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Abstract: Silymarin (SM) is a mixture of flavolignans extracted from the seeds of species derived
from Silybum marianum, commonly known as milk thistle or St. Mary’sthistle. These species have
been widely used in the treatment of liver disorders in traditional medicine since ancient times.
Several properties had been attributed to the major SM flavolignans components, identified as silybin,
isosilybin, silychristin, isosilychristin, and silydianin. Previous research reported antioxidant and
protective activities, which are probably related to the activation of the nuclear factor erythroid
2 (NFE2)-related factor 2 (Nrf2), known as a master regulator of the cytoprotector response.
Nrf2 is a redox-sensitive nuclear transcription factor able to induce the downstream-associated
genes. The disruption of Nrf2 signaling has been associated with different pathological conditions.
Some identified phytochemicals from SM had shown to participate in the Nrf2 signaling pathway;
in particular, they have been suggested as activators that disrupt interactions in the Keap1-Nrf2
system, but also as antioxidants or with additional actions regarding Nrf2 regulation. Thus, the study
of these molecules makes them appear attractive as novel targets for the treatment or prevention of
several diseases.
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1. Introduction

Living organisms are constantly exposed to different insults from the environment or as a result
of biochemical reactions. Aerobic metabolism demands a constant oxygen flux for energy production,
but the cost is the potential synthesis of reactive oxygen species (ROS) such as superoxide anion
radical (•O2

−), hydroxyl radical (•OH−), and hydrogen peroxide (H2O2) [1]. These highly reactive
molecules possess the ability to bond with other cellular structures such as lipids, proteins, and DNA,
increasing oxidative stress, causing damage. ROS are generated basically in mitochondria, peroxisomes,
endoplasmic reticulum, in nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase),
and in electron transfer enzymes such as, for instance, cytochrome P450 (CYP450) isoforms [2].
Mitochondria comprise the main ROS producer; during electron transport, molecular oxygen is reduced
by cytochrome c oxidase into H2O and, in turn, the incomplete reduction of oxygen leads the genesis of
ROS [3]. It is noteworthy that ROS are essential for maintaining homeostasis, contrary to it being thought
that they are regarded as harmful. ROS make possible some signaling pathways: cell proliferation,
differentiation, stress, and metabolic adaptation are mediated by ROS [4,5]. In addition, ROS,
as electrophilic molecules, can modulate receptor tyrosine kinase signaling [6], regulate protein activities
by oxidation of the thiol (–SH) moiety, and the optimal tyrosine phosphorylation of protein-tyrosine
phosphatase (PTP) 1B in insulin signaling, among others [7]. Therefore, it is crucial to maintain
equilibrium between ROS production and elimination for homeostasis. In this regard, cells have
developed a potent powerful system to protect themselves from damage. Nuclear factor erythroid 2
(NFE2)-related factor 2 (Nrf2) is known as a master regulator of antioxidant response; its activation
is mediated by ROS [8]. The tremendous impact observed in antioxidant response generated by the
activation of Nrf2 has promoted the carrying out of many investigations in order to understand the
mechanisms implicated in their induction. In addition to ROS, other factors have been identified
as Nrf2 inducers, such as several phytochemicals, also denominated bioactivators [9], electrophilic
molecules, and physical exercise [10].

The impaired Nrf2 pathway is associated with aging, inflammation, organ and tissue damage,
and the consequent development of chronic diseases [11]. Thus, the objective of this work was to
review the role of SM and the flavolingans as potent inducers of Nrf2. According to previous reports,
SM has been widely used in traditional medicine in the treatment of hepatic disorders for many
years, but formal studies have demonstrated that it is able to induce an antioxidant response [12].
The mechanisms are not completely understood; however, SM or its flavolignans appear to be a
promising target for further investigations related to inducing the Nrf2 signaling pathway as a proposal
in the treatment of several diseases.

2. The Signaling Pathway Nrf2/Keap1/ARE as Cytoprotector System

The cell is exposed to different environmental insults that are related to damage; therefore, it must
develop an effective system to protect itself. These systems are related to the activation of detoxifying
and maintaining redox homeostasis pathways. Nrf2 is a ubiquitous member of the basic leucine zipper
(bZIP) transcription factor family, encoded by the NFE2L2 gene that regulates a battery of approximately
250 genes involved in multiple cellular processes; cytoprotection, the redox response, and detoxification
are the most important of these [13]. Nrf2 is called the master regulator of stress responses. However,
it is also linked to cell proliferation and differentiation, growth, apoptosis, and carbohydrate and lipid
metabolism [14]. It was first described by Yuetwai Kan and identified as a 66 kDa protein that contains
a C-terminus Cap’N’Collar basic-region leucine ZIPper (CNC-bZIP) domain with high homology to
nuclear factor erythroid 2 (NF-E2) [15]. Thus, it was named Nrf2 and recognized as the third member
of the CNC-bZIP family in mammals [16]. Nfr2 was initially discovered as a transcriptional regulator
of β-globin genes [16], and it was hypothesized as a fundamental factor for hematopoiesis. Soon after
this, Nrf2-induced antioxidant response element (ARE)-mediated genes were found [17].

In humans, Nrf2 is a modular protein of 605 amino acids divided into different regions
called Nrf2-ECH homology (Neh) domains; seven domains (Neh1-7) have been identified, with
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diverse functions (Figure 1) [18]. The Neh1 domain comprises the conserved CNC-bZIP region
that is fundamental for heterodimerization with other bZIP proteins as a transcription factor [19].
The N-terminal Neh2 contains a pair of highly conserved peptide sequences to which Keap1 binds;
these comprise the high-affinity ETGE motif and the lower-affinity DLG motif [20]. C-terminal
Neh3 interacts with co-activator CHD, the transactivation responsible for ARE-dependent genes after
chromatin remodeling. This co-activator is a chromo ATPase/helicase DNA-binding protein [21];
Neh4 and Neh5 are domains of transcription activation that bind to the adenosine monophosphate
(AMP)-responsive element-binding protein. In addition, these can also interact with nuclear factor
RAC3/AIB1/S, enhancing Nrf2-target ARE gene expression [18,22]. Contrariwise, the Neh7 domain
can repress Nrf2 by interacting with the retinoic X receptor [23].

Figure 1. Original figure representing structures of nuclear factor erythroid 2 (NFE2)-related factor 2
(Nrf2) and Kelch-like ECH-associated protein (Keap1) domains and their interactions.

Transcription, Regulation and the Antioxidant Response

Under homeostatic conditions, Nrf2 remains in the cytoplasm at an overall low concentration in
the cell. It remains inactive bonding to its negative regulayor Kelch-like ECH-associated protein (Keap1)
through the interaction of the Neh2 domain [24]. Keap1 is a 624 amino-acid protein redox regulator
substrate adaptor for the Cullin (Cul)3-RING-box protein (Rbx)1 ubiquitin ligase, directing Nrf2 toward
its degradation by the ubiquitination complex. There are two binding sites in the Neh2 domain:
ETGE and DLG motifs, which form a dimer link with Keap1, leading to proteosomal degradation.
This two-binding-site model requires the ubiquitination of seven lysines [25]. The ubiquitination of
Nrf2 leads to rapid degradation by the 26S proteosome, maintaining it at low levels in the cell [26].
The increase of oxidative stress by electrophils/ROS or in the presence of activating compounds caused
the oxidation of cysteine residues in Keap1, a rich-cysteine protein, producing a conformational change.
Thus, Nrf2 is released from Keap1, accumulating in and translocating into the nucleus, where it
binds to small musculo-aponeurotic fibrosarcoma proteins (sMaf) in a specific DNA sequence: the
antioxidant response element (ARE) [8]. When it is active, Nrf2 transcriptionally upregulates the
cytoprotective system. ARE were identified as a core DNA sequence 5′-puGTGACNNNGC-3′ [27]
by the induction of phase-II drug metabolism enzymes in the presence of phenolic compounds [28].
The Nrf2/sMaf/ARE complex plays physiological roles in detoxification, the anti-inflammatory process,
autophages, and proteosomes. Later, Nrf2 is driven outside the nucleus immediately after the
occurrence of the stress situation as a result of the nuclear export signal (NES), ending the antioxidant
response signal [29]. The Nrf2/Keap1/ARE pathway must be modulated in terms of both activation
and inhibition in order to preserve equilibrium. Consequently, the disruption of Nrf2/Keap1 activates
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the pathway, but the activation of the cyclin-dependent kinase inhibitor p21Cip/WAF1 binds to the
DLG motif in the Nrf2 and competes with Keap1, avoiding Nrf2 ubiquitination [30]. On the other
hand, the increase in oxidative stress levels leads to the activation of p62 [31], a ubiquitin-binding
protein that triggers degradation through the lysosome or proteosome pathway. P62 activates Nrf2 by
the sequestration of Keap1, and is degraded by autophagy under homeostatic conditions [32,33].

