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Abstract: Herein, the in vitro metabolism of tyrosine kinase inhibitor cabozantinib, the drug used for
the treatment of metastatic medullary thyroid cancer and advanced renal cell carcinoma, was studied
using hepatic microsomal samples of different human donors, human recombinant cytochromes P450
(CYPs), flavin-containing mono-oxygenases (FMOs) and aldehyde oxidase. After incubation with
human microsomes, three metabolites, namely cabozantinib N-oxide, desmethyl cabozantinib and
monohydroxy cabozantinib, were detected. Significant correlations were found between CYP3A4
activity and generation of all metabolites. The privileged role of CYP3A4 was further confirmed by
examining the effect of CYP inhibitors and by human recombinant enzymes. Only four of all tested
human recombinant cytochrome P450 were able to oxidize cabozantinib, and CYP3A4 exhibited the
most efficient activity. Importantly, cytochrome b5 (cyt b5) stimulates the CYP3A4-catalyzed formation
of cabozantinib metabolites. In addition, cyt b5 also stimulates the activity of CYP3A5, whereas two
other enzymes, CYP1A1 and 1B1, were not affected by cyt b5. Since CYP3A4 exhibits high expression
in the human liver and was found to be the most efficient enzyme in cabozantinib oxidation, we
examined the kinetics of this oxidation. The present study provides substantial insights into the
metabolism of cabozantinib and brings novel findings related to cabozantinib pharmacokinetics
towards possible utilization in personalized medicine.

Keywords: cabozantinib; cytochrome P450; tyrosine kinase inhibitor; cytochrome b5

1. Introduction

In general, differences in drug absorption, distribution, metabolism and excretion result in
interindividual variations in the pharmacokinetics of a drug, if patients are administered a uniform
dose of the drug [1]. Among patients with benign diseases treated with common drugs, relatively
small differences in drug pharmacokinetics including metabolism are observed because of the wide
therapeutic windows. However, in cancer chemotherapy, serious clinical consequences may occur
from small alterations in drug metabolism affecting the drug pharmacokinetics [2].

Cabozantinib (N′1-{4-[(6,7-dimethoxyquinolin-4-yl)oxy]phenyl}-N1-(4-fluorophenyl)cyclopropane
-1,1-dicarboxamide) exhibits substantial antitumor activities in patients with multiple cancer types:
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medullary thyroid cancer [3], breast cancer [4,5], hepatocellular carcinoma [6,7], non-small cell lung
cancer [8,9], prostate cancer [10,11], renal-cell carcinoma [12,13] and pancreatic cancer [14]. Pursuant
to these studies, cabozantinib was approved as COMETRIQ® for treatment of metastatic medullary
thyroid cancer in 2012 and as CABOMETYX™ for patients with advanced renal cell carcinoma in
2016. Moreover, cabozantinib as CABOMETYX™was approved in 2019 for hepatocellular carcinoma
patients who have been previously treated with sorafenib. It acts as a tyrosine kinase inhibitor (TKI),
affecting vascular endothelial growth factor receptor 2 (VEGFR-2) and hepatocyte growth factor
receptor MET [15–18]. It also inhibits several other kinases, including KIT, RET and AXL [15]. Therefore,
cabozantinib is considered a multiple TKI, affecting tumor angiogenesis, invasion and metastasis.
Although cabozantinib is well tolerated, its administration is associated with frequent treatment-limiting
adverse effects, and dose reductions are commonplace. The most frequently reported adverse effects in
patients with renal-cell carcinoma are diarrhea, palmar–plantar erythrodysesthesia syndrome, fatigue
and hypertension [4,7,19].

Cabozantinib is efficiently bound by proteins in human plasma (≥99.7%) [20]. Recent work with
healthy volunteers revealed that cabozantinib was eliminated primarily in feces and extensively
metabolized up to 17 metabolites identified by liquid chromatography-tandem mass spectrometry [18].
These metabolites were represented by hydroxy-derivates, amide cleavage products, glucuronide
conjugates and sulfates. Thus, enzymes of phase I and also phase II participate in cabozantinib
metabolism in the human body. Because of limited information, which indicates lower efficiency of
individual cabozantinib metabolites [18], knowledge of the cabozantinib metabolic pathway is crucial
for the improvement of treatment protocols and prognostic accuracy.

