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Abstract: Human gingival fibroblasts (GF) and human oral mucosa epithelial cells (EC) with an
inflammatory phenotype represent a valuable experimental paradigm to explore the curative activity
of agents to be used in oral mucositis. The role of cannabinoid receptor 2 (CB2) has not yet been
investigated in oral mucositis. The aim of this study was to evaluate the therapeutic potential of
β-Caryophyllene (BCP), a CB2 agonist, in an in vitro model of oral mucositis. GF and EC were
stimulated with LPS (2 µg/mL) alone or in combination with BCP; a group of LPS challenged GF
and EC were treated with BCP and AM630, a CB2 antagonist. LPS increased the inflammatory
cytokines TNF-α, IL-1β, IL-6 and IL-17A whereas it decreased the anti-inflammatory cytokine IL-13.
The upstream signals were identified in an augmented expression of NF-κB and STAT-3 and in
reduced mRNA levels of PPARγ and PGC-1α. BCP blunted the LPS-induced inflammatory phenotype
and this effect was reverted by the CB2 antagonist AM630. These results suggest that CB2 receptors
are an interesting target to develop innovative strategies for oral mucositis and point out that BCP
exerts a marked curative effect in a preclinical model of oral mucositis which deserves to be confirmed
in a clinical setting.
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1. Introduction

Oral mucositis (OM) is a clinical condition characterized by a marked inflammatory reaction that
results in erythematous lesions, ulcers, dysphagia and inability to afford and ensure a physiological
calories intake that ultimately leads to interrupting life-saving treatments in cancer patients [1–4].
Oral mucositis may also complicate and/or be a clinical manifestation of peri-implantitis a common
complication of dental implants, showing a prevalence of at least 20% in patients that have undergone
this surgical procedure [5–8]. As a direct consequence of this tremendous impact on public health,
there is an urgent need to identify the exact physiopathology of this condition in order to facilitate the
design of rational therapeutic strategies to cure this complication.

Indeed, the mechanism underlying oral mucositis has been, at least in part, clarified. Whatever the
triggering event, either DNA damage as in the case of chemotherapy/radiation therapy or infectious
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stimuli and progressive bone loss as in peri-implantitis [9,10], a common pathway converges in
an exaggerated production of reactive oxygen species (ROS) released by both epithelial cells and
gingival fibroblasts [11]. In fact, ROS boosts the translocation to the nucleus of Nuclear Factor Kappa
B (NF-κB) [12]. Once it reaches the nucleus, the transcription factor turns on genes that codify for
inflammatory cytokines such as Tumor Necrosis Factor (TNF-α), Interleukin 1 beta (IL-1β) and IL-6;
moreover at the same time, it silences genes priming anti-inflammatory signals, in particular IL-13 and
the nuclear receptor called peroxisome proliferator-activated receptor gamma (PPAR-γ) [13,14]. Indeed,
this NF-κB primed cytokine storm may be considered an important arm of the acute phase response,
but it has also been reported to have a key role in driving the second wave of the acute response in
mammals. This second step of the inflammatory cascade is a crucial phenomenon that, at least at
the beginning, is positive and reinforces the host immune and inflammatory response. The master
regulator of this second step of host response to inflammatory injury is the Signal Transducer and
Activator of Transcription (STAT) 3 [12]. STAT3 belongs to the seven-member family of proteins that
cause the transduction of hormonal information from the cell membrane to the nucleus. STAT3 primes
the formation of T helper 2 (Th2) cells that release a large number of Th2 derived cytokines including
IL-17A. Activation of STAT3 is induced by several hormones, being the best studied and analyzed the
components of the IL-6 group of cytokines. More specifically IL-6 has been shown to cause a robust
activation of STAT3, representing this molecular event either the triggering of the second phase and the
pathophysiological link between the first wave and the second wave of the host immune-inflammatory
reaction. However, if the second wave of the inflammatory response is not appropriately modulated, a
transition may occur into a maladaptive response that transforms acute inflammation into a chronic
inflammatory condition that is responsible for several disabling diseases.