Since the discovery of ARE, numerous investigations have resulted in order to describe the
regulatory mechanisms of the Nrf2/ARE activation pathway [34]. Many natural or synthetic compounds
have proven to be able to induce Nrf2, such as polyphenols, allyl sulfides, flavonoids, isothiocyanates,
dithiolethiones, and triterpenoids, and it has been proposed for use in the prevention or treatment of a
range of diseases related with oxidative stress (Figure 2) [8]. Some of these will be discussed further.

Figure 2. Original figure representing how the rising oxidative stress and accumulation of ROS or the
presence of bioactivators molecules triggers the Nrf2-Keap1 signaling pathway. Under homeostatic
conditions, Nfr2 is bound to Keap1 through the DLG and EGTE motifs in the Neh2 domain of
Nrf2 by means of the ubiquitin ligase complex Cullin (Cul)3-RING-box protein (Rbx)1 (Cul3). Nrf2
is ubiquitinized due to its rapid proteosomal degradation. The electrophilic molecules produce
the oxidation of the cysteine residues in Keap1, favoring its conformational change; consequently,
ubiquitination is impaired and Nrf2 dissociates itself from the inhibitor complex. Nrf2 accumulates
and is maintained transcriptionally active as it proceeds into the nucleus. It futher heterodimerizes
with small musculo-aponeurotic fibrosarcoma proteins (sMaf), bonding in a specific DNA sequence
denominated the antioxidant response element (ARE), inducing the expression of cytoprotector genes
to increase cellular defense: the elimination of ROS; the gluthathione (GSH), and NADPH synthesis,
and the expression of phase-II detoxifyng enzymes.

Nrf2 is known as the master cytoprotector regulator of the antioxidant response, and the target
genes activated by Nrf2 exhibit detoxification and antioxidant properties against oxidative stress and
xenobiotics. The synthesis of glutathione (GHS) is one of the most important activities. GHS is a
tripeptide formed from glutamate, cysteine, and glycine, and is considered the main non-enzymatic
endogenous antioxidant. In its reduced form, GHS is capable of donating electrons to reduce the
disulfur links of cysteine amino acids in cytoplasmic proteins; during this process, it is converted into
its oxidized form: GSSG [35]. In GSH biosynthesis and metabolism, there is the involvement of a
great variety of enzymes, such as the glutamate-cysteíne ligase (GCL) complex in the binding of the
glutamate and cysteine amino acids. The latter are made up of the glutamate-cysteine ligase modifier
subunit (GCLM) and the glutamate-cysteine ligase catalytic subunit (GCLC), including the enzymes
glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), and the
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XCT protein, which transports cysteine into the interior of the cell to be reduced into cysteine from
GSH [36], in turn supplying the demand of cysteine for the biosynthesis of GSH [37].

Nfr2 also regulates the expression of some phase-II detoxifying enzymes in the metabolism of
xenobiotics. These are fundamentally enzymes that are hydrophilic to metabolic groups in order
to render them more soluble and to facilitate their elimination [38]. Among these are included the
UDP-glucuronosyl transferases (UGT), the sulfotransferases (SULT), and heme-oxygenase1 (HO-1) [39].
The antioxidant protector system also includes the production of the NADPH required for the multiple
redox reactions of the system itself. The enzymes glucose-6-phosphate dehydrogenase (G6PD),
isocytrate dehydrogenase (IDH), and malic enzyme 1 (ME1) are responsible for the formation of
NADPH in different metabolic pathways. On the other hand, thioredoxin 1 (TXN1) [40] and thioredoxin
reductase 1 (TXNRD1) can oxidize the thiols of proteins, for example, the thiols of DNA repair protein
Ref1. Finally, the quinones, on being metabolized, produce a great amount of ROS; for this, Nrf2
regulates the expression of NAD(P)H-quinone oxidoreductase-1 (NQO1) and aldo-keto reductase
(AKR) for converting quinones into less toxic products [41].

3. Nrf2 as a Target for Therapeutic Models

In addition to the antioxidant and detoxifying systems, Nrf2 also participates in maintaining
physiological conditions, in order for there to be a continuation of homeostasis involving cell
proliferation, cell differentiation, the anti-inflammatory and the aging processes, among others.
In that diverse studies demonstrate that the abrogation of Nrf2 directly affects cell proliferation in
mouse embryotic fibroblasts and alveolar type- II cells related to GSH depletion by downregulation
of GCLM, GCLC, TXN1, TXNRD1, and PRDX1 [42,43]. The loss of Nrf2 is linked to impairment of
the ability of scavenging ROS in cardiomyocytes, bone marrow-derived macrophages, and dendritic
cells, rendering them more susceptible to damage by oxidative stress [44,45]. The process of mitosis
is also affected by the Nrf2 abrogation observed in the G2/M-phase arrest of alveolar epithelial cells
due to the lack of cyclin B1 and the cyclin-dependent kinase 1 (CDK1) plus the reduction of the
phosphorylation of retinoblastoma protein in Ser-807 and Ser-811 [46]. Nrf2 has additionally been
associated with differentiation from basal stem cells; thus, in hematopoietic cells, it positively regulates
CXCR4, supporting the cells forming in the bone marrow [47].

3.1. Nrf2 in Aging and Muscular Dysfunction

One of the main alterations associated with an increase in age is muscular atrophy and diminution
in the functions of skeletal-muscle mobility and contractility [48]. This reduction in muscular mass
initiates in the fourth decade of life; a loss of around 8% occurs at up to 70 years of age; from that point,
the loss increases to 15% per decade. There are changes in body composition, a biological diminution
in the metabolic rate that conditions changes such as the imminent weight gain of body fat and the
reduction of the fat-free mass proper to advanced age [49].

Aging determines a diminution in the capacity of the cellular and molecular systems to mediate
oxidative stress, augmenting the level of ROS and reactive nitrogen species (RNS), producing
mitochondrial damage and damage to other subcellular structures [50]. One of the signs of cellular aging
manifests as the detriment to the functions of damage repair in mitochondrial DNA (mtDNA) [51,52]
under certain conditions, such as the energy supply and signaling caused by high ROS levels [53].
Consequently, the mitochondrial conditions raise, to an even greater degree, the amount of ROS that
can activate and induce death, reducing the number of muscle fibers [54]. Previous studies have
shown that muscular atrophy and its extension is related to the increase in oxidative stress due to
the mitochondrial production of ROS [55,56]. Even more so, a direct relationship has been observed
between the absence of the CuZnSOD1 enzyme and the increase of oxidative stress, mitochondrial
damage, diminution of contractility, and muscular atrophy [57,58]. To this, we must add lack of
physical activity, eating disorders, associated diseases and, in general, poorly healthy lifestyles, factors
that accelerate the loss of the fat-free mass [59]. A recently published study [60] mentioned that
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mice with mitochondria lacking skeletal muscle superoxide dismutase 2 (mSod2KO) resulted in high
levels of mitochondrial ROS, measured by the increase in damage markers, such as lipoperoxidation,
glutathione oxidation, modification in the oxidation of myofibrillar proteins, and the increase of
superoxide in the mitochondrial complexes, generating the dysfunction of succionate dehydrogenase.
This severely affected the production of ATP and tolerance for exercise. Nonetheless, and contrary to
what was expected, there was an increase of muscle mass reflected in an increase of the branching
of fibers and nuclei. Similarly, a reduction was observed of the levels of intracellular calcium, which
was associated with diminution of the contraction force. These results suggest that the elevation of
mitochondrial oxidative stress generates neuromuscular disruption and contraction, but not atrophy,
probably due to the cellular capacity to mediate stress through the formation of fibrillary branching.

The work of Kitaoka et al. [61] indicates that markers of mitochondrial oxidative stress were
significantly high in Nrf2 Knock Out (Nrf2KO) mice; there was a decline of mitochondrial respiration
regardless of age in Nrf2KO as well as in Wild-Type (WT) mice. Additionally, less activity of cytochrome
oxidase was observed in Nrf2KO as well as in WT mice of advanced age compared with young mice,
accompanied by a high production of mitochondrial ROS in Nrf2KO mice, and there was no affectation
of the amount of muscular mass relative to weight, indicating that the deficiency of Nrf2 is not
directly related with the decline of the respiratory function of skeletal muscle. Nonetheless, there
was an increase of mitochondrial oxidative stress related to age. The most evident morphofunctional
conditions take place in type-II muscle fibers, probably due to that they are the motor units of the
greatest size utilized in high-powered physical work, explosivity, and short duration. These possess
a low oxidative capacity, thus a lower number of mitochondria, while type-I muscle fibers, which
are smaller in size and elongated, possess greater mitochondrial density due to their high oxidative
capacity and are predominantly recruited in works long in duration and of moderate intensity [62].
Thus, senescence of the type-II fibers favors muscular atrophy, a phenomenon that can be estimated
through the progressive reduction in muscular volume that characterizes older adults.

