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Abstract: Gastric cancer is globally the fifth leading cause of cancer death. We present a case report 

describing the unique genomic characteristics of an Epstein–Barr virus-negative gastric cancer with 

esophageal invasion and regional lymph node metastasis. Genomic tests were performed first with 

the stomach biopsy using platforms FoundationOne, OncoDNA, and Oncopanel at Dana Farber 

Institute. Following neoadjuvant chemotherapy, residual tumor was resected and the stomach and 

esophageal residual tumor samples were compared with the initial biopsy by whole exome 

sequencing and molecular pathway analysis platform Oncobox. Copy number variation profiling 

perfectly matched the whole exome sequencing results. A moderate agreement was seen between 

the diagnostic platforms in finding mutations in the initial biopsy. Final data indicate somatic 

activating mutation Q546K in PIK3CA gene, somatic frameshifts in PIH1D1 and FBXW7 genes, stop-

gain in TP53BP1, and a few somatic mutations of unknown significance. RNA sequencing analysis 

revealed upregulated expressions of MMP7, MMP9, BIRC5, and PD-L1 genes and strongly 

differential regulation of several molecular pathways linked with the mutations identified. 

According to test results, the patient received immunotherapy with anti-PD1 therapy and is now 

free of disease for 2 years. Our data suggest that matched tumor and normal tissue analyses have a 

considerable advantage over tumor biopsy-only genomic tests in stomach cancer. 
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1. Introduction 

Gastric cancer arises from epithelial lining of the stomach and is globally the fifth leading cause 

of cancer and the third leading cause of cancer death, making up 7% of cases and 9% of deaths [1]. 

Major classifications of gastric cancers (GCs) include histological classification by Lauren [2], where 

GCs are subdivided into intestinal and diffuse histotypes, and molecular classification recently 

proposed by The Cancer Genome Atlas (TCGA) consortium, which includes chromosomal instability, 

microsatellite instability (MSI), genomically stable, and Epstein–Barr virus (EBV) positive GC types 

[3]. EBV-positive subtype covers ~9%–10% of all SC cases and is ~two times more frequent in male 

than in female patients. Diffuse and intestinal histotypes are presented in EBV-positive GCs in equal 

proportions [4]. In 30%–40% of the cases, this subtype overexpresses PD-L1 (ligand of Programmed 

Death-1) protein [5]. Enhanced expression of this biomarker may be associated with poor survival 
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[6]. However, targeted PD-L1-specific immunotherapy showed 22% objective response, 24% 

progression-free survival, and 69% overall survival 6 months after treatment [7]. 

The relatively high mortality in GC is linked with its strong potential to form metastases, mainly 

via epithelial–mesenchymal transition (EMT) process when epithelial cells lose their polarity and 

adhesion features while gaining migratory and invasive properties to become mesenchymal stem-

like cells [8]. 

Prognosis in locally advanced and metastatic gastric cancer is dismal, with 1-year and 2-year 

progression-free survival of barely 50% and 25%, respectively, and 5-year overall survival less than 

10% [9]. Standard treatment for operable tumors consists of surgery with perioperative 

chemotherapy, the impact of radiotherapy being controversial. Recently, much effort was made to 

improve these dismal results with immune checkpoint inhibitors, mostly anti-PD-1 agents such as 

Pembrolizumab and Nivolumab. Several markers were explored to predict tumor response to these 

drugs, including, among others, tumor mutation burden and immunohistochemical tests for PD-L1. 

Unfortunately, apart from MSI, robust response predictors are lacking, and the optimal ways to 

incorporate immunotherapy into treatment algorithm are still under investigation [10–12]. 

We present a case of locally advanced gastric cancer treated with sequential chemotherapy, 

surgery, and immunotherapy; those prescriptions were guided by extensive genomic and 

transcriptomic testing. The genetic tests used were based on the gene panel exome sequencing [13,14], 

whole exome sequencing [15,16], and a combination of RNA sequencing and whole exome sequencing 

[17,18], including molecular pathway annotation algorithms [19–21]. This allowed to compare different 

methods of annotating tumor-specific mutations and to implement gene expression-based personalized 

prioritizing of targeted therapeutics. 

To our knowledge, this is the first report simultaneously using alternative comprehensive 

genomic, copy number variation, and transcriptomic approaches to characterize primary and 

metastatic disease in both tumor-only and matched tumor-normal modes to identify putative treatment 

options for the individual patient with GC. 

