (0.0) 1 (5.3) 1 (14.3) 0 (0.0) 

Mediterranean + hypercaloric + 
carbohydrates 

0 (0.0) 1 (5.3) 0 (0.0) 0 (0.0) 

Hyperproteic + carbohydrates 1 (12.5) 0 (0.0) 0 (0.0) 0 (0.0) 
Hypercaloric + carbohydrates + vegetarian 0 (0.0) 1 (5.3) 0 (0.0) 0 (0.0) 

Smoking habits—n (%) 
Non-smoker 3 (37.5) 12 (63.2) 3 (42.9) 13 (65.0) 

0.591 # Smoker 4 (50.0) 3 (15.8) 2 (28.6) 4 (20.0) 
Ex-smoker 1 (12.5) 4 (21.1) 2 (28.6) 3 (15.0) 

Drink habits—n (%) 

None 4 (50.0) 10 (52.6) 4 (57.1) 3 (15.8) 

0.086 # 
One occasional drink 3 (37.5) 8 (42.1) 2 (28.6) 12 (63.2) 

1–2 drinks per day 0 (0.0) 1 (5.3) 1 (14.3) 4 (21.1) 
more than 1/2 L per day 1 (12.5) 0 (0.0) 0 (0.0) 0 (0.0) 

Physical activity—n (%) 
No 6 (75.0) 11 (57.9) 5 (71.4) 5 (25.0) 

0.032# 
Yes 2 (25.0) 8 (42.1) 2 (28.6) 15 (75.0) 

Cardiometabolic comorbidities—n (%) 
No 6 (75.0) 14 (73.7) 6 (85.7) 16 (80.0) 

0.966 # 
Yes 2 (25.0) 5 (26.3) 1 (14.3) 4 (20.0) 

Age at onset (years) Median [IQR] 25.5 [20.2–30.8] 33.0 [23.5–45.5] 40.0 [26.5–43.5] NA 0.293 * 
Disease duration (years) Median [IQR] 26.4 [12.8–30.9] 12.7 [2.2–23.6] 17.0 [11.5–27.0] NA 0.122 * 

History of suicide attempt—n (%) No 5 (62.5) 17 (94.4) 5 (71.4) NA 0.085 # 
 Yes 3 (37.5) 1 (5.6) 2 (28.6) NA  

Length of treatment with antidepressant Median [IQR] 44.0 [12.0–78.0] 24.0 [10.5–38.5] NA NA 0.250 * 
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(months) 
Treatment at sample collection—n(%) SSRI 4 (50.0) 8 (42.1) NA NA 1.000 # 

 SNRI/TCA/ 
Serotonin modulator 

4 (50.0) 11 (57.9) NA NA  

Mood stabilizers—n(%) No 5 (62.5) 17 (89.5) 5 (71.4) NA 0.203 # 
 Yes 3 (37.5) 2 (10.5) 2 (28.6) NA  

Antipsychotics—n(%) No 4 (50.0) 18 (94.7) 5 (71.4) NA 0.014 # 
 Yes 4 (50.0) 1 (5.3) 2 (28.6) NA  

Any concomitant drugs—n(%) No 2 (25.0) 16 (84.2) 5 (71.4) NA 0.011 # 
 Yes 6 (75.0) 3 (15.8) 2 (28.6) NA  

Missing values are excluded and only valid percentages are reported. * p-value from Kruskal–Wallis test; # p-value from Fisher exact test. Abbreviations: IQR: 
interquartile range (i.e., first-third quartiles); TR MDD: major depressive disorder patients with treatment-resistant depression; R MDD: responder major 
depressive disorder patients; untreated MDD: major depressive disorder patients that were untreated (i.e., did not receive drugs related to major depressive 
disorder) at the sample collection. SSRI: Selective serotonin, reuptake inhibitors. SNRI: Serotonin-norepinefrine reuptake inhibitors. TCA: Tricyclic antidepressant. 
NA: not applicable. 
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3.2. Comparison of Gut Microbiota Composition between Patients with MDD and HC 

In order to assess whether a different gut microbiota discriminates MDD patients and HC, its 
composition in the two cohorts of subjects was analyzed by next generation sequencing. A total of 
8,135,346 quality-filtered read pairs were obtained from 54 study participants (34 MDD patients and 
20 HC), with an average of 150,654 read pairs per sample. Gut bacterial communities at the phylum, 
family, genus and species level detected in MDD and HC subjects are represented in Figure 1. 

 
Figure 1. Gut microbiota composition (i.e., mean relative abundance %) at phylum, family, genus, 
and species levels grouped by patients with major depressive disorder (MDD) and healthy controls 
(HC). 
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As expected, Firmicutes and Bacteroidetes were the most abundant phyla, accounting for about 
90% of all bacteria in both groups. Based on the relative abundances generated by taxonomic 
analyses, the PELORA algorithm was used first to identify patterns of bacterial populations that best 
discriminate all patients with MDD from HC. The results are listed in Table 2 and graphically 
represented by the heatmap in Figure 2, showing slight variations at the phylum level, but more 
pronounced differences deeper in the taxonomic scale, with Paenibacillaceae detected in MDD but 
absent in HC and vice versa for the family of Flavobacteriaceaea, the genus Fenollaria, the species 
Flintibacter butyricus, Christensenella timonensis, Eisenbergiella massiliensis, Pseudoflavonifractor 
capillosus, Fenollaria timonenis, Robinsoniella sp. MCWD5 and Clostridum citroniae. 