Diminution in muscular mass and its functionality have also been linked with down expression
of Nrf2 [11]. In wild-type (WT) and in Nrf2−/− young (4 months of age) and old (24 months of age)
mice, a reduction of muscle mass and in contraction capacity has been observed in old mice with the
Nrf2−/− genotype compared with those of the same age. This was associated with oxygen consumption,
the greater mitochondrial production of ROS, redox imbalance, an increase in the nitrosylation of
proteins, and a reduction in the expression of the acetylcholine receptor, suggesting that the expression
of Nrf2 plays a fundamental role in preventing the development of sarcopenia [63]. It was previously
sustained that disruption in the Nrf2KO gene in young mice (2 months of age) entertains minimal
implications in antioxidant defenses, although there is a diminution in the messenger RNA (mRNA) of
the NQO1 protein compared with that of WT mice. In contrast, in old mice (24 months of age), there
is a significant increase of ROS with a detriment to GSH, leading to the increase of oxidative stress,
ubiquitination, and pro-apoptotic signals as compared with WT of the same age. This suggests that the
antioxidant response in muscle is severely compromised with age [64].

3.2. Nrf2 and Inflammation

Increasing evidence had proposed that continuous oxidative stress leads to chronic inflammation,
which is one of the main causes of chronic diseases. Inflammation produces ROS and other electrophilic
molecules, inducing lipid peroxidation and protein and DNA damage. In some way, Nrf2 controls
inflammation and mediates the magnitude of the inflammatory response, because it is known that
it upregulates the proliferator-activated receptor-γ (PPARγ), which triggers the anti-inflammatory
response. Certain levels of ROS are needed to activate the signaling of proliferation, differentiation,
and adaptation; however, abnormal ROS production induces nuclear factor-kappa beta (NF-κB) [65,66].
NF-κB can be activated by the ablation of Nrf2 as a result of the high level of ROS, promoting signaling
via the nonreceptor proto-oncogene tyrosine-protein kinase c-Src, Abelson murine leukemia viral
oncogene homolog 1 (c-Abl), protein kinase C (PKC)δ, and protein kinase D (PKD) [67,68].
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The activation of the Nrf2/ARE signaling pathway represses the activation of proinflammatory
genes and anti-inflammatory pathways (Figure 3). The inflammation response is in part regulated by
cytoprotector genes such as GPx and TXN, and there is a positive relation in the reduction of TNF-α-
and IL-3-induced inflammation and the overexpression of HO-1 via the suppression of activator
protein-1 (AP-1)-binding-DNA [69]. At the same time, HO-1 downregulates the expression of TNF-α
and IL-B through the inhibition of the lipopolysaccharide (LPS)-impairing inflammatory response [70].
Nrf2 interferes with LPS-induced transcriptional regulation of proinflammatory cytokines IL-6 and
IL-β in macrophages, inhibiting RNA polymerase II recruitment by binding to the proximity of the
corresponding genes [71]. Recently, the Toll-like receptors (TLR) signaling pathway has been associated
with immune responses via the production of inflammatory cytokines, TNF-α and IL-6, chemokines,
the macrophage inflammatory protein 2 (MIP2), and IL-8 and Interferon type I. In addition, TLR have
been associated with Nrf2 crosstalks in the reduction of TLR-driven inflammation by the action of
different kinases (protein kinase C, Burton’s tyrosine kinase, and MAPK), and also by the inhibition of
IL-6, IL-β, and TNFα, throughout the expression of cytoprotectors HO-1, NQO1, and SOD [72,73] and
finally, by p62-mediated autophagy [74].

Figure 3. Original figure representing the Nrf2 role on inflammatory process.The activation of Nrf2/ARE
pathway promotes the transcrpition of protector genes heme-oxygenase1 (HO-1), NAD(P)H-quinone
oxidoreductase-1 (NQO1), glutathione peroxidase (GPx), and thioredoxin 1 (TXN) inhibiting expresión
of inflammatory genes and the produción of cytokines IL-6, IL-3, IL-β, and TNFα, reducing inflammation.
Moreover, the albation of Nrf2 induces high levels of ROS promoting inflammatory pathway via the
nonreceptor proto-oncogene tyrosine-protein kinase c-Src, Abelson murine leukemia viral oncogene
homolog 1 (c-Abl), protein kinase C (PKC)δ, and protein kinase D (PKD). Arrows in black mean the
signaling pathway is triggered. Arrows in red mean the pathway is blocked.

3.3. Nrf2 and Chronic Diseases

It is well-supported that oxidative stress plays a crucial role in developing pathological processes
such as, for instance, cancer, diabetes, neurodegenerative diseases, pulmonary disorders, liver and
renal dysfunctions, and cardiovascular diseases. Since the discovery of Nrf2, a large number of
investigations have emerged to elucidate its participation in chronic diseases [75].

3.3.1. Nrf2 in Cancer

Notwithstanding the widely supported evidence of Nrf2 cytoprotection, recently accumulated
evidence suggests that Nrf2 plays a paradoxical role in cancer. On the one hand, there is sufficient
research reporting the ability of Nrf2 to suppress carcinogenesis at early stages, owing to the maintenance
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of cellular redox homeostasis, the latter conferring an increased detoxification ability that might protect
it, ensuring cell survival. On the other hand, the overactivation of Nrf2 in diverse tumors induces
pro-survival genes, promoting cancer-cell proliferation, the repression of apoptosis, and the greater
capacity of the self-renewal of cancer stem cells [76]. Alterations in the Nrf2/Keap1 pathway are
one of the foremost causes of oncogenic activation. Mutations in key genes, genetic changes such as
copy-number variations, or diverse polymorphisms (single nucleotide polymorphisms [SNP]) are
responsible for aberrant Nrf2/Keap1 signaling [77].

It has been thought that Nrf2-deficient mice are more susceptible to suffering damage via
oxidative stress as a result of the impairment of antioxidant defenses to fight against exogenous insults,
leading to DNA damage and tumorigenesis [78]. Nonetheless, Nrf2 hyperactivity confers on cancer
cells the characteristics of rapid and infinite division, growth, and proliferation, skipping apoptosis,
the induction of angiogenesis, metastasis, and resistance to therapy [76]. It was noted previously
that Nrf2 regulates the expression of metabolic enzymes such as G6PD, PGD, and TKT, as well as
of the enzymes involved in NADPH synthesis; with regard to cancer cells, the overactivation of
Nrf2 implies the induction of these enzymes, ensuring the availability of energy for cell division and
growth and contributing to metabolic reprogramming for cell proliferation [79]. The deficiency of Nrf2
induces cell-cycle arrest in the G2/M phase [80]; in addition, it is involved directly in cell proliferation
because it interferes in cell-cycle regulation due to its target-associated genes Pdgf-c, Igf1, Itgb2, Jag
1, and Bmpr1a [81]. A deficit of Nrf2 affects the epidermal growth factor receptor (EGFR) signaling
pathway, leading to impaired mRNA translation in pancreatic cells [82].

Cancer cells are characterized by their escape from apoptosis. Under normal stress conditions,
ROS induced antioxidant enzymes, but the superfluous levels of ROS may excessively activate Nrf2,
their becoming resistant to cell death. An interaction has been identified as existing between Nrf2
and other signaling apoptosis mediators, such as B-cell lymphoma 2 (Bcl-2), an antiapoptotic protein
that promotes cell survival [83]. Activation of the proapoptotic c-Jun N-terminal kinases (JNK) is shut
down by the Nrf2 downstream gene glutathione-S-transferase pi 1 (GSTP1) [84]. Together with that,
cancer stem cells (CSC) possess a self-renewal capacity that confers on them the ability to proliferate
rapidly, rendering cells more resistant to therapy and a greater possibility of tumor relapse after
treatment. These qualities are possibly due to a higher DNA repair capacity, a prominent expression of
antioxidant defenses, and to a better drug tolerance [85,86]. To conclude, apoptosis is decreased by the
overactivation of Nrf2 induced by high oxidative stress levels [87].

Nrf2 induces angiogenesis through the expression of HO-1, linked to the induction of the vascular
endothelial growth factor (VEGF), promoting proliferation, migration, and the formation of new
capillaries. Hypoxia-inducible factor 1α (HIF-1α) showed a close relationship with VEGF signaling.
Nrf2 blockaded the activation of HIF-1α/VEFG signaling, suppressing angiogenesis in tumor [88].
On the other hand, an aberrant accumulation has been observed of p62 in certain types of cancer. Nrf2
and p62 are independent prognostic factors for non-small cell lung cancer (SCLC) in patients with
adenocarcinoma, suggesting that molecular mechanisms in the evolution of cancer are different in
adenocarcinoma- and squamous cell carcinoma [89].

3.3.2. Nrf2 in Diabetes

Diabetes has been related with an excessive production of ROS and RNS, as a result of
chronic hyperglycemia, which leads to an unbalanced redox dysfunction with the development
of complications, specifically kidney failure, microvascular changes, peripheral neuropathy, and retinal
damage [90]. Alternatively, greater damage has been reported in terms of neuropathy, nephropathy [91],
cardiomyopathy, and retinopathy [92] in Nrf2KO mice compared with their counterpart Nrf2WT in
diabetic rodent models.