Therefore, pharmacological modulation of either the first phase or the second phase of the host
inflammatory response is a rational strategy for the treatment of oral mucositis.

Relevant bioassays are therefore needed to facilitate the preclinical screening of candidate
molecules. In this context, human gingival fibroblasts (GF) and human oral mucosa epithelial cells (EC)
with an inflammatory phenotype represent a valuable experimental paradigm to explore the potential
curative activity of agents to be used in this clinical condition [15]. LPS boosts an inflammatory
cascade that plays a pivotal role in the pathogenesis of this unpleasant disease. Indeed, LPS belongs to
the pathogen associated molecular patterns (PAMPs) family, a group of molecules that orchestrate
an exaggerated immune-inflammatory response. Therefore, LPS stimulation of epithelial cells and
gingival fibroblasts is an appropriate model to study in vitro oral mucositis.

The endocannabinoid system has two classical receptors: the cannabinoid receptor of type
1 (CB1) and the cannabinoid receptor of type 2 (CB2). While the CB1 mediates the classical
psychotropic effects, the CB2 is expressed in the immune system and exerts anti-inflammatory
effects [16]. The endocannabinoid system, through the CB2 receptor, has a fundamental role in the
modulation of the inflammatory signals during pathological conditions such as osteoarthritis and
rheumatoid arthritis. CB2 receptor activation inhibits upstream and downstream molecules of the
inflammatory process. In addition, stimulation of the CB2 receptors exerts analgesic activity that
might be of clinical relevance in the management of patients suffering from oral mucositis. All these
experimental evidences clearly suggest that the type 2 cannabinoid receptor is strategical for a rational
innovative drug design. However, no study so far has investigated the hypothesis of targeting the CB2
receptor to modulate the inflammatory cascade that occurs in oral mucositis.

β-caryophyllene (BCP) is a Food Drug Administration (FDA) approved natural compound that
engages cannabinoid CB2 receptors and causes anti-inflammatory and analgesic effects [17]. The aim
of this study was to evaluate the therapeutic potential of BCP in an “in vitro” experimental paradigm
of oral mucositis.
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2. Materials and Methods

2.1. Cell Cultures

Human primary gingival fibroblasts (atcc-pcs-pcs201-018) and human oral mucosa epithelial cells
(cticc1.8.3 sk0251) were obtained from LGC Standards S.r.l Milan, Italy and Clinisciences s.r.l. Rome,
Italy, respectively. Cells were put in culture in a medium made by DMEM, 10% fetal calf serum, 1%
antibiotic mixture and incubated at 37 ◦C with 5% of CO2. AM630 was put in the cell culture 2 h before
BCP. Cells and cell supernatants were collected following an incubation of 4 h with all the substances.

2.2. Treatments of Cells

GF and EC cells were cultured in six well culture plates at a density of 2.5 × 105 cells/well and
were challenged with LPS (2 µg/mL; Escherichia coli serotype 055:B5; Sigma-Aldric, Milan, Italy) alone
or with BCP (Sanherb Biotech Inc., China) at the dose of 10 µg/mL. A previous study showed that this
dose represents the IC50 of the biomolecule at least in the experimental paradigm of LPS stimulated
human chondrocytes and considering IL-1β as readout of this bioassay [18]. Furthermore, a set of LPS
challenged GF and EC cells were treated with BCP (10 µg/mL) and AM630 (100 nM; Sigma-Aldric,
Milan, Italy), an antagonist of the CB2 receptor. AM630 was added 2 h before BCP treatment. Cells
were harvested after a 4 h of incubation with several treatments.

2.3. MTT Assay

Cell viability was evaluated by MTT assay. GF and EC cells were grown and then treated
with LPS (2 µg/mL), LPS + BCP (10 µg/mL), LPS + BCP +AM630 (100 nM), when it reached
confluence. In particular, LPS, LPS + BCP and LPS + BCP + AM360 were tested in a 96-well plate
at a density of 8 × 104 cells/well for 24 h to evaluate the cytotoxic effect. The tetrazolium dye
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Sigma Aldrich, Milan, Italy) was
dissolved in sterile filtered PBS, and 20 µL of the mixture were added into each well 5 h before
the end of the 24 h of incubation. Medium was removed and the insoluble formazan crystals were
dissolved with dimethyl sulfoxide (DMSO; 200 µL/well) following 5 h. The difference between the
values obtained at 540 and 620 nm of absorbance was used to calculate the average of replicates and to
evaluate cytotoxicity. Results were expressed as % of cell viability compared to untreated cells and
reported as means and SD.