Table 2. Results from the penalized logistic regression analysis (PELORA) algorithm which identifies 
pathways of bacterial populations that best discriminate all patients with major depressive disorder 
(MDD) from healthy controls (HC). 

Taxa 
Level 

Bacteria Selected by 
PELORA 

Quantity Statistics All MDD (n = 34) HC (n = 20) p-Value 

Phylum 

Proteobacteria 
Relative abundance 

(%) 
Median 
[IQR] 

2.135 [1.591–
3.461] 

2.971 [2.189–
4.384] 0.065 # 

Z-score ° Mean ± SD −0.192 ± 0.882 0.327 ± 1.123 

Candidatus 
Saccharibacteria 

Relative abundance 
(%) 

Median 
[IQR] 

0.005 [0.000–
0.019] 

0.006 [0.004–
0.014] 0.132 # 

Z-score ° Mean ± SD −0.158 ± 1.128 0.268 ± 0.677 

Nitrospirae 
Relative abundance 

(%) 
Median 
[IQR] Absent 

0.000 [0.000–
0.006] <0.001 § 

Z-score ° Mean ± SD 0.711 ± 1.395 

Elusimicrobia * 
Relative abundance 

(%) 
Median 
[IQR] 

0.000 [0.000–
0.000] Absent 0.049 § 

Z-score ° Mean ± SD 0.175 ± 1.233 

Thaumarchaeota * 
Relative abundance 

(%) 
Median 
[IQR] 

0.000 [0.000–
0.000] Absent 0.176 § 

Z-score ° Mean ± SD 0.130 ± 1.249 
Cluster centroid Z-score (means) Mean ± SD −0.215 ± 0.463 0.365 ± 0.324 <0.001 # 

Family 

Flavobacteriaceae 
Relative abundance 

(%) 
Median 
[IQR] 

0.007 [0.004–
0.015] Absent <0.001 § 

Z-score ° Mean ± SD 0.704 ± 0.478 

Paenibacillaceae * 
Relative abundance 

(%) 
Median 
[IQR] Absent 

0.011 [0.006–
0.014] <0.001 § 

Z-score ° Mean ± SD 1.164 ± 0.724 
Cluster centroid Z-score (means) Mean ± SD 0.694 ± 0.239 −1.180 ± 0.362 <0.001 # 

Genus 
Fenollaria 

(Cluster centroid) 

Relative abundance 
(%) 

Median 
[IQR] 

0.008 [0.004–
0.012] 

Absent 
<0.001 § 

Z-score ° Mean ± SD 0.711 ± 0.445 −1.209 ± 0.000 

Species 

Flintibacter butyricus 
Relative abundance 

(%) 
Median 
[IQR] 

0.006 [0.002–
0.014] Absent <0.001 § 

Z-score ° Mean ± SD 0.594 ± 0.790 

Christensenella 
timonensis 

Relative abundance 
(%) 

Median 
[IQR] 

0.006 [0.001–
0.014] Absent <0.001 § 

Z-score ° Mean ± SD 0.556 ± 0.864 

Eisenbergiella 
massiliensis 

Relative abundance 
(%) 

Median 
[IQR] 

0.007 [0.000–
0.026] Absent <0.001 § 

Z-score ° Mean ± SD 0.503 ± 0.949 

Pseudoflavonifractor 
capillosus 

Relative abundance 
(%) 

Median 
[IQR] 

0.006 [0.000–
0.012] Absent <0.001 § 

Z-score ° Mean ± SD 0.473 ± 0.992 

Fenollaria timonensis 
Relative abundance 

(%) 
Median 
[IQR] 

0.000 [0.000–
0.001] Absent 0.013 § 

Z-score ° Mean ± SD 0.249 ± 1.197 

Robinsoniella 
sp,MCWD5 

Relative abundance 
(%) 

Median 
[IQR] 

0.007 [0.001–
0.012] Absent <0.001 § 

Z-score ° Mean ± SD 0.526 ± 0.914 
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Clostridium citroniae 
Relative abundance 

(%) 
Median 
[IQR] 

0.004 [0.000–
0.016] Absent <0.001 § 

Z-score ° Mean ± SD 0.462 ± 1.007 
Cluster centroid Z-score (means) Mean ± SD 0.481 ± 0.162 −0.817 ± 0.000 <0.001 § 

Abbreviations: IQR: interquartile range (i.e., first-third quartiles); SD: standard deviation; Absent: all 
values are 0%. ° Standardized Z-score: the relative abundance of each bacterium was first logistic 
transformed, and then the Z-score was calculated subtracting its mean and dividing by its standard 
deviation (SD). Both the mean and SD were computed in the sample which included all DDMs and 
HC. Centroid is computed by the mean of Z-scores; * to calculate the centroid, the sign of the specific 
bacterium’s Z-score was reversed; # p-values from two-sample t-test on Z-scores; § p-values from 
Mann–Whitney U test, calculated in the presence of no variance in one of the two groups. 
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Figure 2. Heatmaps of relative abundance of bacterial populations (normalized Z-scores) identified 
by the penalized logistic regression analysis algorithm, at phylum (a) family (b), genus (c) and 
species (d) levels grouped by patients with major depressive disorder (MDD) and healthy controls 
(HC). Abbreviation (rev): the sign of the specific bacterial’s normalized value was reversed. 