In the present study, we investigated the in vitro metabolism of cabozantinib in cell-free systems.
We used human hepatic subcellular systems (microsomes) containing enzymes that are responsible for
the first-pass metabolism of drugs. In addition, individual recombinant human cytochromes P450
(CYPs), flavin-containing mono-oxygenases (FMOs) and aldehyde oxidase (AO) were employed to
identify enzymes capable of metabolizing cabozantinib. Since CYP3A4 was identified as the major
enzyme metabolizing cabozantinib in human liver, the mechanism of CYP3A4-catalyzed oxidation
was characterized in detail.

2. Materials and Methods

2.1. Chemicals and Materials

Cabozantinib was from MedChemExpress (Monmouth Junction, NJ, USA). Standard of cabozantinib
N-oxide was purchased from Toronto Research Chemicals (Toronto, Canada). Ketoconazole, NADPH
and other chemicals were all purchased from Merck (Darnstadt, Germany). The purity of all chemicals
met the standards of American Chemical Society, unless otherwise noted. Male human hepatic
microsomes (pooled sample) (sample LOT: 3043885) were from Gentest Corp. (Woburn, MA, USA).
Microsomes from livers of twelve human donors were obtained from Gentest Corp. (Woburn, MA, USA)
(Lot. no. HG43-1, HG103, HG74, HG93, HG24, HG27, HG23, HG32, HK31, HK34, HG03 and HG42).
Each human microsomal sample was characterized for CYP, FMO, total protein contents and specific CYP
activities by Gentest Corp. and reanalyzed by us by assays described in the protocols of Gentest Corp.
Our data were similar to those reported by Gentest Corp. (Table 1). Human recombinant enzymes were
used in the forms of Supersomes™ and obtained from Corning (Corning, NY, USA). In Supersomes™,
microsomal fractions were isolated from insect cells that were transfected with baculovirus constructs
containing cDNA of human CYP enzymes (CYP1A1/2, 1B1, 2A6, 2B6, 2C8/9/18/19/, 2D6, 2E1, 3A4).
The Supersomes™ also express NADPH:CYP oxidoreductase (POR). However, because they are
microsomes (particles of broken endoplasmic reticulum), other enzymes (proteins) of the endoplasmic
reticulum membrane (like NADH:cytochrome b5 reductase and cytochrome b5) are also expressed at
basal levels in these Supersomes™. We also utilized Supersomes™, which overexpressed cytochrome
b5, in a molar ratio of CYP to cytochrome b5 of 1 to 5. In Supersomes™, where cytochrome b5 was not
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overexpressed (see above), pure cytochrome b5 was added to reach a molar ratio of CYP to cytochrome
b5 of 1 to 5. Reconstitution of Supersomes™with purified cytochrome b5 was performed as described
previously [21–23]. Human recombinant FMOs and AO were also used in the forms of Supersomes™
(Gentest Corp., Woburn, MA, USA). These microsomal fractions were isolated from insect cells that
are transfected with baculovirus constructs containing cDNA of human FMO1, FMO3, FMO5 or
AO enzymes.

2.2. Oxidation of Cabozantinib by Hepatic microsomes and Human Recombinant Enzymes

Unless stated otherwise, incubation mixtures used to study cabozantinib metabolism contained
the following in a final volume of 500 µL for incubations containing hepatic microsomes and 250
µL for incubations with recombinant enzymes (Supersomes™): 100 mM potassium phosphate buffer
(pH 7.4); 1 mM NADPH; human hepatic microsomes (0.25 mg protein) or human recombinant CYPs,
FMOs or AO in Supersomes™ (25 pmol); and 50 µM cabozantinib dissolved in 5 (respectively 2.5)
µL dimethyl sulfoxide. The reaction was initiated by adding NADPH. In control incubations, either
microsomes or CYP (FMO, AO) or NADPH were omitted. Incubations were performed at 37 ◦C for
20 min in open plastic Eppendorf tubes; cabozantinib oxidation was linear up to 30 min of incubation.
The reaction was stopped by extraction with ethyl acetate (2 × 1 mL). Extracts were evaporated and
dissolved in 50 µL methanol, and high-performance liquid chromatography (HPLC) analysis was
used to separate cabozantinib and its metabolites. HPLC conditions were as follows: Nucleosil® EC
100-5 C18 reverse-phase column (150 × 4.6 mm, Macherey Nagel, Duren, Germany); the eluent was
5 mM ammonium acetate in water (pH 5) containing 60% acetonitrile with a flow rate of 1 mL/min;
injection was 10 µL; and detection was at 254 nm. Cabozantinib metabolites separated by HPLC
were characterized by mass spectroscopy (see further details below). The recoveries of cabozantinib
metabolites were approximately 95%.