The increase of ROS levels interferes as signaling molecules in pancreatic β-cells by the secretion
of glucose-stimulated insulin. In this respect, the lack of Nrf2 has shown alterations in insulin
sensitivity. One of the possible mechanisms is due to that protein kinase B/Akt (Akt) displayed greater
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phosphorylation at Ser-473 of the skeletal muscle and livers of Nrf2KO mice. Other signaling pathways
are implicated in diabetes, such as the mammalian target of Rapamycin (mTOR) in mTOR complex 1
(mTORC1) and mTOR complex 2 (mTORC2), which appear to be deregulated in the development and
progression of diabetes [93]. It has been shown that the loss of insulin sensitivity and glucose intolerance
is caused by the inhibition of transcription factor p70S6K, a target of mTORC1 [94]. In addition, high
levels of glucose trigger the regulation of mTORC2 signaling, affecting Akt/GSK-3 signaling and
inducing changes in Nrf2 protein stability [94]. Nrf2 modulates AMPK phosphorylation, improving
glucose sensitivity and insulin resistance [95]. Previous studies indicated that Nrf2 regulates the
antioxidant enzyme system in pancreatic β-cells [96], contributes to protection against inflammation,
and regulates autophagy and the expression of proteosome catalytic subunits in β-cells [97,98].
Moreover, in skeletal muscle (SkM)-specific Keap1 Knock-Out (Keap1MuKO) mice, mice that expressed
abundant Nrf2 and blood glucose levels were significantly downregulated, as were the levels of
muscle-type PhKα subunit (Phkα), while glycogen branching enzyme (Gbe1) mRNA, along with
glycogen branching enzyme (GBE) and phosphorylase b kinase α subunit (Phkα) protein, were
upregulated in mouse SkM. Additionally, glucose uptake was improved due to the reduction of the
glycogen content, forcing GBE expression in C2C12 myotubes. In conclusion, Nrf2 induction increases
glucose tolerance because it regulates glycogen metabolism in SkM and liver [99].

3.3.3. Nrf2 in Neurodegenerative Diseases

The protective role of Nrf2 in neurodegenerative disorders due to the increase of oxidative stress
is being widely studied. The absence of Nrf2 produces a greater loss of dopaminergic neurons in the
substantia nigra, inflammation, and severe astrogliosis and microgliosis in a Parkinson’s disease (PD)
rodent model induced by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a potent neurotoxin.
Nonetheless, the overexpression of Nrt2 protects astrocytes against MPTP toxicity, suggesting that
modulation of the Nrf2 pathway could be a potential target for PD [100]. It was shown that a functional
haplotype in the NLFE2L2 gene promoter of Nrf2 is related to reducing the risk ofhaving PD [101].
Mitochondrial dysfunction is one of the crucial ethological factors in PD; there is recent evidence
that reveals different types of crosstalk between mitochondria and the Keap1/Nrf2 pathway [102].
Endothelial function is affected by the absence of Nrf2, as well as size, in cerebral infarct and neurological
damage after an ischemic event. Endothelial function is reduced in Nrf2-deficient models [103].

Age is also associated with neurodegeneration, with mitochondrial disruption and the defeat of
membrane potential. Activation of the immune cells is the main cause of neuronal damage in multiple
sclerosis; then, in Nrf2KO mice, there is marked overactivation and an aggressive response against
the central nervous system (CNS) plus neuronal demyelation compared with WT [104]. Alzheimer’s
disease (AD) is probably the most important neurodegenerative disorder, characterized by the decline
of memory function. There are few studies that prove the relationship between Nrf2 disruption and AD;
the neuroprotective effect is mainly attributed to GSK-3B in the regulation of the Nrf2 pathway [105].

3.3.4. Nrf2 in Liver Injury

In liver regeneration, Nrf2KO mice showed a significantly reduced capacity to initiate cell
proliferation in 72 h after a two-thirds partial hepatectomy as an outcome of blunted Notch1 signaling;
the proximal region of the Notch1 promoter contains an ARE sequence [106]. Nrf2 is additionally
implicated in oxidative stress induced by alcohol consumption, upregulating antioxidant defense genes
and downregulating the genes involved in lipogenesis. Nfr2-deficient mouse hepatocytes attenuate
phosphoinositide 3-kinase (PI3K) protein kinase b (AKT) signaling affecting the phosphorylation
of AKT, GSK3, and PPP, and the cell-proliferation efficiency established regarding the PI3K/AKT
pathway [107,108].

In liver regeneration, Nrf2KO mice exhibited significantly reduced capacity to initiate cell
proliferation in 72 h after a two-thirds partial hepatectomy as an outcome of blunted Notch1 signaling;
the proximal region of the Notch1 promoter contains an ARE sequence [106]. Nrf2 is additionally
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implicated in oxidative stress induced by alcohol consumption, upregulating antioxidant defense genes,
and downregulating the genes involved in lipogenesis. Nfr2-deficient mouse hepatocytes attenuate
phosphoinositide 3-kinase (PI3K) protein kinase b (AKT) signaling, affecting the phosphorylation
of AKT, GSK3, and PPP and the cell-proliferation efficiency established regarding the PI3K/AKT
pathway [107,108].

4. Nfr2 Bioactivators

In pharmacology, the so-called “Nrf2 inducers” are Keap1 inhibitors that promote Nrf2 dissociation
and nuclear translocation. Therefore, these molecules can be classified as electrophiles, protein-protein
interaction inhibitors, and multitarget drugs [109]. Electrophilic compounds covalently modify the
cysteine residues present in thiol-rich Keap1 protein by oxidation or alkylation [79,85]. Nrf2 inducers
have the ability to react with sulfhydryl groups (-SH); they can modify Keap1, or oxidize one or more of
its cysteine thiol groups; the most susceptible of these to the electrophilic reaction appear to be Cys-151,
Cys-273, Cys-288, Cys-226, Cys-234, and Cys-613 [110,111]. Inducers are a mechanism to inhibit Nrf2
ubiquitination by Keap1 sequestration by means of the modification of cysteine residues, generating a
weak interaction between Nrf2 Neh2 motifs (DLG and ETGE) and the Keap1 dimmer. In this regard,
Nrf2 is newly synthesized because Keap1 is not regenerated at a sufficient rate; then Nrf2 escapes from
Keap1 [112]. Certain evidence establishes that upstream kinases may phosphorylate specific threonine
Nrf2 residues, disrupting Keap1/Nrf2 bonding. Therefore, this may aid nuclear translocation [113].

Understanding how Nrf2 could be transcriptionally activated has attracted attention to a wide
variety of molecules that may exert some effect on this. Several natural compounds or phytochemicals
have been identified as electrophilic Nrf2 inducers. These inducers are also denominated “Nrf2
bioactivators”, but only a few of these formed among the molecular mechanisms have been extensively
studied. A number of Nrf2 inducers, mostly plant-derived compounds such as sulforaphane (SFN)
from broccoli [114], curcumin from turmeric [115,116], and resveratrol from grapes [117], have proven
to active the Nrf2 cytoprotective pathway. Special attention has been paid to the previously mentioned
compounds due to their chemopreventive properties as described in numerous clinical trials. SFN has
been one of the most studied among these [118].

One way to estimate Nrf2 induction is through the expression of NQO1, which is considered a
cytoprotective enzyme responsible for maintaining cellular defenses. It is highly active in endothelial
cells, epithelial cells, and lung tissues. NQO1 activity is used as a reference to prove the anticancer
activity of phytochemicals. In this regard, the comparative biomarker is the “CD value”, which
describes the concentration of any compound utilized to double NQO1 activity in murine hepatoma
cells [119]. Considering that the lesser amount is that required to double the activity of NQO1, the most
potent of these is the phytocompound SFN, which appears to be the most effective inducer, with
a concentration of 0.2 µM, followed by and ragrapholides (1.43 µM), quercetin (2.5 µM), curcumin
(2.7 µM), SM (3.6 µM), tamoxifen (5.9 µM), genistein (6.2 µM ), beta-carotene (7.2µM), lutein (17 µM),
resveratrol (21 µM), indol-3-carbinol (50 µM), chlorophyll (250 µM), alpha-cryptoxanthin (1.8 mM),
and zeaxanthin (2.2 mM) [120].

SFN is derived from the precursor glucoraphanin, which is contained inside of the vacuoles with
the enzyme myrosinase in Brassica species. Then, SFN is formed when the plant cell ruptures and
glucoraphanin and myrosinase come into contact. Broccoli is the crucifer with the higher content
of glucoraphanin, around 75%, of all of the glucosinolates [121]. However, once SFN is produced,
it begins to degrade quickly because it is less stable than its precursor; hence, the procedures of
chewing and cutting not only trigger SFN synthesis, but its degradation as well [122]. SFN as a natural
isothiocyanate produces Nrf2 activation by changing the covalent linking of the cysteine residues of
Keap1 by direct reaction with the electrophilic isothiocyanate group. Growing evidence supports the
efficacy of SFN as a potent Nrf2 activator in a large number of investigations related to cancer [77] in
neurodegenerative disorders [123]. Curcumin is another potent bioactivator that modifies Cys-151
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in Keap1. It has been shown to suppress tumor genes by activating Nrf2 [124] and, in addition, it
possesses antioxidant and anti-inflammatory activity [116].