In Figure 3 the distribution of centroid Z-scores computed by PELORA in MDD patients and 
HC shows that the identified bacterial patterns were able to discriminate between the two groups, 
with a higher discriminatory power at family, genus and species levels. 
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Figure 3. Boxplots of centroid Z-scores, computed by the penalized logistic regression analysis 
algorithm, which discriminated all patients with major depressive disorder (MDD) from healthy 
controls (HC). 

3.3. Comparison of Gut Microbiota Composition between Treated and Untreated Patients with MDD  

As a second step, we investigated the eventual difference in gut microbiota in treated and 
untreated patients with MDD. A comparison was performed from which a conspicuous pattern of 
differentially represented taxa emerged, as reported in Table 3 and graphically represented by the 
heatmap in Figure 4. Proteobacteria, Propionibacteriaceae, Peptococcaceae, Murimonas, Murimonas 
intestini, Parabacteroides sp J1502 were increased in treated subjects; Candidatus Saccharibacteria, 
Lentisphaerae, Euryarchaeota, Acidaminococcaceae, Micrococcaceae, Fusibacteriaceae, Victivallaceae, 
Eggerthellaceae, Methanobacteriaceae, Sanguibacteroides, Phascolarctobacterium, Anaeromassilibacillus, 
Streptomyces, Raoultibacter, Denitrobacterium, Prevotella sporal clone IK062, Ruminococcus torques, 
Sanguibacteroides justesenii, Flintibacter butyricus, Roseburia intestinalis and Dialister sp S7D were 
instead more represented in untreated patients; Elusimirobia, Dakarella and Desulfovibrio fairfieldensis 
were solely detected in the treated group.
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Table 3. Results from the penalized logistic regression analysis (PELORA) algorithm which identifies pathways of bacterial populations that best discriminate all 
treated patients with major depressive disorder from untreated ones at sample collection. 

Taxa 
Level 

Bacteria Selected by PELORA Quantity Statistics 
All Treated 

MDD (n = 27) 
Untreated 

MDD (n = 7) 
p-Value 

Phylum 

Candidatus Saccharibacteria 
Relative abundance (%) Median [IQR] 0.002 [0.000–0.016] 0.039 [0.012–0.078] 

0.028 # 
Z-score ° Mean ± SD −0.189 ± 0.948 0.731 ± 0.908 

Lentisphaerae 
Relative abundance (%) Median [IQR] 0.026 [0.001–0.090] 0.223 [0.074–0.300] 

0.104 # 
Z-score ° Mean ± SD −0.142 ± 0.999 0.548 ± 0.857 

Elusimicrobia * 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 

Absent 0.178 § 
Z-score ° Mean ± SD 0.099 ± 1.104 

Euryarchaeota 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.010] 0.004 [0.001–0.031] 

0.224 # 
Z-score ° Mean ± SD −0.107 ± 1.012 0.414 ± 0.898 

Unknown phylum * 
Relative abundance (%) Median [IQR] 1.098 [0.927–1.496] 0.842 [0.705–0.992] 

0.239 # 
Z-score ° Mean ± SD 0.104 ± 1.018 −0.402 ± 0.876 

Proteobacteria 
Relative abundance (%) Median [IQR] 2.153 [1.601–3.434] 2.118 [1.181–3.516] 

0.518 # 
Z-score ° Mean ± SD 0.058 ± 0.998 −0.222 ± 1.054 

Cluster centroid Z-score (means) Mean ± SD −0.097 ± 0.283 0.376 ± 0.200 <0.001 # 

Family 

Acidaminococcaceae 
Relative abundance (%) Median [IQR] 0.016 [0.004–1.165] 2.183 [0.747–3.229] 

0.009 # 
Z-score ° Mean ± SD −0.222 ± 0.983 0.856 ± 0.484 

Micrococcaceae 
Relative abundance (%) Median [IQR] 0.001 [0.000–0.004] 0.005 [0.004–0.011] 

0.029 # 
Z-score ° Mean ± SD −0.188 ± 0.938 0.723 ± 0.958 

Fusobacteriaceae 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.002] 0.002 [0.000–0.049] 

0.154 # 
Z-score ° Mean ± SD −0.125 ± 0.921 0.483 ± 1.218 

Propionibacteriaceae * 
Relative abundance (%) Median [IQR] 0.059 [0.002–0.160] 0.002 [0.000–0.031] 

0.159 # 
Z-score ° Mean ± SD 0.124 ± 0.971 −0.478 ± 1.037 

Victivallaceae 
Relative abundance (%) Median [IQR] 0.008 [0.000–0.044] 0.223 [0.074–0.243] 

0.035 # 
Z-score ° Mean ± SD −0.182 ± 0.963 0.701 ± 0.869 

Peptococcaceae * 
Relative abundance (%) Median [IQR] 0.017 [0.005–0.036] 0.004 [0.003–0.011] 

0.130 # 
Z-score ° Mean ± SD 0.133 ± 0.995 −0.513 ± 0.908 

Eggerthellaceae 
Relative abundance (%) Median [IQR] 0.082 [0.052–0.134] 0.310 [0.125–0.565] 

0.059 # 
Z-score ° Mean ± SD −0.164 ± 0.908 0.634 ± 1.156 

Methanobacteriaceae 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.010] 0.004 [0.001–0.031] 