2.3. Identification of Cabozantinib Metabolites by Mass Spectrometry

Cabozantinib metabolites were identified by liquid chromatography coupled with Q-ToF mass
spectrometer. Samples were re-suspended in 50 µL of methanol. Ten microliters was injected via
autosampler (Ultimate 3000 UHPLC system, Thermo Fisher Scientific, Waltham, MA, USA) on
reverse-phase C18 column (150 × 4.6 mm, Macherey Nagel) heated at 37 ◦C. Cabozantinib metabolites
were eluted isocratically by 5 mM ammonium acetate in water (pH 5) containing 60% acetonitrile
solvent at a flow rate of 0.6 mL/min and measured by Q-ToF mass spectrometer (maXis Plus, Bruker
Daltonics, Bremen, Germany) operating in positive data-dependent mode. Mass range was 50–700 m/z,
number of precursors was 3 and a spectral rate was set at 5.00 Hz. Mass spectrometer was externally
calibrated using NaTFA. Data were processed by DataAnalysis 4.3 software (Bruker Daltonics).

2.4. Inhibition Study

Inhibition studies in pooled human liver microsomes were conducted with six inhibitors.
The inhibitors employed were as follows: α-Naphthoflavone (α-NF), which inhibits CYP1A1 and
1A2; sulfaphenazole, which inhibits CYP2C; quinidine, which inhibits CYP2D; diethyldithiocarbamate
(DDTC), which inhibits CYP2E1 and CYP2A; ketoconazole, which inhibits CYP3A; and CYP3cide,
which inhibits CYP3A4. The IC50 values for employed inhibitors were determined by the procedure
described previously [24]. For experiments, inhibitors were dissolved in 5 µL methanol and incubated
at 37 ◦C for 10 min with 50 µM cabozantinib followed by the addition of NADPH. Then, mixtures were
incubated for a further 20 min at 37 ◦C. Formation of cabozantinib metabolites was analyzed by HPLC
as described above.

2.5. Contributions of CYP Enzymes to Formation of Cabozantinib Metabolites in Human Livers

In order to calculate the contributions of individual CYPs to the formation of individual cabozantinib
metabolites in human liver, we measured the velocities of their formation by the Supersomal CYP enzyme
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systems containing cyt b5 and combined these velocities with data on the average expression levels of
individual CYPs in human liver derived from [25–27]. Specifically, the contributions of each CYP to
cabozantinib metabolite formation in liver were calculated by dividing the relative metabolite-forming
activity of each CYP (rate of formation multiplied by amounts of this CYP in human liver) by the total
relative activities of all metabolite-forming CYPs.

2.6. Statistical Analysis

Data are expressed as mean ± SD. Data were analyzed using GraphPad Prism 7 (San Diego,
CA, USA) using ANOVA with post-hoc Tukey HSD Test. All p-values are two-tailed and considered
significant at the 0.05 level. Statistical associations between CYP- and FMO-linked catalytic activities
in human hepatic microsomal samples and amounts of cabozantinib metabolites were determined
by linear regression using Statistical Analysis System software version 6.12. Correlation coefficients
(r) were based on a sample size of twelve for human microsomes. All p-values are two-tailed and
considered significant at the 0.05 level.

3. Results

3.1. Oxidation of Cabozantinib by Human Hepatic Microsomes and Correlation of CYPs Activities with
Cabozantinib Oxidation

First, we investigated the function of the human hepatic microsomal system, which contains
biotransformation enzymes, from individual donors to catalyze the oxidation of cabozantinib. All
hepatic microsomes oxidized cabozantinib to three metabolites that were separated by HPLC and
identified by mass spectroscopy. In the case of cabozantinib N-oxide, the structure was confirmed by
analyzing the standard of this metabolite. The formation of cabozantinib metabolites was dependent
on NADPH, and without it, no oxidation of cabozantinib was detected (Figure 1). The predominant
metabolite was identified as cabozantinib N-oxide (M3). Two other metabolites were identified as
monohydroxy cabozantinib (M1) and desmethyl cabozantinib (M2).