2. Case Presentation 

In October 2017, an 80-year-old Caucasian woman presented with gastric tumor that was 

incidentally discovered during routine ultrasonography. Biopsy showed moderately to poorly 

differentiated adenocarcinoma and HER2- and MSI-negative. Tests for H. pylori and EBV were 

negative. Staging with endoscopy, endoscopic ultrasonography, magnetic resonance imaging (MRI), 

and positron emission tomography–computed tomography (PET-CT) with 18F-fluoro-2-deoxy-D-

glucose (18FDG) revealed esophageal extension and suspicious regional lymph nodes, corresponding 

to clinical stage T3N1M0. The council decision was to start induction chemotherapy. 

In November 2017, two courses of the FOLFOX regimen (Oxaliplatin + Fluorouracil/Leucovorin) 

were administered. The treatment was tolerated well, and the regimen was escalated to FLOT 

(Docetaxel, Oxaliplatin, and Fluorouracil/Leucovorin) by adding docetaxel; 4 cycles were given till 

February 2018. Toxicity was moderate, mainly neutropenia managed with filgrastim. Endoscopy 

after 4 cycles showed tumor shrinkage from 6 to 4 cm but no further regression after 6 cycles. In 

March 2018, partial proximal gastrectomy with esophageal resection and lymph node dissection was 

performed. Pathology reported viable residual tumor and one involved node, ypT3N1 (Figure 1). 
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Figure 1. (A,B) Hematoxylin and eosin (H&E) staining shows moderately to poorly differentiated 

adenocarcinoma. (A) Tumor removed from stomach. (B) Tumor removed from esophagus. (C) Baseline 

tumor appearance: primary gastric lesion (right arrow) and involved lymph node (left arrow). 

According to current guidelines, further management would be adjuvant chemotherapy (4–6 

cycles of FLOT or another regimen), but the patient’s age and lack of clear benefit (downstaging) from 

the previous cytostatic treatment prompted us to seek alternative approaches. Another option could 
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be observation until disease relapse, but the patient pursued an active treatment strategy. While she 

had a positive immunohistochemistry for PD-L1, this result was of limited practical value because 

this marker performs poorly in GC; moreover, at the time of treatment, immune checkpoint inhibitors 

like Pembrolizumab were not sufficiently studied and not approved for adjuvant therapy in gastric 

cancer. Along with PD-L1 positivity, patient’s age and moderate mutation burden suggested benefit 

from immunotherapy, but the evidence was inconclusive [10–12]. 

To guide further therapy, the patient consented to enter a clinical trial NCT03724097 and 

underwent testing with Oncobox platform. Oncobox algorithm builds a personalized rating of target 

drugs for individual cancer patients. It is based on a simultaneous analysis of gene expression and 

molecular pathway activation in the patient’s tumor and was shown to be effective in a retrospective 

cohort of gastric cancer patients [22], in several prospective advanced cancers cases [23–25], and in an 

ongoing prospective clinical investigation [26]. Gene expression profiling and whole exome sequencing 

was approved by institutional Review Board (IRB) at Clinical Center Vitamed, Moscow, Russia, 

protocol date 17 October 2016. According to test results (see below in details), further chemotherapy 

was omitted, and instead of it, adjuvant immunotherapy with anti-PD-1 antibody Pembrolizumab 

(Keytruda™) was prescribed. From June to December, the patient received 8 cycles. Adverse events 

were limited to hypothyroidism and mild fatigue. As of February 2020, she is free of disease with 

Karnofsky index 80%. 

2.1. High Throughput Molecular Characterization of Tumor Biosamples 

Genomic tests were performed first with the stomach biopsy using commercial platforms 

Foundation One (F1) and OncoDNA, and copy number variation (CNV) was assessed using Oncopanel 

at Dana Farber Institute (Supplementary File 1) [19,27–47]. Following neoadjuvant chemotherapy, 

residual tumor was resected; the stomach and esophageal residual tumor samples were obtained and 

compared with the initial biopsy by whole exome sequencing and RNA sequencing-based molecular 

pathway analysis platform Oncobox (Obx). This allowed to identify the most probable individual case 

driver mutations using four alternative methods, to measure tumor mutational burden (TMB) using 

two methods, to establish gene expression levels of tumor marker genes, and to assess potential 

individual utility of immunotherapy using molecular pathway analysis. 