0.242 # 
Z-score ° Mean ± SD −0.103 ± 1.007 0.399 ± 0.932 

Oxalobacteraceae * 
Relative abundance (%) Median [IQR] 0.002 [0.001–0.025] 0.002 [0.001–0.019] 

0.760 # 
Z-score ° Mean ± SD 0.027 ± 1.007 −0.105 ± 1.042 

Cluster centroid Z-score (means) Mean ± SD −0.141 ± 0.176 0.544 ± 0.191 <0.001 # 

Genus 
Sanguibacteroides 

Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 0.001 [0.000–0.049] 
<0.001 # 

Z-score ° Mean ± SD −0.294 ± 0.367 1.136 ± 1.738 
Murimonas * Relative abundance (%) Median [IQR] 0.018 [0.005–0.040] 0.004 [0.001–0.012] 0.031 # 
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Z-score ° Mean ± SD 0.186 ± 0.888 −0.718 ± 1.153 

Phascolarctobacterium 
Relative abundance (%) Median [IQR] 0.003 [0.001–0.551] 1.341 [0.080–2.583] 

0.016 # 
Z-score ° Mean ± SD −0.205 ± 0.981 0.792 ± 0.638 

Anaeromassilibacillus 
Relative abundance (%) Median [IQR] 0.007 [0.003–0.019] 0.031 [0.017–0.047] 

0.033 # 
Z-score ° Mean ± SD −0.184 ± 0.974 0.708 ± 0.806 

Streptomyces 
Relative abundance (%) Median [IQR] 0.006 [0.003–0.011] 0.015 [0.011–0.017] 

0.158 # 
Z-score ° Mean ± SD −0.124 ± 1.085 0.479 ± 0.254 

Dakarella * 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 

Absent 0.465 § 
Z-score ° Mean ± SD 0.063 ± 1.118 

Megasphaera * 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.001] 0.000 [0.000–0.022] 

0.839 # 
Z-score ° Mean ± SD −0.018 ± 0.969 0.070 ± 1.195 

Raoultibacter * 
Relative abundance (%) Median [IQR] 0.005 [0.000–0.027] 0.008 [0.003–0.020] 

0.534 # 
Z-score ° Mean ± SD −0.055 ± 1.062 0.214 ± 0.736 

Denitrobacterium 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 0.013 [0.000–0.044] 

0.006 # 
Z-score ° Mean ± SD −0.231 ± 0.744 0.891 ± 1.392 

Bariatricus * 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 0.000 [0.000–0.002] 

0.513 # 
Z-score ° Mean ± SD −0.058 ± 0.960 0.225 ± 1.196 

Cluster centroid Z-score (means) Mean ± SD −0.116 ± 0.116 0.446 ± 0.072 <0.001 # 

Species 

Prevotella sporal clone IK062 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 0.001 [0.000–0.081] 

<0.001 # 
Z-score ° Mean ± SD −0.317 ± 0.292 1.224 ± 1.712 

Phascolarctobacterium faecium 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 0.000 [0.000–1.514] 

0.028 # 
Z-score ° Mean ± SD −0.189 ± 0.693 0.730 ± 1.624 

Murimonas intestine * 
Relative abundance (%) Median [IQR] 0.017 [0.004–0.039] 0.004 [0.001–0.010] 

0.038 # 
Z-score ° Mean ± SD 0.179 ± 0.905 −0.691 ± 1.117 

Ruminococcus torques 
Relative abundance (%) Median [IQR] 0.008 [0.001–0.090] 0.157 [0.077–1.008] 

0.053 # 
Z-score ° Mean ± SD −0.168 ± 0.947 0.648 ± 0.998 

Parabacteroides,sp J1502 * 
Relative abundance (%) Median [IQR] 0.001 [0.000–0.004] 0.000 [0.000–0.000] 

0.088 # 
Z-score ° Mean ± SD 0.149 ± 1.043 −0.575 ± 0.546 

Sanguibacteroides justesenii 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 0.001 [0.000–0.046] 

<0.001 # 
Z-score ° Mean ± SD −0.294 ± 0.369 1.134 ± 1.738 

Bacteroides vulgatus * 
Relative abundance (%) Median [IQR] 1.039 [0.039–3.004] 0.015 [0.001–0.559] 

0.070 # 
Z-score ° Mean ± SD 0.158 ± 0.901 −0.608 ± 1.198 

Flintibacter butyricus 
Relative abundance (%) Median [IQR] 0.006 [0.002–0.010] 0.015 [0.006–0.074] 

0.059 # 
Z-score ° Mean ± SD −0.164 ± 0.985 0.632 ± 0.841 

Roseburia intestinalis * 
Relative abundance (%) Median [IQR] 0.043 [0.015–0.302] 0.051 [0.019–0.383] 

0.684 # 
Z-score ° Mean ± SD 0.036 ± 0.957 −0.140 ± 1.226 

Dialister,sp S7D 
Relative abundance (%) Median [IQR] 0.001 [0.000–0.007] 0.010 [0.003–0.011] 

0.090 # 
Z-score ° Mean ± SD −0.148 ± 0.968 0.572 ± 0.977 
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Desulfovibrio fairfieldensis 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 