The correlation analysis between enzyme activities of different CYPs in single-donor microsomes
and the amounts of individual cabozantinib metabolites formed in each microsomal sample (Table 1)
were used to examine the role of specific human CYPs in their generation. The highest correlation
for all three metabolites was found with testosterone-6β-hydroxylation (a marker for CYP3A4):
cabozantinib N-oxide (r = 0.947; p < 0.001), monohydroxy cabozantinib (r = 0.918; p < 0.001) and
desmethyl cabozantinib (r = 0.935; p < 0.001). Significant correlations were also found between
individual metabolites and activities of three other cytochromes P450 (CYP2A6, 2B6 and 2C8;
Table 2). These results indicate that these four enzymes might be responsible for the formation
of cabozantinib metabolites in human liver. However, there are high cross-correlations between
testosterone-6β-hydroxylation and coumarine-7-hydroxylase (marker of CYP2A6; r = 0.786; p < 0.01),
testosterone-6β-hydroxylation and (S)-mephenytoin-N-demethylase (marker of CYP2B6; r = 0.823;
p < 0.01), testosterone-6β-hydroxylation and paclitaxel-6α-hydroxylase (marker of CYP2C8; r = 0.751;
p < 0.01) and (S)-mephenytoin-N-demethylase and paclitaxel-6α-hydroxylase (r = 0.930; p < 0.001)
within these liver microsomes samples. To clarify these correlations, multivariate analysis was used to
investigate the dependence of metabolite formation on these CYP activities. Activities of CYP2A6,
-2B6 and -2C8 in each microsomal sample were combined in pairs with the activities of CYP3A4 to see
if any combination of the activities led to an improvement in the correlation with CYP3A4. We can
conclude that CYP3A4 is in fact the enzyme responsible for cabozantinib oxidation.
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Figure 1. Representative HPLC chromatogram of cabozantinib metabolites formed in the presence of 
NADPH (blue line) and without NADPH (control, black line). M1—monohydroxy cabozantinib; M2—
desmethyl cabozantinib; M3—cabozantinib N-oxide (A). Detailed mass spectrum and structure 
(insert) of cabozantinib (B), desmethyl cabozantinib (C), monohydroxy cabozantinib (D) and cabozantinib 
N-oxide (E). 

Figure 1. Representative HPLC chromatogram of cabozantinib metabolites formed in the presence of
NADPH (blue line) and without NADPH (control, black line). M1—monohydroxy cabozantinib; M2—
desmethyl cabozantinib; M3—cabozantinib N-oxide (A). Detailed mass spectrum and structure (insert)
of cabozantinib (B), desmethyl cabozantinib (C), monohydroxy cabozantinib (D) and cabozantinib
N-oxide (E).
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Table 1. CYP- and FMO-dependent catalytic activities and amounts of cabozantinib metabolites in samples of human liver microsomes.

Total CYPs a POR b Cyt b5
c CYP1A2 d CYP2A6 d CYP2B6 d CYP2C8 d CYP2C9 d CYP2C19 d CYP2D6 d CYP2E1 d CYP3A4 d CYP4A11 d FMO d M1 e M2 e M3 e

HG03 290 450 380 170 2000 51 200 1700 44 110 1800 6100 1600 0.287 0.335 1.672
HG103 340 210 790 310 440 7.2 39 2300 23 65 1100 2200 1600 1400 0.109 0.144 0.644
HG24 260 260 550 1700 1500 35 190 3000 41 - 2300 4000 1800 1500 0.132 0.149 0.752
HG32 170 330 580 730 520 0.68 20 450 4.8 46 1200 2000 680 920 0.208 0.185 1.338
HG42 670 510 500 700 2200 150 480 1600 7.4 95 1600 15,000 1400 2000 0.301 0.329 1.609
HG43 270 210 640 580 770 14 25 1800 440 4 780 4600 1800 920 0.755 0.625 3.491
HG74 220 200 600 520 360 13 130 2100 55 120 1400 2700 1300 1200 0.148 0.256 1.106
HG93 430 320 450 691 350 43 270 2200 75 49 2800 2800 1800 3500 0.292 0.371 1.935
HK23 380 380 700 960 1100 24 160 2100 110 140 2100 6800 780 2500 0.094 0.130 0.607
HK27 300 450 730 1320 1320 31 180 480 460 130 3000 4910 1110 2230 0.273 0.467 2.228
HK31 580 540 770 1220 2160 8.1 130 1690 172 3.4 1660 8210 2010 3020 0.218 0.377 1.537
HK34 500 460 890 1000 1500 39 220 1900 45 100 6000 5200 1100 2700 0.209 0.305 1.359