2.4. Measurements of Cytokines by Enzyme-Linked Immunosorbent Assay (ELISA)

TNF-α, IL-1β, IL-13, IL-6 and IL-17A were measured in the cell supernatants. The cytokines
under investigation were evaluated using Enzyme-Linked Immunosorbent Assay (ELISA) kits (Abcam,
Cambridge, UK) in agreement with the instructions reported by the manufacturer. All the samples
were evaluated in duplicate and the obtained results were interpolated with the pertinent standard
curves. To evaluate the sample, the means of the duplicated sample were used and expressed in
pg/mL [19,20].

2.5. Real Time Quantitative PCR Amplification (RTqPCR)

Total RNA was extracted from GF and EC cells for RTqPCR using Trizol LS Reagent (Invitrogen,
Carlsbad, CA, USA). Two micrograms of total RNA was reverse transcribed in a final volume of 20 µL
using a Superscript VILO kit (Invitrogen). cDNA (1 µL) was added to the EvaGreen qPCR Master Mix
(Biotium Inc., Fremont, CA, USA) (20 µL per well). The final primer concentration selected to perform
the analysis was 10 µM. Samples were run in duplicate and β-actin was used as an endogenous control.
Results were calculated using the 2−∆∆CT method and expressed as n-fold increase in gene expression
using the CTRL group as the calibrator [21]. Primers used for targets and reference genes are listed in
Table 1.
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Table 1. Primer list.

Gene Sequence

β-actin Fw:5′AGAGCTACGAGCTGCCTGAC3′

Rw:5′AGCACTGTGTTGGCGTACAG3′

TNF-α Fw:5′CAGAGGGCCTGTACCTCATC3′

Rw:5′GGAAGACCCCTCCCAGATAG3′

IL-1β Fw:5′TGAGCTCGCCAGTGAAATGA3′

Rw:5′AGATTCGTAGCTGGATGCCG3′

IL-13 Fw:5′CATGGCGCTTTTGTTGACCA 3′

Rw:5′AGCTGTCAGGTTGATGCTCC3′

NF-κB Fw:5′CCTGGATGACTCTTGGGAAA3′

Rw:5′TCAGCCAGCTGTTTCATGTC3′

PPAR-γ Fw:5′TCGACCAGCTGAATCCAGAG3′

Rw:5′GGGGGTGATGTGTTTGAACTTG3′

PGC-1α Fw:5′CATGTGCAACCAGGACTCTGA3′

Rw:5 GCGCATCAAATGAGGGCAAT3′

STAT3 Fw:5′GAGCTGCACCTGATCACCTT3′

Rw:5′CCCAGAAGGAGAAGCCCTTG3′

IL-6 Fw:5′TTCGGTCCAGTTGCCTTCTC3′

Rw:5′CAGCTCTGGCTTGTTCCTCA3′

IL-17A Fw:5′CTGTCCCCATCCAGCAAGAG3′

Rw:5′AGGCCACATGGTGGACAATC3′

2.6. Statistical Analysis

Results were statistically analyzed calculating standard deviation (SD). Data are expressed as the
mean ± SD and the values reported are the results of at least five experiments performed in duplicate.
All assays were repeated three times to ensure reproducibility. The different groups were compared
and analyzed using one-way ANOVA with a Tukey post-test for comparison between the different
groups. A p value < 0.05 was considered significant. Graphs were prepared using GraphPad Prism
(version 5.0 for Windows, San Diego, CA, USA).