Absent 0.465 § 
Z-score ° Mean ± SD 0.053 ± 1.120 

Cluster centroid Z-score (means) Mean ± SD −0.159 ± 0.090 0.613 ± 0.055 <0.001 # 

Abbreviations: IQR: interquartile range (i.e., first-third quartiles); SD: standard deviation; Absent: all values are 0%. ° Standardized Z-score: the relative abundance 
of each bacterium was first logistic transformed, and then the Z-score was calculated subtracting its mean and dividing by its standard deviation (SD). Both the 
mean and SD were computed in the sample which included all MDD treated at sample collection and untreated MDD. Centroid is computed by the mean of 
Z-scores; * to calculate the centroid, the sign of the specific bacterial’s Z-score was reversed; # p-values from two-sample t-test on Z-scores; § p-values from Mann–
Whitney U test, calculated in the presence of no variance in one of the two groups. 
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Figure 4. Heatmaps of relative abundance of bacterial populations (normalized Z-scores) identified 
the penalized logistic regression analysis algorithm, at phylum (a) family (b), genus (c) and species 
(d) levels grouped by treated and untreated patients with MDD. Abbreviation (rev): the sign of the 
specific bacterial’s normalized value was reversed. 

3.4. Comparison of Gut Microbiota Composition between MDD Patients with and Without TR 

We then evaluated the gut microbiota profile of patients classified as responders (R) and (TR). 
The subsequent analysis included only antidepressant-treated patients characterized for the 
presence/absence of TR at the time of the enrollment. As reported in Table 4, Proteobacteria, 
Tenericutes and Peptostreptococcaceae were more abundant in TR patients, whereas Actinobacteria were 
enriched in responders. Moreover, a number of bacteria characterized exclusively the microbiota of 
TR MDD patients (Thaumarchaeota, Yersinia and its species Yersinia pseudotuberculosis, Peptococcus, 
Fenollaria timonensis, Blautia sp. canine oral taxon 337, Papillibacter cinnamivorans), and many other were 
only detected in non-resistant patients (Candidatus Saccharibacteria, Planctomycetes, Bacillus, 
Candidatus Soleaferrea, Intestinibacillus, Porphyromonas, Robinsoniella sp. MCWD5 and 
Massilioclostridium coli).
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Table 4. Results from the penalized logistic regression analysis (PELORA) algorithm which identifies pathways of bacterial populations that best discriminate 
treatment-resistant (TR) and responder (R) MDD patients. 

Taxa 
Level Bacteria Selected by PELORA Quantity Statistics TR MDD (n = 19) R MDD (n = 8) p-Value # 

Phylum 

Candidatus Saccharibacteria 
(Relative abundance (%) Median [IQR] 0.008 [0.002–0.019] 

Absent 0.001 § 
Z-score ° Mean ± SD 0.428 ± 0.889 

Thaumarchaeota * 
Relative abundance (%) Median [IQR] 

Absent 
0.000 [0.000–0.001] 

0.026 § 
Z-score ° Mean ± SD 0.614 ± 1.761 

Proteobacteria * 
Relative abundance (%) Median [IQR] 1.906 [1.442–2.850] 3.135 [2.102–5.772] 

0.019 
Z-score ° Mean ± SD −0.285 ± 0.732 0.677 ±1.261 

Planctomycetes 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.003] 

Absent 0.023 § 
Z-score ° Mean ± SD 0.247 ± 1.108 

Actinobacteria 
Relative abundance (%) Median [IQR] 2.612 [1.441–3.709] 1.105 [0.699–1.342] 

0.142 
Z-score ° Mean ± SD 0.185 ± 1.048 −0.439 ± 0.759 

Tenericutes * 
Relative abundance (%) Median [IQR] 0.003 [0.001–0.039] 0.005 [0.001–0.128] 

0.639 
Z-score ° Mean ± SD −0.060 ± 0.980 0.143 ± 1.101 

Cluster centroid Z-score (means) Mean ± SD 0.244 ± 0.230 −0.580 ± 0.314 <0.001 

Family Peptostreptococcaceae (Cluster centroid) 
Relative abundance (%) Median [IQR] 0.000 [0.000–0.000] 0.008 [0.006–0.013] 

<0.001 
Z-score ° Mean ± SD −0.581 ± 0.000 1.613 ± 0.377 

Genus 

Bacillus 
Relative abundance (%) Median [IQR] 0.005 [0.003–0.008] 

Absent <0.001 § 
Z-score ° Mean ± SD 0.587 ± 0.464 

Candidatus Soleaferrea 
Relative abundance (%) Median [IQR] 0.006 [0.005–0.010] 

Absent <0.001 § 
Z-score ° Mean ± SD 0.598 ± 0.411 

Intestinibacillus 
Relative abundance (%) Median [IQR] 0.003 [0.001–0.019] 

Absent 0.001 § 
Z-score ° Mean ± SD 0.414 ± 0.913 

Porphyromonas 
Relative abundance (%) Median [IQR] 0.005 [0.002–0.011] 

Absent <0.001 § 
Z-score ° Mean ± SD 0.505 ± 0.731 

Yersinia * 
Relative abundance (%) Median [IQR] 

Absent 
0.003 [0.001–0.020] 

<0.001 § 
Z-score ° Mean ± SD 1.142 ± 1.263 

Peptococcus * 
Relative abundance (%) Median [IQR] 

Absent 
0.004 [0.000–0.036] 