2.2. Tumor-Only and Tumor-Normal Modes for Finding Mutations in Ttumor Biopsy and Surgery 

Biosamples 

WES-Obx pipeline was then applied to identify mutations using additional biosamples obtained 

from the same patient during surgical removal of the tumor. Two new tumor biosamples were 

obtained for stomach and esophageal localizations, respectively, matched by adjacent normal tissue 

samples. Totally, this made three tumor samples (initial biopsy, surgical stomach, and surgical 

esophageal) and two normal tissue samples (from stomach and esophageal tissues). Whole exome 

sequencing (WES) was done for all those biosamples (Table 1), and WES-Obx platform was used to 

identify mutations. Whole exome sequencing and gene expression data were deposited to NCBI 

Sequence Read Archive (SRA) under the accession numbers PRJNA545281. 

Table 1. Statistics of genomic data obtained using sequencing-based cancer diagnostics platform 

Oncobox. 

 Biopsy 
Normal 

Stomach 
Tumor—Stomach 

Normal 

Esophagus 
Tumor—Esophageal 

Number of reads 222 × 106 227 × 106 236 × 106 139 × 106 232 × 106 

Reads lengths 30–150 30–150 30–150 30–150 30–150 

Reads mapped on exons of 

protein coding genes (%) 
62 35 37 40 40 
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Mean per-base coverage in 

exons of protein coding genes 

(standard deviation) 

147 (283) 112 (211) 99 (196) 65 (155) 108 (244) 

Reads in detected genes (%) 87 69 70 70 72 

In the previous tests comparing results of different platforms for the same tumor biopsy sample, 

we were able to identify mutations but could not find out if they were of germline or somatic origin. 

Now, we had reference normal patient’s tissues and could distinguish somatic mutations. WES-Obx 

platform was applied in tumor-only mode for the sole tumor biopsy sample, thus giving an output 

of 502 germline + somatic mutations (Supplementary File 2), and in the mode of comparison with 

reference normal tissues (tumor-reference mode), thus providing 37 and 38 somatic mutations 

identified for surgical tumor samples of esophageal and stomach localizations, respectively. This 

dramatic difference in the number of mutations identified most probably pointed to the extremely 

high proportion (>90%) of germline mutations and/or formalin fixation artifacts in the tumor-only 

mode of analysis. Most of mutations identified in tumor-reference mode were also identified in a 

tumor-only mode. Differences between somatic mutations found for the esophageal and stomach 

tumor localizations may be linked with different cellular compositions of those samples and overall 

patient’s tumor heterogeneity. We, therefore, concluded that, in this case, tumor-reference mode of 

mutation search was more informative than a tumor-only mode. Final data indicate somatic 

activating mutation Q546K in the PIK3CA gene, somatic frameshifts in the PIH1D1 and FBXW7 genes, 

stop-gain in TP53BP1, and a few somatic mutations of unknown significance (Supplementary Files 1, 

3 and 5). 

2.3. Tumor Mutational Burden Analysis 

Tumor mutational burden (TMB) is an emerging cancer biomarker that can influence therapeutic 

strategy, particularly in selection of immunotherapeutic treatment options [48]. In the F1 report, for the 

patient’s primary tumor biopsy, TMB measured was 6 mutations per million nucleotide bases (per mb). 

In WES-Obx analysis for the same biopsy sample, a similar figure was obtained of 7.8 mutations per 

mb. However, for the surgical tissue material, lower TMB values were obtained using WES-Obx 

platform: 5.7 and 5.0 for esophageal and stomach segments of tumor, respectively. These lower values 

were in a good agreement with extremely high degrees of surgical tumor tissue infiltration by blood 

cells (Figure 1), where only ~50% were tumor cells according to histopathological expertise. Low 

proportion of tumor cells hampers robust identification of mutations due to low coverage of mutant 

alleles. However, this was not the case for the primary tumor biopsy, and we therefore used the TMB 

value of 6–7.8 as the reference for the patient’s tumor case. 

2.4. Analysis of Molecular Pathway Activation 

We examined the expression of genes, previously reported to be upregulated in gastric cancer. 