5. Silymarin and Flavolignans as Potent Nrf2 Inducers

5.1. Silymarin and Flavolignans Description

Silymarin (SM) is a mixture of flavolignans extracted from the seeds of species derived from
Silybum marianum, commonly known as milk thistle or St. Mary’s thistle. Originally, it is a native
species from the Mediterranean region, grows in its natural form in Southern Europe, the Middle East,
Southern Russia, Northern Africa, and in America, and is cultivated in the North and South. Milk
thistle belongs to the Asteraceae family, is a plant with a height of 0.9–1.8 m [125], the flowers are 4–8 cm
in diameter, bright pink and magenta in color, each containing around 50–200 small individual tubular
florets, which form groups of flowers as well. Its leaves reach up to 30 cm in width and 75 cm on
length and are characterized by milky white veins with a smooth and hairy surface, thus its name
of milk thistle [126] Silybum marianum has been used from many years ago in traditional medicine in
Greece and Asia. In China, its use had been reported since at least 2000 years ago due to its properties
in the treatment of liver disorders. Herbalists and physicians in ancient times described it as a nephro-,
neuro-, hepato-, and cardioprotective because of its antioxidant, anti-inflammatory, and regenerative
effects [105,127].

The chemical composition of SM comprises mainly compounds with 25 carbon atoms and a
flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin,
isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in
around 50–70% in isoforms silybin A and silybin B, and then followed by the remaining isoforms:
isosilybin A; isosilybin B; isosilybin C; isosilybin D; silychristin A, and silychristin B (Figure 3).
Other flavonoids are present, such as quercetin, kaempferol, taxifolin, apigenin, etc. Proteins, sugars
(arabinose, rhamnose, xylose, and glucose), tocopherol, sterols, fatty acids (linoleic, oleic, and palmytic)
and alcohols are found in small quantities [125]. Therefore, silybin as the major constituent has been
attributed to being responsible for the effects of SM, is transformed to 2,3-dehydrosilybin as oxidation
product (Figure 4b). Since the year 1959, from the discovery of silybin, many studies have been
conducted in order to identify its different biological activities, such as antioxidant, chemoprotective,
anti-inflammatory, and others [128,129].

The silybin molecule can be described as small, with carbo- and heterocycles of two units, one of
which is a flavonol group, taxifolin, and the other, a unit of coniferyl alcohol phenylpropanoid; both
structures are linked by an oxirane ring [130]. The chemical structure of silybin was first described
in 1968, but its complete position and configuration were not reported until 1975. The molecule
is stable in acid solutions and under prolonged overheated conditions, the structure is chemically
modified and unsterilized. It is highly soluble in polar aprotic solvents such as dimethyl sulfoxide
(DMSO), acetone, tetrahydrofuran (THF), and N,N-dimethylformanide (DMF), less soluble in ethanol
or methanol, and insoluble in non-polar solvents such as chloroform and petroleum ether. Additionally,
silybin can be easily oxidized into 2,3-dehydrosilybin by a couple of oxygen molecules. It has five
hydroxyl groups on its skeleton, but only 5-OH, 7-OH, and 20-OH have phenolic groups. The first of
these possesses, in conjugation with the phenolic ring, a strapping bonding between hydrogen and the
oxo group, the latter conferring an electron pair donor on the hydrogen bond with the 5-OH group.
The remaining two OH phenolic groups have very similar characteristics [130].
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Figure 4. Chemical structure of the main compounds from silymarin. (a) Representation of
molecules silybin A; silybin B; isosilybin A; isosilybin C and isosilybin D. (b) Oxidized form
2,3-Dehydrosilibyn structure.

5.2. Silymarin and Flavolignans Pharmacokinetics

Bioavailability and Metabolism

Once it is orally ingested, SM flavolignans are poorly absorbed because their molecules are too
large to be absorbed by simple diffusion. Some previous studies reported 0.073–0.95% of bioavailability
in rats [131,132]. These flavolignans are absorbed in the gastrointestinal tract, reaching a tmax of
2–4 h, and interact along enterohepatic circulation with a half-life elimination of 6–8 h. The issue of
bioavailability is affected by low water solubility, due to theirnon-ionizable and hydrophobic structure,
affecting their ability to cross the lipid membranes of the small intestine [133]. Low water solubility at
around 0.04 mg/mL has been reported [131]. In addition, SM flavolignans have poor miscibility with
other lipids, thus resulting in a limited capacity to be absorbed in the rich-lipid outer membrane of
the enterocytes in small intestine [134]. Their absorption also depends on several factors, such as the
purity and concentration of the extract and the presence of other substances in the preparation, such as
proteins, sugars, vitamins, and other polyphenols, processes that have their own physical and chemical
properties and which could interfere in the absorption process. The previous study revealed a maximal
serum concentration (Cmax) within a range of 0.18–0.62 µg/mL after the oral administration of 240 mg
of silybin [135]. The dose-escalation study run by Zhu et al. [136] evaluated the pharmacokinetics
of the six major SM flavolignans in healthy volunteers. These authors found that, after receiving
single oral doses of 175, 350, and 525 mg of standardized milk-thistle extract (Legalon®) for 28 days,
the flavolignans were rapidly absorbed and eliminated. SM flavolignan concentrations were linear
and dose-proportional as assessed by mean Cmax and AUC0–24. In order of concentration, the mean
± SD Cmax major compound found was silybin A (106.9 ± 49.2, 200.5 ± 98, and 299.3 ± 101.7 ng/mL)
followed by silybin B (30.5 ± 16.3, 74.5 ± 45.7, and 121.8 ± 52.2 ng/dL), isosilybin A (6.1 ± 2.9, 18.2 ± 13.5,
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and 24.7 ± 11.8 ng/dL), isolilbyn B (22.0 ± 10.7, 46.4 ± 31, and 75.8 ± 32.3 ng/dl), and silychristin was
detected at doses of 350 and 525 mg (4.6 ± 1.1 and 8.5 ± 3.4 ng/dL), as was silydiadin (6.5 ± 3.8 and
5.1 ± 2.7 ng/dL). Median tmax values fell within a range of 1.0–1.5 h at the three different dosages
for all flavolingnans. There were no significant differences in apparent clearance among the groups.
Certain investigations have established that SM flavolignan availability depends on the manner of
administration [137].

In order to improve SM flavolignan bioavailability, many attempts have been made to increase their
solubility through the creation of emulsions, suspensions, or micelle-mix solutions. Sodium cholate
phospholipid silybin-mixed micelles proved to be an effective way to deliver silybin and improve
bioavailability [133]. The design of silybinnano-emulsions using oil, surfactants, and co-surfactants
(sefsol-218/Tween 80/ethanol) in oral administration was more capable of improving the SM
hepatoprotective effect than SM alone [138].After the oral administration of 20 mg/kg nanosuspension
(0.2% lecithin and 0.1% poloxamer 188) in dogs, an increase was observed of Cmax (2.73 ± 0.30 µg/mL
vs. 1.53 ± 0.22) [139].

Conjugation comprises the main biotransformation route identified for SM and its metabolites;
nevertheless, silybin is biotransformed by both phase-I and phase-II reactions in liver cells [140].
About 80% of silybin metabolites are excreted as glucuronides and sulfate conjugates by the
UDP-glucuronosyltransferases (UGT) and Sulfotransferases (SULT). In-vitro studies suggested UGT1A1
as mainly responsible for the glucuronidations of silybin A and B [141,142]. In this regard, it can be
observed that silybin mono-, di-, and sulphoglucuronides, all of these formed in phase II, and 31
metabolites have been identified [131]. Around 3-8% of the silybin consumed is eliminated in an
unchanged form, whereas concentration in bile is much higher than in serum (60–100-fold): possibly
20–40% returns to the system and the remainder is excreted in feces [125]. Recently, the study
of the UGT1A1*28 polymorphism reported that the latter has been associated with a reduction
of glucuronidation [143]; consequently, this could affect the pharmacokinetics of drugs [144,145].
Nonetheless, the presence of UGT1A1*28 in patients with liver disease does not appear to significantly
affect the pharmacokinetics of silybin A and silybin B due to an apparent compensatory increase of
sulfate conjugation. However, due to its large intervariability, it might be difficult to understand the
possible beneficial effects of SM for patients with liver diseases [146].

Silybin biotransformation has been associated with CYP450 2C8 with the resulting major form
O-demethylatedsilybin and minor metabolites mono- and di-hydroxysilybin [147,148]. On the other
hand, it has been reported that SM and its metabolites may inhibit several cytochromes including
CYP540 3A4, 2C9, and 2C8 [107,149]. Nonetheless, recently it was recently demonstrated that SM does
not interfere in their activities [150].

5.3. Nrf2 Activated by Silymarin and Flavolignans: Promising Therapeutic Model

For many years, the antioxidant activity of SM has been frequently mentioned in the scientific
literature. It appears that SM can work in diverse ways to reduce or prevent oxidative stress, acting
directly on the scavenging of free radicals, blocking specific enzyme producers of free radicals,
maintaining the integrity of the electron transport chain, contributing to optimal redox cell status,
enhancing enzymes of the endogenous antioxidant systems, inducing non-enzymatic antioxidant
defenses such as glutathione or transcription factors (Nrf2 and NF-κB), promoting signaling pathways
of the redox response and, finally, activating the specific genes responsible for producing protector
proteins such as sitruins, thioredoxins, and HSP [12].