<0.001 § 
Z-score ° Mean ± SD 1.078 ± 1.352 

Cluster centroid Z-score (means) Mean ± SD 0.507 ± 0.136 −1.203 ± 0.132 <0.001 

Species 
Fenollaria timonensis 

Relative abundance (%) Median [IQR] 
Absent 

0.007 [0.005–0.017] 
<0.001 § 

Z-score ° Mean ± SD 1.446 ± 0.564 
Robinsoniella sp, MCWD5 * Relative abundance (%) Median [IQR] 0.009 [0.007–0.014] Absent <0.001 § 
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Z-score ° Mean ± SD 0.603 ± 0.384 

Massilioclostridium coli * 
Relative abundance (%) Median [IQR] 0.007 [0.006–0.013] 

Absent <0.001 § 
Z-score ° Mean ± SD 0.569 ± 0.541 

Blautia sp, canine oral taxon 337 
Relative abundance (%) Median [IQR] 

Absent 
0.008 [0.005–0.014] 

<0.001 § 
Z-score ° Mean ± SD 1.464 ± 0.485 

Papillibacter cinnamivorans 
Relative abundance (%) Median [IQR] 

Absent 
0.004 [0.001–0.024] 

<0.001 § 
Z-score ° Mean ± SD 1.247 ± 1.090 

Yersinia pseudotuberculosis 
Relative abundance (%) Median [IQR] 

Absent 
0.002 [0.001–0.020] 

<0.001 § 
Z-score ° Mean ± SD 1.134 ± 1.275 

Cluster centroid Z-score (means) Mean ± SD −0.567 ± 0.088 1.346 ± 0.183 <0.001 
Abbreviations: IQR: interquartile range (i.e., first-third quartiles); SD: standard deviation; Absent: all values are 0%. ° Standardized Z-score: the relative abundance 
of each bacterium was first logistic transformed, and then the Z-score was calculated subtracting its mean and dividing by its standard deviation (SD). Both the 
mean and SD were computed in the sample which included all patients with and w/o TR. Centroid is computed by the mean of Z-scores; * to calculate the centroid, 
the sign of the specific bacterial’s Z-score was reversed; # p-values from two-sample t-test on Z-scores; § p-values from Mann–Whitney U test, calculated in the 
presence of no variance in one of the two groups. 
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3.5. Comparison of Gut Microbiota Composition between MDD Patients with and without TR and HC 

As listed in Table 5, the presence of Elusimicrobia, Flavobacteriaceae, Fenollaria and Robinsoniella 
sp. MCWD5 was found exclusively in responder MDD patients, the presence of Nitrospirae and 
Peptostreptococcaceae only in HC and the enrichment of Proteobacteria in HC with respect to 
responders emerging as the bacterial pattern best discriminating between these two groups. 

Table 5. Results from the penalized logistic regression analysis (PELORA) algorithm which identifies 
pathways of bacterial populations that best discriminate responsive MDD patients (R) from healthy 
controls (HC). 

Taxa 
Level  

Bacteria Selected by 
PELORA 

Quantity Statistics 
R MDD 
(n = 19) 

HC 
(n = 20) 

p-Value 
# 

Phylum 

Nitrospirae 
(Relative abundance 

(%) 
Median 
[IQR] Absent 

0.000 [0.000–
0.006] 0.001 § 

Z-score ° Mean ± SD 0.483 ± 1.223 

Proteobacteria 
Relative abundance 

(%) 
Median 
[IQR] 

1.906 [1.442–
2.850] 

2.971 [2.189–
4.384] 0.020 

Z-score ° Mean ± SD −0.377 ± 0.658 0.358 ± 1.146 

Elusimicrobia * 
Relative abundance 

(%) 
Median 
[IQR] 

0.000 [0.000–
0.001] Absent 0.007 § 

Z-score ° Mean ± SD 0.374 ± 1.350 
Cluster centroid Z-score (means) Mean ± SD −0.420 ± 0.516 0.399 ± 0.438 <0.001 

Family 

Peptostreptococcaceae 
Relative abundance 

(%) 
Median 
[IQR] Absent 

0.008 [0.004–
0.011] <0.001 § 

Z-score ° Mean ± SD 0.916 ± 0.435 

Flavobacteriaceae * 
Relative abundance 

(%) 
Median 
[IQR] 

0.008 [0.005–
0.015] Absent <0.001 § 

Z-score ° Mean ± SD 0.967 ± 0.431 
Cluster centroid Z-score (means) Mean ± SD −0.965 ± 0.216 0.917 ± 0.217 <0.001 

Genus 
Fenollaria 

(Cluster centroid) 

Relative abundance 
(%) 

Median 
[IQR] 

0.008 [0.004–
0.010] 

Absent 
<0.001 § 

Z-score ° Mean ± SD 0.979 ± 0.373 −0.930 ± 0.000 

Species 
Robinsoniella sp, 

MCWD5  
(Cluster centroid) 

Relative abundance 
(%) 

Median 
[IQR] 

0.009 [0.007–
0.014] 

Absent 
<0.001 § 

Z-score ° Mean ± SD 0.981 ± 0.361 −0.932 ± 0.000 

Abbreviations: IQR: interquartile range (i.e., first-third quartiles); SD: standard deviation; Absent: all 
values are 0%. ° Standardized Z-score: the relative abundance of each bacterium was first logistic 
transformed, and then the Z-score was calculated subtracting its mean and dividing by its standard 
deviation (SD). Both the mean and SD were computed in the sample which included all R patients 
and HC. Centroid is computed by the mean of Z-scores; * to calculate the centroid, the sign of the 
specific bacterium’s Z-score was reversed; # p-values from two-sample t-test on Z-scores; § p-values 
from Mann–Whitney U test, calculated in the presence of no variance in one of the two groups. 