3. Results

3.1. BCP Reverts the Inflammatory Phenotype Induced by LPS in Gingival Fibroblasts and Oral Mucosa
Epithelial Cells

LPS challenge resulted in a marked expression of TNF-α and IL-1β with a concomitant reduced
mRNA of IL-13 in both gingival fibroblasts and oral mucosa epithelial cells (p < 0.0001 vs. CTRL;
Figure 1). To confirm the full induction of the inflammatory phenotype, we measured the mature
proteins in the cell supernatants. TNF-α and IL-1β were markedly increased, while IL-13 significantly
diminished in the supernatants of GF and EC cells (p < 0.0001 vs. CTRL; Figure 2). BCP incubation in
LPS stimulated GF and EC cells suppressed the increased mRNA for the inflammatory cytokines TNF-α
and IL-1β and caused a marked enhancement in the expression of the message of the anti-inflammatory
cytokine IL-13 (p < 0.0001 vs. LPS; Figure 1). Overlapping results were observed when mature proteins
were used as readouts (p < 0.0001 vs. LPS; Figure 2). To dissect out the role of the CB2 receptors in
the effect of BCP, we performed experiments in which a specific antagonist of this receptor subtype
(AM630) was added in cell culture 2 h before BCP. Blockade of the CB2 receptor reverted the positive
effect of the biomolecule on the inflammatory phenotype (Figures 1 and 2).
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Figure 1. The graphs represent qPCR results of TNF-α (a), IL-1β (c), IL-13 (e) mRNA expression from
GF cells and TNF-α (b), IL-1β (d), IL-13 (f) mRNA expression from EC cells. Values are expressed as
the means and SD. * p < 0.0001 vs. CTRL; # p < 0.0001 vs. LPS.
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Figure 2. The graphs represent the levels of TNF-α (a), IL-1β (c) and IL-10 (e) in cell supernatants
from GF cells and TNF-α (b), IL-1β (d), IL-13 (f) levels in cell supernatants from EC cells. Levels of
cytokines were evaluated by immunosorbent assay (ELISA). Values are expressed as the means and SD.
* p < 0.0001 vs. CTRL; # p < 0.0001 vs. LPS.

3.2. BCP Modulates Upstream Signals that Trigger the First Phase of the Inflammatory Response

The transcription factor NF-κB was markedly induced by the LPS challenge in both human
gingival fibroblasts and oral mucosa epithelial cells (p < 0.0001 vs. CTRL; Figure 3a,b). BCP treatment
in GF and EC cells suppressed the mRNA for the transcription factor and this effect was abrogated by
AM630, a specific antagonist of CB2 receptors (p < 0.0001 vs. LPS; Figure 3a,b). LPS also produced a
diminished PPARγ and PGC-1α expression in gingival fibroblasts (p < 0.0001vs. CTRL; Figure 3c,e)
and epithelial cells (p < 0.0001 vs CTRL; Figure 3d,f). BCP treatment prompted a marked enhancement
in the expression of both the nuclear receptor and its co-activator when compared to cell cultures
challenged with LPS alone (p < 0.0001 vs. LPS; Figure 3c–f). The antagonist of the CB2 receptor AM630
reverted the effects of BCP in GF and EC cells (Figure 3).
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Figure 3. The graphs represent the qPCR results of NF-kB (a), PPARγ (c), PGC1α (e) mRNA expression
from GF cells and NF-kB (b), PPARγ (d), PGC1α (f) mRNA expression from EC cells. Values are
expressed as the means and SD. * p < 0.0001 vs. CTRL; # p < 0.0001 vs. LPS.