As mentioned previously, Nrf2 plays a crucial role in the defense response in cooperation with
other transcription factors to mediate the insults of oxidative stress. Recently, several molecules such
as polyphenols, which have been identified with antioxidant activity, have proven to participate in the
activation of the Nrf2/Keap1/ARE pathway, regulating the expression of cytoprotective antioxidant
enzymes such as NADPH and NQO1, this explained by means of the molecular basis supporting the
described activity. In current investigations, SM and its flavolignans have shown to activate Nrf2
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(Table 1). The research of Roubalová et al. [151] found that, after 6 h of exposure of the main Silybum
marianum flavolingnans and their 2,3-dehydroderivatives, 25 µM and 50 µM of 2,3-dehydrosolydianin
significantly increased the activation of Nrf2 and the expression of the Nqo1 gene, 1.6- and 2.3-fold,
respectively, as well as of the target genes Hem oxygenase1 (Hmox-1), gammaglutamyl-cystein ligase
modifier subunit (Gclm), and gamma glutamyl-cystein ligase catalytic subunit (Gclc) by 2.2-fold,
1.5-fold, and 1–3-fold, respectively, but only at a concentration of 50 µM against the control in
murine Hepatoma Hepa1c1c7 cells. In addition, the concentration of NOQ1 and GCLM proteins also
increased at 50 µM, whereas the levels of HMOX1 and GCLC did not change significantly. Meanwhile,
the remaining compounds did not exert a significant effect on NQO1 activity. The results suggest that
2,3-dehydrosilydianin activates Nrf2 and the expression of target cytoprotective genes. In conclusion,
some of the effects of SM can be attributed to minor flavolignans or other components such as quercetin
and taxifolin, which have been recognized as Nrf2 activators. Thus, SM sulfate compounds employed
at doses of 50 Mm for 48 h in Hepa1c1c7 cells caused 1.2-fold increases in the activity of NQO1 by silybin
A 20-O-sulfate, of 0.9-fold by silybin B 20-O-sulfate, of 1.3-fold by 2,3-dehydrosilybin-20-O-sulfate,
of 1.2-fold by 2,3-dehydrosilybin-7,20-di-O-sulfate, of 1.3-fold by silychristin-19-O-sulfate, and of
1.4-fold by 2,3-dehydrosilychristin-19-O-sulfate compared with the control. In addition, the sulfated
2,3-dehydroderivatives appeared to be more active in radical scavenging with Ferric (FRAP) and
Folin–Ciocalteu reagent (FCR) reducing activity compared with the original molecules [152].

Table 1. Studies regarded to the activation of the Nrf2 signaling pathway in the presence of silymarin
or its flavolignans.

Model Protocol Results Reference

Human
esophangeal
squamous cell
carcinoma
(KYSE70) cells in
OS model induced
by tBHQ

-tBHQ (100 µM)
-SM (100 µM)
-Artichoke (1 mg/mL)
-Propolis (1%)
48 h of exposition

↑ UGT1A1 enzyme activity by the AhR and Nrf2 pathway
↑ Induction of UGT1A7 with propolis, artichoke and SM (7.3,
5 and 4.5-fold respectively)
↑ UGT catalytic activity with porpolis, artichoke and SM
treatment (21%, 29% and 20% respectively) in 90 min in the
presence of substrate
↓ hydrogen peroxide were lower in tBHQ cells treated with
phytochemicals

Kalthoff, et al.
[153]

Rat cardiorenal
injury model

Male Wistar albino rats
-Doxorubicin via rat tail vein (3 and
2 mg/kg) to induce twice for 2 weeks
to induce nephropathy
-SM (600 mg/kg) for 4 weeks
-Aqueous Vitis vinifera extract
(400 mg/kg) for 4 weeks
-Ethanolic Vitis vinifera extract
(500 mg/kg) for 4 weeks
-SM+EVVE (600 mg and 500 mg/kg)
for 4 weeks

All the following results were significantly higher in
SM+EVVE group:
↑ Nrf2 expression
↓ biochemical markers: BUN, urea, lipid profile
↓ hs-CRP and serum lipid profile
↓ histopathological alterations: improve cytomorphologic
structure and restoration of myocardial architecture

Abdelsalam,
et al. [154]

Hepa1c1c7 cells Sulfate compounds from SM at
50 µM for 48 h exposition.

↑ activity of NQO1 compared to control:
silybin A 20-O-sulfate1.2-fold, silybin B 20-O-sulfate0.9-fold,
2,3-dehydrosilybin-20-O-sulfate 1.3-fold,
2,3-dehydrosilybin-7,20-di-O-sulfate 1.2 fold,
silychristin-19-O-sulfate1.3-fold.
2,3-dehydrosilychristin-19-O-sulfate1.4-
fold

Valentová, et al.
[152]

Oleic acid-treated
HepG2 cell as
in vitro model of
steatosis, OS and IR

Silibinin at 5, 20, 50 and 100 µM for
24 h exposition

↓ lipid metabolism genes: SREBP-1C, PPAR α, PNPLA3
↓ intracellular levels of TG and NO
↑ oxidative stress response genes:Nrf2, CYP2E1 and CYP4A
↑ glucose uptake: proteins PI3K and pAKT

Liu, et al. [155]

Male C57BL/6 mice
a NASH model

-DL-methionine (3 g/kg) and choline
bitartrate (2 g/kg) diet to induce
NASH
-orally ingestion of silybin at a dose
of 105 mg/kg/day for 8 weeks

↓Weight loss
↓ ALT and AST activities
↓ lipid metabolism gene expression
↓ NF-κB signaling pathway
↑ Nrf2 pathway: expression levels of GCLM, GCLC, NQO1,
HOX1, GSTM1
↑ levels of GPx and SOD in hepatic tissue
↓ histological disorders: hepatic steatosis, hepatocellular
ballooning with inflammatory cell infiltration and liver
fibrosis

Ou, et al. [156]
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Table 1. Cont.

Model Protocol Results Reference

Rat gastric ulcer
model

-5 days pre-treatment with
ranitidine at 25 mg/kg orally
(positive control)
-5 days pre-treatment with SM at
50 mg/kg orally
-Indometacin-induced gastric injury
(25 mg/kg) in the last day

Prevent gastric OS by: ↑ Nrf2 expression,
↑ SOD and GPx activity
↓ gastric inflammation: TNF- α, IL-6 and myeloperoxidase
activity,
↑ NF-κB expression
Histological changes: protection observed as mild
sub-mucosal edema and inflammatory cellular infiltrates
and minimal alterations in epithelial surface

Arafa Kesnk,
et al. [157]

Murine hepatoma
Hepa1c1c7 cells

S. marianumflavolingnans and its
2,3- dehiydroderivates (25 µM)
And 2,3-dehydrosilydianin (50 µM)
6 h exposition

↑ expression of Nrf2, Gclm and Gclcat 25 and 50 µM
↑ protein concentration of NOQ1 and GCLM at 50 µM
HMOX1 and GCLC did not changed significantly

Roubalová,
et al. [151]

PC12 cells
Acrylamide-induced
neurotoxicity
model

Cells pre-treated with SM at 12, 24,
48, 96 or 192 µg/mL for 3 h, then
cells were exposed to a 5 mM
Acrylamide for 24 h

↑mRNA and protein expression of Nrf2 in nuclear fractions
↑ translocation of Nrf2 from cytosol into the nucleus
↑ cytoprotective genes: GPx, GCLC, GCLM
↑ intracellular levels of GSH
↓ levels of ROS and MDA

Li, et al. [158]

HT-22 hipocampal
cells AD model

Cells treated with:
-Aβ25-35AT 2 µM for 24 h to induce
toxicity in cells
-Isosilybin exposition at 2, 4 and
10 Mm

↑ Nrf2/ARE signaling pathway: HO-1, AKR1C2 and GST
↓ ROS production
↓ cellular OS injury
↑ total antioxidant capacity in cells by ↓release MDA and
LDH

Zhou, et al.
[159]

Male Wistar rats
CCl4 damage
model

Hepatotoxicity induced with single
dose of CCl4 (1 ml/Kg, IP)
Orally administration of SM (200
mg/kg) alone or in combination
with CA (60 mg/kg) and/or ME (20
mg (kg) for 21 days

↓ expression of fibrogenic and apoptotic factors
↓ Serum ALT activity
↓ liver caspase-3 activity
↓ hepatic CYP2E1 activity in SM, CA and ME treated group
compared with SM alone
↓ oxidative DNA damage in liver: 8-OxodG levels

Al-Rasheed,
et al. [160]

Male
Sprague-Dawley
rats Paraquat lung
injury model

Paraquat exposition (30 mg/kg) to
induce lung injury
SM treatment (200 mg/kg)
3 days exposition