On the other hand, as reported in Table 6, the exclusive detection of Flavobacteriaceae, Hungatella, 
Yersinia, Citrobacter, Fenollaria and Fenollaria timonensis in patients with treatment-resistant MDD and 
the exclusive detection of Candidatus Saccharibacteria and Massilioclostridium coli in HC were the 
bacterial patterns distinguishing these groups. 

Table 6. Results from the penalized logistic regression analysis (PELORA) algorithm which identifies 
pathways of bacterial populations that best discriminate treatment-resistant (TR) DDM patients from 
healthy controls (HC). 

Taxa 
Level 

Bacteria Selected by PELORA Quantity Statistics TR MDD  
(n = 8) 

HC 
(n = 20) 

p-Value 
# 

Phylu
m 

Candidatus Saccharibacteria 
(Cluster centroid) 

Relative abundance 
(%) 

Median 
[IQR] Absent 

0.006 [0.004–
0.014] <0.001 § 

Z-score ° Mean ± SD 0.505 ± 0.693 
Family Flavobacteriaceae (Cluster Relative abundance Median 0.007 [0.003– Absent <0.001 § 
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centroid) (%) [IQR] 0.019] 
Z-score ° Mean ± SD 1.470 ± 0.633 −0.588 ± 0.000 

Genus 

Fenollaria 
(Relative abundance 

(%) 
Median 
[IQR] 

0.007 [0.006–
0.018] Absent <0.001 § 

Z-score ° Mean ± SD 1.484 ± 0.576 

Hungatella 
(Relative abundance 

(%) 
Median 
[IQR] 

0.003 [0.001–
0.094] Absent <0.001 § 

Z-score ° Mean ± SD 1.260 ± 1.148 

Yersinia 
Relative abundance 

(%) 
Median 
[IQR] 

0.003 [0.001–
0.020] Absent <0.001 § 

Z-score ° Mean ± SD 1.177 ± 1.281 

Citrobacter * 
Relative abundance 

(%) 
Median 
[IQR] 

0.000 [0.000–
0.002] Absent 0.001 § 

Z-score ° Mean ± SD 0.859 ± 1.636 
Cluster centroid Z-score (means) Mean ± SD 0.765 ± 0.169 −0.306 ± 0.000 <0.001 

Specie
s 

Massilioclostridium coli 
Relative abundance 

(%) 
Median 
[IQR] Absent 

0.009 [0.008–
0.013] <0.001 § 

Z-score ° Mean ± SD 0.595 ± 0.342 

Fenollaria timonensis * 
Relative abundance 

(%) 
Median 
[IQR] 

0.007 [0.005–
0.017] Absent <0.001 § 

Z-score ° Mean ± SD 1.486 ± 0.571 
Cluster centroid Z-score (means) Mean ± SD −1.486 ± 0.286 0.595 ± 0.171 <0.001 

Abbreviations: IQR: interquartile range (i.e., first-third quartiles); SD: standard deviation; Absent: all 
values are 0%. ° Standardized Z-score: the relative abundance of each bacterium was first logistic 
transformed, and then the Z-score was calculated subtracting its mean and dividing by its standard 
deviation (SD). Both the mean and SD were computed in the sample which included all TR patients 
and HC. Centroid is computed by the mean of Z-scores; * to calculate the centroid, the sign of the 
specific bacterium’s Z-score was reversed; # p-values from two-sample t-test on Z-scores; § p-values 
from Mann–Whitney U test, calculated in the presence of no variance in one of the two groups. 

4. Discussion 

The identification of specific changes in microbiota in relation to illness status and the presence 
of TR to antidepressants should be interpreted in the context of several limitations. First, due to the 
cross-sectional design, our study was not able to establish causality (i.e., whether microbiota 
variation resulted from or preceded the onset of MDD). Second, the relatively small sample size 
could have impacted on the statistical power leading to a decreased sensitivity and specificity of our 
findings. Thus, we shall consider our study as hypothesis generator, capable of clarifying the 
strength of the association between microbiota variation and MDD and/or TR. In any instance, it 
should be noted that most of the available evidence in the literature has been gathered in samples of 
comparable size. Third, although the definition of TR was based on an accurate assessment of 
longitudinally collected clinical information, its assessment was mainly retrospective. However, 
given that TR was based on the analysis of sensible and validated psychometrics measures such as 
the Hamilton Depression Rating Scale [28], collected at each follow-up, it is reasonable to assume 
that this might have been relevant in terms of underrepresentation of TR cases, rather than of the 
misidentification of responsive patients as TR. Finally, although information on diet was accurately 
collected at the moment of stool specimen sampling, it is not possible to establish reliably how 
consistent were dietary habits among our patients. 