3.3. BCP Halts the Second Phase of the Inflammatory Response in Gingival Fibroblasts and Oral Mucosa
Epithelial Cells

STAT-3 serves as a pathophysiological connection between the first and the second phase of the
acute inflammatory response. LPS stimulation prompted a robust increase in the message for this
upstream signal in both gingival fibroblasts and oral mucosa epithelial cells (p < 0.0001 Figure 4a,b). BCP
incubation markedly dampened STAT-3 expression in both GF and EC cells and CB2 receptors blockade
by AM630 cancelled the BCP effects (p < 0.0001 Figure 4a,b). IL-6 is released during the acute phase of
the inflammatory reaction and it is the cytokine that promotes the transition from the first phase to the
second wave of the acute inflammatory cascade. This step, if it is not adequately modulated, results in
a chronic inflammatory condition. BCP was able to decrease the IL-6 message and mature protein,
both markedly stimulated by LPS challenge in GF an EC cells (p < 0.0001 Figure 4c,d; Figure 5a,b).
Again, the pharmacological blockade of the CB2 receptor brought about by AM630 reverted the BCP
effects (p < 0.0001 Figure 4c,d; Figure 5a,b). Dysregulated activation of STAT-3 promotes an aberrant
production of IL-17A, a cytokine that orchestrates the accumulation of inflammatory cells as neutrophils
to the inflammatory scene. If the release is persistent, it may cause a negative remodeling of the
inflamed tissue, thus sustaining and maintaining a chronic inflammation scenario. LPS challenge
caused an elevation in both IL-17A mRNA and mature protein in both GF and EC cells (p < 0.0001
Figure 4c,f; Figure 5b,d). BCP incubation markedly reduced IL-17A expression and this effect was
abolished by AM630, a cannabinoid CB2 receptor antagonist (p < 0.001 Figure 4e,f; Figure 5c,d).
This experiment indicates that BCP efficiently interrupts the transition towards chronic inflammation.
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Figure 4. The graphs represent qPCR results of STAT3 (a), IL-6 (c), IL-17A (e) mRNA expression from
GF cells and STAT3 (b), IL-6 (d), IL-17A (f) mRNA expression from EC cells. Values are expressed as
the means and SD. * p < 0.0001 vs. CTRL; # p < 0.0001 vs. LPS.
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Figure 5. The graphs represent the levels of IL-6 (a), IL-17A (c) in cell supernatants from GF cells and
IL-6 (b), IL-17A (d) levels in cell supernatants from EC cells. Levels of cytokines were evaluated by
immunosorbent assay (ELISA). Values are expressed as the means and SD. * p < 0.0001 vs. CTRL;
# p < 0.0001 vs. LPS.

3.4. BCP Does Not Affect Cell Viability

One hundred percent of viability was observed on control cells following 24 h. The incubation
with β-caryophyllene did not affect GF and EC viability, thus demonstrating that this natural product
does not have a cytotoxic effect and does not affect cell viability. Furthermore LPS incubation did not
change cell viability (Figure 6a,b).
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Figure 6. The graphs show the cytotoxicity assay at 24 h in GF cells (a) and EC cells (b). Values are
expressed as the means and SD.

4. Discussion

In the present study we reproduced “in vitro” an experimental paradigm to mimic oral mucositis.
To this aim we primed with LPS human gingival fibroblasts and oral mucosa epithelial cells, two main
components of the periodontium. Both cell types acquired an inflammatory phenotype characterized
by a sustained inflammatory cascade that was orchestrated by the transcription factors NF-κB and
STAT3. Indeed, our experimental model is a slight modification of a previous published bioassay
for oral mucositis [15]. However, we used LPS to trigger the inflammatory phenotype instead of
recombinant cytokines, as in the previously published model [22].

LPS stimulation may have some theoretical advantages over cytokine stimulation: it may
reproduce more closely the clinical scenario where infective stimuli and micro-organisms, at least in
peri-implantitis, play an important role and may activate more efficiently the intracellular upstream
signals that regulate and coordinate the inflammatory storm. In agreement with this reasoning it has
been shown that in oral mucositis, pathogens are main participants in the triggering of the inflammatory
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cascade by engaging pathogen associated molecular patterns (PAMPs), such as the toll-like receptor
that is targeted by LPS [23].