We identified significantly upregulated expression of MMP7, MMP9, BIRC5, and PD-L1. To 

investigate functional interplay of the discovered driver gene mutations with the gene expression profiles, 

we analyzed differentially regulated molecular pathways using Oncobox pathway analysis software 

[23,24]. For every pathway, a pathway activation level (PAL) value was calculated [49] corresponding to 

degree of a pathway activation or downregulation in a tumor sample (biopsy, stomach, and esophageal 

localizations) in comparison to the normal stomach sample. Overall, PAL signatures strongly correlated 

among the three tumor samples analyzed (pairwise Spearman correlation coefficients 0.87–0.89). We then 

compared top 40 most strongly up- and downregulated molecular pathways in different tumor 

biosamples. Triple intersection showed that, among them, there were top common 31 upregulated and 21 

downregulated pathways (Figure 2; Supplementary File 4).  

Noteworthily, the second top upregulated molecular pathway was clinically actionable 

“Reactome PD1 signaling Pathway”, which also contained mutated gene HLA-DRB1 (Figure 3). 
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Upregulation of this pathway along with apparently high tumor infiltration by blood indicated 

abnormal activation of PD1/PD-L1 immunosuppression mechanisms and suggested potential benefit 

for the respective targeted immunotherapeutic treatment. 

 

Figure 2. Overlap of top 40 activated or downregulated pathways for Stomach tumor (ST), Esophagus 

tumor (ET), and Stomach tumor biopsy (STB) samples: (A) upregulated pathways and (B) 

downregulated pathways. 

 

Figure 3. Pathway activation profile of the “Reactome PD-1 signaling Main Pathway” in a stomach 

tumor sample: mutated genes are circled in red. 

3. Discussion  

We compared whole exome sequencing profiles of tumor biopsy and two surgical tissue samples 

from different tumor sites (stomach and esophagus) in comparison with two adjacent normal tissue 

samples. We also compared performances of three commercial genetic diagnostics panels: 

FoundationOne, OncoDNA, and WES-Oncobox. Totally, we identified 502 mutations 

(Supplementary File 2) and found 3 major candidate genes—FBXW7, PIH1D1, and TP53BP1—that 

may serve as tumor suppressors and may contain inactivating mutations (Supplementary File 1). We 

found that these genes underwent copy-neutral loss of heterozygosity, which points to driver 

function of these mutations. 

We detected significantly upregulated expression of MMP7, MMP9, BIRC5, and PD-L1 in the 

patient’s cancer samples. Increased expression of PD-L1 was also associated with strong upregulation 

of the PD1 signaling molecular pathway, which supported the idea that immunotherapy could 

potentially be effective in this case. Taken together with intermediate tumor mutation burden value 

of ~7 mutations per mb, these results supported including anti-PD1/PD-L1 therapy in the patient’s 



Biomedicines 2020, 8, 67 7 of 10 

 

treatment plan. Normal tissue was required for the pathway analysis, as Oncobox bioinformatical 

platform calculates pathway activation level in a tumor sample compared to a normal sample. 

The genetic tests and advanced data analytic tools used here are still far less expensive than the 

therapeutics and/or clinical procedures applied. They also have a strong potential to decrease overall 

costs associated with the treatment by timely selecting the most appropriate therapeutic strategy. The 

prices for the genetic tests employed varied ~$2000–6000 per test with the complete Oncobox test 

including drugs prioritization based on the combination of whole-exome sequencing and RNA 

sequencing data amounting to $3500 [50].  

4. Conclusions 

In conclusion, the presented case report suggests that matched tumor and normal tissue analyses 

may have considerable advantage over biopsy-only genomic tests in selected cases. However, further 

prospective clinical investigations involving larger groups of patients with different malignancies are 

required to estimate clinical utility of such approach. 

Supplementary Materials: The following are available online at www.mdpi.com/2227-9059/8/3/67/s1, 

Supplementary File 1: Technical comparison of DNA sequencing-based diagnostic platforms WES-Oncobox, 

OncoDNA, and FoundationOne; Supplementary File 2: Output of WES-Obx platform in tumor-only mode for 

the sole tumor biopsy sample: 502 germline + somatic mutations; Supplementary File 3: 386 mutations, common 

for all analyzed tumor samples. Supplementary File 4: Top 40 most strongly up- and downregulated molecular 

pathways. Supplementary File 5: 137 “off-target” genes in F1 sequencing results. 
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