However, even in light of these limitations, our study was able to identify the following 
relevant findings: (a) a statistically significant overrepresentation of Paenibacillaceae in MDD 
compared to HC, while the opposite was found for the family of Flavobacteriaceaea, the genus 
Fenollaria, the species Flintibacter butyricus, Christensenella timonensis, Eisenbergiella massiliensis, 
Pseudoflavonifractor capillosus, Fenollaria timonenis, Robinsoniella sp. MCWD5 and Clostridum citroniae; 
(b) a substantial pattern of bacterial taxa was differentially represented in the comparison between 
untreated and treated MDD patients; (c) a number of bacteria were identifiable in the microbiota of 
TR MDD patients (Thaumarchaeota, Yersinia and its species Yersinia pseudotuberculosis, Peptococcus, 
Fenollaria timonensis, Blautia sp. canine oral taxon 337, Papillibacter cinnamivorans) but not in responsive 
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patients; (d) compared to HC, Flavobacteriaceae, Hungatella, Yersinia, Citrobacter, Fenollaria and 
Fenollaria timonensis were identified exclusively in TR MDD patients, while Elusimicrobia, 
Flavobacteriaceae, Fenollaria and Robinsoniella sp. MCWD5 were found exclusively in responsive MDD 
patients. These findings should be discussed in the context of the existing literature. There is 
increasing evidence of a link between gut microbiota imbalance and neurological disorders, 
including mood disturbances such as depression [29,30]. Supporting this link are the observations 
that MDD patients often exhibit metabolic and gastrointestinal symptoms [29,31] and that some 
antidepressants exhibit antimicrobial properties, while some antibiotics produce antidepressant 
effects [32]. 

According to the monoamine deficiency hypothesis, the main pathogenetic mechanism 
underlying MDD would be a shortage of monoaminergic neurotransmitters serotonin, 
norepinephrine or dopamine [33,34]. Consistently, the vast majority of marketed antidepressants 
impact the monoamine neurotransmission, with serotonin being the main target [34]. Serotonin 
derives from the essential amino acid tryptophan, which is introduced with diet. Once in the gut, 
about 90% of tryptophan enters the kynurenine pathway for the production of nicotinamide adenine 
dinucleotide, about 4–6% is metabolized by gut microbiota to produce indole and its derivatives, 
and only 3% is made available for serotonin synthesis [35–37]. Bacteria not only degrade tryptophan 
to produce indole compounds but also regulate the activity of rate-limiting enzymes in the 
kynurenine pathway [35–37], evidence that explains why gut microbiota might affect tryptophan 
availability for serotonin production in the brain [38]. 

Previous observational studies have examined the gut microbiota in patients suffering from 
MDD [19,39–43]. The novelty of our study lies in two main aspects: (1) the accurate characterization 
of TR cases and their numerosity leading to what is, to date, the largest sample size for microbiota 
analysis; and (2) the application of the PELORA algorithm to find out the most discriminative 
bacterial patterns at different taxonomic levels in our study population. First, we compared gut 
microbiota of all MDD patients with that of HC. Interestingly, we observed that all the 
microorganisms identified by the algorithm at the genus and species level, which were only detected 
in patients but not in HC, belonged to the class of Clostridia. Since among other gut bacteria, 
Clostridia are able to degrade tryptophan to tryptamine in the indole pathway [44], we speculate that 
they could divert tryptophan from serotonin production in the brain of MDD patients. Secondly, we 
distinguished MDD patients according to whether they were or not under pharmacological 
treatment at the moment of sample collection, and we observed a conspicuous number of bacteria 
discriminating between these two groups, thus supporting previous findings that antidepressant 
drugs may induce gut microbiota variations [32,45]. Some of these drug-induced changes could be 
potentially disadvantageous, such as the decrease in butyrate producing bacteria like Ruminococcus 
torques, Flintibacter butyricus and Roseburia intestinalis or the drop in Phascolarctobacterium, previously 
found to be correlated with positive mood [46]. Thirdly, we focused on patients with MDD who had 
developed TR during their illness course. Again, the relationship between antidepressants (and 
resistance to them) and microbiota appears to be bidirectional. If, on the one hand, antidepressant 
medications affect microbiota composition [32,45], on the other hand data suggest that the gut 
microbiota phenotype may modulate their efficacy [19,47,48]. Of note, we found that Proteobacteria 
were considerably increased in TR patients, in agreement with previous finding by Jiang et al., who 
observed this phylum enriched in active, non-responsive MDD patients compared with healthy 
subjects [19]. The phylum of Proteobacteria includes intestinal pathogenic microorganisms belonging 
to Enterobacteriaceae, such as Yersinia and Citrobacter, which we only found in TR patients but not in 
responders nor in HC. Intriguingly, previous studies reported that gastrointestinal infections caused 
by pathogenic bacteria, including Citrobacter, elicit anxiety-like behaviors [49–51], thereby 
supporting the hypothesis that these microorganisms could contribute to the failure of 
antidepressant trials. Striking is also the case of the genus bacterial genus Bacillus, which was 
detected in HC (data not shown), in all MDD responders, but in none of the TR MDD patients (Table 
4). Bacillus species are able to produce norepinephrine and dopamine [52], which may contribute to 
restore dysregulated levels of these neurotransmitters in the brain of MDD subjects. 
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Overall, the results of our study confirm that gut dysbiosis is a feature of MDD patients and that 
the microbiota of TR subjects significantly differs from responders to antidepressants, suggesting a 
role of gut microbiota in the etiopathogenesis of the disease as well as in its response to therapies. 
Elucidating the role of microbiota in MDD pathogenesis might pave the way to a possible use of gut 
bacterial profiles as disease biomarkers. In addition, the identification of microorganisms 
discriminating treatment-resistant from responsive patients could lead to set up specific 
interventions of microbiota manipulation in order to improve the clinical efficacy of the current 
antidepressant therapies. 
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