Oral mucositis management is theoretically easy to accomplish, but practically hard to implement
in the clinical setting. Several therapeutics have been proposed for the treatment of oral mucositis:
they include local antiseptic and cytoprotective agents, laser therapy and cryotherapy as well as
pharmacological approaches such as anti-inflammatory drugs, recombinant cytokines and growth
factors. Among these curative strategies, keratinocyte growth factor-1 is the only medicine that has
received approval by the U.S. Food and Drug administration and by the European Medicine Agency
for the management of oral mucositis, but its use is restricted to “at-high-risk” population [24,25].
Phyto-therapy has been suggested as a rationale strategy in the management of oral mucositis [26–28].
In this context BCP may represent an interesting molecule. It is a bicyclic sesquiterpene obtained by
extraction from copaiba (Copaifera spp) and marijuana/hemp (Cannabis spp) that has gained the Food
Drug Administration (FDA) authorization in light of its interesting curative profile. The compound
has a long history of use in complementary therapy because of its ability to reduce inflammation and
to cause analgesia [29]. β-caryophyllene engages with high affinity the cannabinoid CB2 receptors
which are mainly localized in the immune system and immune-derived cells [30]. Since BCP does not
bind the type 1 cannabinoid receptors, it is devoid of action at the Central Nervous System.

Several targets have been proposed to design a curative approach for oral mucositis, but so far,
no attempt has been carried out to explore the feasibility of positively modulating the CB2 receptor.
Our results suggest that BCP succeeded in turning off the inflammatory phenotype of GF and EC cells
that is the main pathophysiological hallmark of oral mucositis [31]. BCP reduced relevant inflammatory
cytokines such as TNF-α and IL-1β and augmented the expression of the anti-inflammatory IL-13.
The positive effects brought about by BCP were abrogated by a specific antagonist of the CB2 receptor,
thus clearly pointing out that this specific receptor subtype represents the mode of action of this
natural compound. Furthermore, the results unmask for the first time that the CB2 receptor has
potential for becoming a target candidate to allow an innovative drug design for medicines useful in
the management of oral mucositis. We also explored the first steps of the intracellular biomolecular
pathway that is modulated by the blockade of the CB2 receptor and we identified that the transcription
factor NF-κB is the upstream molecular signal that is targeted by this therapeutic strategy. This result
is of paramount importance: in fact, the transcription factor has been recognized as being one of the
main actors in the initiation of oral mucositis and therefore the strategy of the CB2 blockade is able to
intercept the very early event in the boosting of the inflammatory cascade. PPARγ is a nuclear receptor
that may be considered as an “atypical transcription factor” able to activate anti-inflammatory signals.
Indeed, pharmacological stimulation of PPARγ exerts beneficial activity in oral mucositis [13,14].
In agreement with these findings we also investigated PPARγ and its co-activator PGC-1α and we found
that the expression of this intracellular signal was “downregulated” in our model of oral mucositis.
Interestingly stimulation of the CB2 receptor by BCP also caused an upregulation of this protective
intracellular signal, thus confirming previous studies suggesting the occurrence of a cross-talk between
CB2 and PPAR-γ receptors [32].

Inflammation is a complex cascade of events that may lead to its resolution or, alternatively, to
its stalling into a chronic condition that renders the management of the clinical condition hard to
accomplish. The molecular events involved in this scenario are: an exaggerated production of IL-6 [33]
and the consequent activation of the transcription factor STAT3 [34] that primes the production and
release of several additional cytokines that sustain and maintain the inflammatory state. Among those
cytokines, IL-17A is of paramount importance in the context of oral disease. Elevated levels of IL-17A
have been measured in periodontal diseases characterized by high grade chronic inflammation [35,36].
In this clinical setting IL-17A orchestrates a coordinated recruitment of inflammatory cells that amplifies
the maladaptive mechanisms underlying the maintenance of a persistent inflammation. Interestingly,
BCP succeeded in counteracting this second wave of the host inflammatory response.
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All these data, taken together highlight the great therapeutic potential of BCP for oral mucositis;
in fact it possesses a dual mechanism of action; inhibition of NF-κB and activation of PPAR-γ that
amplifies its efficacy in the first phase of inflammation and later it halts, by inhibiting STAT3, the
second phase of the inflammatory response. Finally, it has been shown that BCP has an anti-cancer
effect [37] that may enhance the appropriateness of this treatment, at least for oral mucositis due to
chemotherapy or radiotherapy.

In conclusion, our data show for the first time that BCP has a marked efficacy in a preclinical
in vitro model of oral mucositis: this effect, in light of its high translational potential, deserves to be
confirmed in a clinical setting.
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