a Total CYP in pmol CYP/mg protein; b POR activity of cytochrome c reductase (pmol/mg protein); c Cyt b5 was determined spectrophotometrically (pmol/mg protein); d CYP- and
FMO-specific activity in pmol product/(mg protein × min): Phenacetin-O-deethylase (CYP1A2), Coumarine-7-hydroxylase (CYP2A6), (S)-Mephenytoin-N-demethylase (CYP2B6),
Paclitaxel-6α-hydroxylase (CYP2C8), Diclofenac-4′-hydroxylase (CYP2C9), (S)-Mephenytoin-4′-hydroxylase (CYP2C19), Buferalol-1′-hydroxylase (CYP2D6), Chlorzoxazone-6-hydroxylase
(CYP2E1), Testosterone-6β-hydroxylase (CYP3A4), Lauric acid-12-hydroxylase (CYP4A11), Methyl-p-tolyl sulfide oxidase (FMO); e Amounts of cabozantinib metabolites as peak
area/incubation time.

Table 2. Correlation coefficient (r) among CYP- and FMO-linked catalytic activity and amounts of cabozantinib metabolites formed in microsomes.

Total CYPs CYP1A2 CYP2A6 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP2E1 CYP3A4 CYP4A11 FMO

M1 0.705 * 0.104 0.607 * 0.886 *** 0.785 ** 0.142 −0.119 0.028 −0.065 0.918 *** 0.163 0.137
M2 0.794 ** 0.280 0.841 *** 0.695 * 0.654 * 0.086 0.033 −0.015 0.140 0.935 *** 0.193 0.315
M3 0.811 ** 0.216 0.728 ** 0.776 ** 0.737 ** 0.130 −0.021 −0.043 0.030 0.947 *** 0.223 0.341

* p < 0.05; ** p < 0.01; *** p < 0.001.
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3.2. The Effect of CYP Enzyme Inhibitors on Cabozantinib Oxidation in Human Liver Microsomes

The importance of CYP3A4 in cabozantinib oxidation was confirmed by inhibition studies with
human pooled liver microsomes from 21 donors. CYP-specific inhibitors α-Naphthoflavone (α-NF,
CYP1A), sulfaphenazole (CYP2C) and diethyldithiocarbamate (DDTC, CYP2A and CYP2E1) were
inefficient in affecting the cabozantinib oxidation. Quinidine (inhibiting CYP2D) was able to inhibit
formation of metabolites; however, IC50 was not attained. Thus, only inhibitors of CYP3A, namely
ketoconazole and CYP3cide, were efficient in inhibiting the oxidation of cabozantinib. Both inhibitors
were so efficient that, even in the lowest concentration, the formation of metabolites was inhibited by
more than 50%, so the values of IC50 are < 0.01 µM. The only exception was monohydroxy cabozantinib,
which exhibited IC50 of 1.12 µM for CYP3cide. Due to the higher efficiency of ketoconazole than
CYP3cide, it is possible to suppose an oxidative role not only of CYP3A4 but also of CYP3A5 during
cabozantinib oxidation in human liver microsomes. However, the role of CYP3A5 in this phenomenon
seems to be minor in comparison to CYP3A4.