↓MDA
↑ SOD, Cat, and GPx in lung tissue and serum.
↑ Nrf2, HO-1, and NQO1 expression
↓ Inflammatory cell infiltration and collagen deposition in
the alveolar septum
↓MPO activity and HYP content
↓ NO and iNOS
↓ Proinflammatory mediator levels: TNFα, IL-1β, IL-6 and
the TGF-β1

Zhao, et al.
[161]

Rat arsenic toxic
model

Adult male Wistar albino rats
treated with:
-Arsenic (5 mg/kg) for 4 weeks
silibinin at 75 mg/kg/day for 4 weeks

↓ lipid peroxidation, NADPH Oxidase, iNOS, NF-kB and
TNFα
↓ lipid hydroperoxides, protein carbonyls and TBARS
↑mRNA expression of Nrf2 and NADPH in renal tissue
↑ activities of enzymatic antioxidants: SOD, CA, GPx,
and GST
↑ Non-enzymatic antioxidants: GSH, TSH, Vitamin C and E
in kidney tissue

Prabu, et al.
[162]

BHQ: tertiary butylhidroquinone; SM: Silymarin; UGT1A1: UDP-glucuronosil transferase 1A1; AhR: aryl
hydrocarbon receptor; EVVE: ethanolic Vitis vinifera extract; hs-CRP: high sensitivity C-reactive protein; NQO1:
NADPH quinoneoxido reductase 1; BUN: blood ureic nitrogen; IR: insulin resistance; Gclm: gamma glutamine
cysteine ligase modifier subunit; Gclc: gamma glutamine cysteine ligase catalytic subunit; SREBP-1C: sterol
regulatory element-binding protein-1C; PPAR α: peroxisome proliferator activated receptor-α; PNPLA3: patatin-like
phospholipase domain containing 3; AKR1C12 aldoketo reductases 1C1 and 1C2; CYP2E1: cytochrome P4502E1;
CYP4A: cytochrome P450A4; PI3K: phosphatidyl inositol 3 kinase; pAKT: phosphorylated serine-threonine protein
kinase; AST: aspartate aminotransferase; ALT: alanine aminotransferase; NASH: non-alcoholic steatohepatitis;
NF-κB: nuclear factor-κB; CCl4:carbon tetraclrorhidre; IP: intraperitoneal; CA: chlorogenic acid; ME: melatonin;
TNF-α; tumer necrosis factor-α; IL-6: interleukin-6; IL-1β: interleukin-1β; TGF-β1: transforming grow factor-β1;
AD: Alzheimer’s disease; MDA: malonaldehyde; LDH: lactate dehydrogenase; SOD: superoxide dismutase; Cat:
catalase; GPx: glutathione peroxidase; HO-1: hemoxygenase-1; ROS: reactive oxygen species; GSH: Glutathione
reduced form; TSH: total sulfhydryl groups; TBARS: thiobartituric acid reactive substances.

In a model of oleic acid-treated HepG2 cells employed as an in-vitro model of steatosis, oxidative
stress, and insulin resistance, treatment with silibinin at 5, 20, 50, and 100 µM for 24 h decreased
the cellular levels of triglycerides and nitric oxide, induced the activation of the death domain-like
apoptosis regulator (CFLAR-JNK) pathway, of the target gene sterol regulatory element-binding
protein1C (SREBP-1C), peroxisome proliferator activated receptor-α (PPAR-α), the patatin-like
phospholipase domain containing three (PNPLA3), which are related to lipid metabolism, oxidative
stress genes Nrf2, CYP2E1, and CYP4A, the changes in glucose uptake with the upregulation of proteins
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phosphatidylinositol 3 kinase (PI3K), and phosphorylated serine-threonine protein kinase (pAKT).
These results suggest the possible ameliorating effect on non-alcoholic steatohepatitis (NASH) [155].
The investigations conducted by Ouet et al. [156] on male C57BL/6 mice revealed, after 8 weeks of a
methionine-choline-deficient diet, the induction of NASH. The oral ingestion of silybin significantly
inhibited the gene expression associated with lipid metabolism, inflammation-related gene expression,
and the NF-κB signaling pathway. Moreover, silybin treatment activated the Nrf2 pathway, favoring
the upregulation of target antioxidant genes in the silybin-treated group, modulating oxidative stress.

Damage produced by carbon tetrachloride (CCl4) is commonly utilized as a liver injury model
due to modifications in the activation of the apoptotic and fibrotic pathways and rising oxidative stress.
These processes are mediated by transforming growth factor beta (TGF-β), inducing the expression of
oncogenes, cytokines, and the activation of small mother against decapenaplegic (Smad). Stimulation of
thecyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) pathways is related to the
activation of PI-3/AKT focal adhesion kinase-phosphatidylinositol-3-kinase, the signal transducer and
activator of transcription-3 (STAT-3) and mitogen-activated protein kinase (MAPK). In this regard, oral
administration of SM in combination with vitamin E and/or curcumin in rats reduced the expression of
fibrogenic and apoptotic factors and increased the expression of Nrf2 and cytoprotective antioxidant
defenses. This suggests the combination of SM with vitamin E and/or curcumin can be a good option
for the treatment of liver injury induced by toxic substances, in that the antiapoptotic effect could be
potentiated [160]. Furthermore, the pretreatment of a combination of S-adenosylmethionine (SAM) 30
and 2000 ng/mL and silybin 298 ng/mL in canine hepatocytes increased antioxidant enzyme-reduced
glutathione compared to the control, and the treatment attenuated cytokine-induced prostaglandin E2,
Interleukin1β (ILβ), and the primary chemotactic protein-1 (MCP-1) produced by the activation of
NF-κβ [163].

In KYSE70 cells, SM (100 µM), artichoke (1 mg/mL), and propolis (1%) were potent activators
of UGT1A1 enzyme activity all the way through the Aryl hydrocarbon receptor (AhR) and the Nrf2
pathway, significantly reducing the oxidative stress that resulted from the hydroperoxide levels induced
by tertiary butylhydroquinone (tBHQ) (100 µM). UGT´s are responsible for glucuronidation in phase II
of metabolic biotransformation and comprise the major route for xenobiotics in the organism. Therefore,
the presence of silymarin, artichole, and propolis could affect the metabolism of other drugs when
these are metabolized by glucuronidation [153].

In a cardiorenal-injury model in rats, the combination of the ethanolic extract of Vitis vinifera
(500 mg/kg) and the SM extract (600 mg/kg) significantly increased the expression levels of Nrf2 linked
to the redox-sensitive pathway. Further, cardiac and renal biochemical indicators, such as creatinine,
urea, BUN, and the lipid profile, improved significantly, as well as histopathological alterations [154].
The experimental model of Indomethacin-induced gastric injury in albino rats had proven that oral
pre-treatment with 50 mg/kg of SM inhibits the synthesis of lipid peroxides, promotes the upregulation
of Nrf2, and the enhancement of the activity of GPx and SOD enzymes, increasing antioxidant and
cytoprotective defense, thus preventing gastric oxidative stress. Gastric inflammation improved by
inhibiting tumor necrosis factor alpha (TNF-α), interleukin6 (IL-6), and myeloperoxidase activity, in
conjunction with the expression of NF-Kβ, as well as the reduction of caspase-3. The histological
analysis revealed mild sub-mucosal edema and inflammatory edema infiltrates and minimal alterations
in epithelium surface in the group pretreated with SM. These results suggest that SM exerts a
gastro-protective effect [157]. Otherwise, the co-administration of silybinin at 75 mg/kg/day in a rat
experimental model with sodium arseniate (NaAsO2) (5 mg/kg/day) during 4 weeks induced kidney
toxicity that resulted in a decrease of lipid peroxidation (lipid hydroperoxides, protein carbonyls,
and TBARS), NADPH oxidase, iNOS, and NF-kB, also inhibiting caspase-3-mediated tubular apoptosis.
Silibinin upregulated the Nrf2 pathway in renal tissue, improving the levels of enzymatic (SOD, CAT,
GPx, and GST) and non-enzymatic (GSH, TSH, and vitamins C and E) antioxidants; additionally,
silybinin treatment reduced serum and urine markers of nephrotoxicity (urea, ureic acid, and creatinine
clearance), reduced tubular necrosis, degeneration, and dilatation, as well as thickened basement
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membrane and desquamation. Glomeruli atrophy and diffuse hemorrhage were significantly reduced
in the treated group. The study established the potential nephro-protective effect of silibinin against
renal arsenic toxicity [162].

Paraquat is used as a potent biohazardous herbicide that produces superoxides when it is reduced.
In consequence, it reacts with the membrane of unsaturated fatty acids, causing severe human fatality.
Paraquat is being employed as a model of lung injury; the previously mentioned study points out that
SM can be a potential element for lung-injury therapy. According to the results of the investigation
conducted by Zhao [161], treatment with SM at 200 mg/kg for 3 days improved oxidative stress by
reducing MDA and increasing the activity of SOD, Cat, and GPx in lung tissue and serum in rats treated
with Paraquat (30 mg/kg) to induce lung injury. These results were related to the upregulation of Nrf2,
HO-1, and NQO1 in male Sprague-Dawley rats. At the same time, SM ameliorated histopathological
changes in lung and in proinflammatory mediators, suppressed myeloperoxidase activity, Nitric oxide
(NO)/inducible Nitric oxide synthase (iNOS) expression, reduced inflammatory cell infiltration, and the
lung Wet weight/Dry weight (W/D) ratio. These mechanisms were associated with the Nrf2 pathway.
Previously, the protective effect was investigated of SM against Paraquat-induced oxidative stress on
the human A549 adenocarcinoma cell line. SM exerted an effective cytoprotective effect by reducing
cell toxicity on inducing antioxidant genes Nrf2, NQO1, and HO-1 after only 3 h of exposure. Hence,
the evidence supports SM in aiding in Paraquat intoxication [164].

In neurological models, the use of SM (2, 4, and 10 µM for 4 h) had shown to be effective as
well. In an Alzheimer’s-disease model of HT-22 hippocampal cells with Aβ25–35-induced OS injury at
2 µM for 24 h, isosilybin induced the expression of Nrf2 promoted by translocation into the nucleus,
thus stimulating the activity of an antioxidant response element (ARE), activating the Nrf2/ARE
signaling pathway, and regulating the expression of HO-1, GST, and aldo-keto reductases 1C1 and
1C2 (AKR1C2), plus significantly inhibiting ROS production, the release of malonaldehyde (MDA)
and lactate dehydrogenase (LDH), alleviating the increase of oxidative stress in this model [159].
The acrylamide-induced neurotoxicity model in PC12 cells revealed that SM at different concentrations
(12, 24, 48, 96, and 192 µg/mL for 3 h) induced protection in a dose-dependent manner against damage
caused by the exposure of 5 mM acrylamide for 24 h. SM facilitated Nrf2 translocation from cytosol
into the nucleus, the mRNA and protein expression levels of Nrf2, as well as cytoprotective genes GPx,
GCLC, and GCLM. These results correlated with the increased levels of intracellular GSH, reduced
levels of ROS, and MDA. In conclusion, SM can exert neuroprotection against acrylamide-induced
damage [158].

In the experiment conducted by Choi et al. [165], the effect was investigated of SM and
(−)-Epigallocatechin 3-O-gallate (EGCG) supplementation on gluconeogenesis and lactate production
during exercise in a rat model. After 4 weeks of exercise training on a motor-driven treadmill
(60 min/5 days/week) at a speed of 8 m/min, a marked reduction was observed of lactate and
triglyceride levels in SM+Ex and EGCG+Ex groups compared with control groups, although glucose
level, body weight, and liver weight did not change. Insulin signaling was suppressed along the
exercise training in liver, increasing glugoneogenesis from lactate in active muscles due to the reduction
in Akt phosphorylation involved in the insulin signaling pathway. SM+Ex and EGCG+Ex exhibited an
upregulation of phosphoenol pyruvate carboxykinase (PEPCK) and peroxisome proliferator-activated
receptor gamma (PPARγ), which are both involved in β-oxidation and gluconeogenesis pathways
compared with the exercise alone group. In addition to the latter, 5-AMP activated protein kinase
(AMPK) and energy cell sensor and Akt phosphorylation was decreased in the gastronemius and soleus
muscles of the supplemented groups. Also, pyruvate dehydrogenase kinase 4 (PDK4) expression in
both types of muscle was higher in SM- and EGCG-administered groups. These results suggest that
supplementation with SM during exercise modulates the metabolism of glucose, lipids, and lactate,
improving endurance. Despite that Nrf2 was not determined in this investigation, the results supported
the beneficial effects of SM and exercise in the treatment of the metabolic syndrome.
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As previously mentioned, although several other mechanisms of action are suggested for the
action of SM [12], the effects on Nrf2 activity appear to be crucial. Recent works describe the action
of compounds on this system by direct interaction or by the disruption of proteins linked to Nrf2
activity [166,167], with Keap1 as the main target [168],due to that, under basal conditions, the Nrf2
protein is constitutively trapped by Keap1 and retained in the cytoplasm for ubiquitin conjugation
and subsequent proteasome degradation. In this regard, 178 phytochemicals proven to possess good
antioxidant properties were selected and tested in silico by Li et al., suggesting that phenylethanoid
glycosides, tocopherols, flavones, flavanols, anthocyanins, and flavonols have entertained high affinity
with Keap1 and have potential as inhibitors of the inactivator action on Nrf2 [169]. In a complementary
manner, itis noteworthy that several research workgroups have developed and tested compounds
to disrupt Keap1:Nrf2 interaction [168,170,171]. The main aim of these approaches is the design of
potential drugs for numerous pathologies, but also for deciphering molecular disease mechanisms [170].
Interestingly, the binding site shares several residues conserved for ligands with various aromatic rings
(often 3 or 4, as several bioactive compounds from SM), albeit that tested compounds exhibit notable
differences, such as those identified from a peptide series that demonstrated improved binding affinity
in fluorescence polarization, differential scanning fluorimetry, and isothermal titration calorimetry
assays [168]. In the meanwhile, other potent inhibitors were synthesized strategically by means of the
exploration and optimization of protein-ligand interactions in three energetic “hot-spots” identified
by fragment screening [170]. Here, with solely illustrative purposes, SM compounds were tested on
Keap1 by conventional docking procedures. In brief, the structures of ligands were drawn using
ChemBioDraw Ultra ver. 12.0. Their geometry was pre-optimized by using Hyperchem (version
6.0; Hypercube, Monterey, CA, USA; [http://www.hyper.com]) at the level of molecular mechanics
(AM1 basis set). Therefore, the minimal energy structure for each ligand was fully optimized at the
B3LYP/6-31G** level by using Gaussian 09 software [172]; then, they were tested on the 3D crystal
structure of Keap1 (PDB ID: 6QMC). For the latter, a grid-box of 70 × 70 × 70 Å was centered on the
main crevice of Keap1. We utilized a Lamarckian genetic algorithm to perform the search with an
initial population of 100 random individuals, 1.0 × 107 interactions were run with the AutoDock ver.
4.2.6 program, and the results were analyzed by using Autodock Tools and VMD ver. 1.9.2 software
and determining binding poses and affinity as elsewhere. Although additional in-silico procedures
are required in order to evaluate the affinity and consequences of binding, these assays reveal the
feasibility of these compounds for reaching the same binding site as that of the recently reported
ligands (Figure 5). Main contacts are by means of electrostatic and Vander Waals interactions, as well
as that some hydrogen bonds occur with sites clearly linked to the Keap1-Nrf2 interphase (the detailed
analysis of interactions is required, but due to that, in that it falls beyond the purpose of the current
contribution, it is not presented herein). Consequently, it is expected that several compounds from SM
are able to perform putative disruption of the Keap1-Nrf2 complexes, leading to the higher activity
of Nrf2.

http://www.hyper.com
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Figure 5. Theoretical feasibility of silymarin compounds to bind the Keap1. (a) Cartoon representation
of the Kelch-domain crystallized with a nonamer Nrf2-derived peptide bound (PDB ID 6QMC).
The peptide was removed for clear exposure of the putative area for contacting Nrf2. (b) The binding
site of Keap1 for six flavolignans from silymarin (silybin A, silybinB, isosilybin A, isosilychristin,
taxifolin, and silydianin), for silybin A (c) and for silybin B (d).

6. Conclusions and Perspectives

Transcription factor Nrf2 is one of the most interesting topics to investigate in molecular science,
this attributable to its action as a master regulator of the antioxidant and cytoprotector response.
The sensitive redox signaling pathway Nrf2/Keap1/ARE is transcendental for the regulation of
physiological and pathological conditions. Even more so, the mechanisms of regulation of this complex
system are not fully understood, but it is now well-known that the Nrf2 pathway is implicated in several
diseases, such as diabetes, neurological, cardiovascular, liver, kidney injury, and cancer [75]. Although
there are existing paradoxes in cancer because growing evidence indicates that Nrf2/Keap1/ARE
participate in carcinogenesis, it has been demonstrated that Nrf2 could prevent the process at early
stages [76].

The Nrf2/Keap1/ARE system comprises a very promising pharmacological target for managing
the pathological process of numerous diseases characterized by inflammation and oxidative stress [173].
Emergent research is centered on Nrf2 activators, and few of these are under clinical investigation.
Bioactivators are compounds deriving from plants or foods that have been proven to activate Nrf2.
Due to its electrophilic nature, SFN is the most studied among inducers [114]. However, there are
other interesting compounds, such as curcumin, SM, and resveratrol, which demonstrate potential
in the induction of Nrf2. SM has a long history in therapy for liver damage and including its the
protector and antioxidant properties [12]. In addition to its low bioavailability, current reports indicate
that it possesses the potential to activate Nrf2/Keap1/ARE. Further researches with in silico, in vitro,
and in vivo models are necessary to elucidate the possible manner in which SM and/or its flavolignans
are able to modulate the Nrf2/Keap1/ARE system. The latter is a possibility for novel therapeutic
approaches in the management of diseases in the present or near future.
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