3.3. Oxidation of Cabozantinib by Recombinant Human Cytochromes P450

The use of recombinant CYP enzymes expressed in Supersomes™was another approach to examine
the ability of individual human CYP enzymes to oxidize cabozantinib. Of several tested CYPs, four
cytochromes P450 were capable of oxidizing cabozantinib under the experimental conditions (Figure 2).
CYP3A4, the most prominent enzyme oxidizing cabozantinib, generated three metabolites. Cyt b5, the
heme protein participating in several functions of the CYP–mono-oxygenase system [21,28–32], exhibits
a stimulating effect on all three metabolites (Figure 2). The use of Supersomes™with co-expression of
cyt b5 and CYP3A4 increased cabozantinib oxidation more than 2.9-fold. The greatest stimulatory effect
of cyt b5 was found in the formation of cabozantinib N-oxide (4.6-fold; p < 0.001). Cyt b5 also stimulates
cabozantinib oxidation by CYP3A5. Thus, desmethyl cabozantinib was detected only in its presence
(Figure 2). CYP1A1 and CYP1B1 each generate one metabolite, and their activity was not influenced by
cyt b5. CYP1A1 formed monohydroxy cabozantinib, while desmethyl cabozantinib was attributed to
CYP1B1 (Figure 2). The proposed scheme of cabozantinib oxidation by human recombinant CYPs is
shown in Figure 3.
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Figure 2. Oxidation of cabozantinib by human recombinant CYPs. Value represents mean ± SD of three
independent in vitro incubations (n = 3). *** p < 0.001 significant differences between the formation of
individual metabolites by CYP enzymes with and without cytochrome b5 (b5). ND—not detected.
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Based on the results assigning the velocities of cabozantinib oxidation to individual metabolites in
experimental systems containing recombinant CYP enzymes in Supersomes™ (Figure 2) and the relative
amounts of CYP enzymes expressed in human liver [25–27], the contributions of individual CYPs to these
reactions in human livers were evaluated. For these calculations, we took the presence of cytochrome b5

into account. The highest contribution to formations of all three metabolites was attributed to CYP3A4.
Other CYPs contribute less than 3% to the formation of monohydroxy cabozantinib and even less than
1% to the formation of desmethyl cabozantinib and cabozantinib N-oxide.

Based on the obtained results, it is clear that cabozantinib is primarily oxidized by CYP3A4.
Therefore we further investigated the kinetics of the CYP3A4-mediated cabozantinib oxidation (Figure 4
and Table 3). The presence and absence of cyt b5 was considered. In the case of CYP3A4, the metabolites
desmethyl cabozantinib and cabozantinib N-oxide exhibit hyperbolic kinetics (Figure 4B,C). The third
metabolite, monohydroxy cabozantinib, is prone to substrate inhibition (Figure 4A). When cyt b5 is
present in the incubations, the rate of cabozantinib oxidation and the kinetics are affected. The cyt b5

increases the rate of cabozantinib oxidation, and a higher concentration of cabozantinib is required to
attain half-maximal velocity. The K0.5 values triple with cytochrome b5, which indicates that allosteric
effects may affect catalysis. The allosteric effects are also supported by the fact that the formation of
monohydroxy cabozantinib exhibits hyperbolic kinetics, although without cyt b5, it exhibits substrate
inhibition (Figure 4A,D). The formation of cabozantinib N-oxide is also affected by cyt b5 and is prone
to substrate inhibition in its presence (Figure 4F). Desmethyl cabozantinib exhibits hyperbolic kinetics
regardless of cytochrome b5 (Figure 4B,E). Thus, cyt b5 not only stimulates the cabozantinib oxidation
by CYP3A4 but also affects the affinity of this enzyme.

3.4. Oxidation of Cabozantinib by Recombinant Human Flavin-Containing Mono-oxygenases and
Aldehyde Oxidase

The potential of aldehyde oxidase and flavin-containing mono-oxygenases to oxidize cabozantinib
was studied with human recombinant enzymes. Aldehyde oxidase and all three tested flavin-containing
mono-oxygenases (FMO 1, 3 and 5) were ineffective in cabozantinib oxidation (data not shown).
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Figure 4. Enzyme kinetics of cabozantinib oxidation by CYP3A4 (A–C) and CYP3A4 in the presence
of cytochrome b5 (D–F) to monohydroxy cabozantinib (A,D), desmethyl cabozantinib (B,E) and
cabozantinib N-oxide (C,F). Values represent means ± SD of three independent in vitro incubations
(n = 3).

Table 3. The characteristics of the kinetics of cabozantinib oxidation by CYP3A4 and this enzyme in the
presence of cyt b5.

Enzyme Metabolite
Kinetic Characteristics a

VMax (peak area/min/nmol CYP) K0.5 (µM) Ki (µM)

CYP3A4
Monohydroxy cabozantinib 1.50 ± 0.05 8.98 ± 1.04 947.87 ± 202.96

Desmethyl cabozantinib 1.44 ± 0.03 11.69 ± 1.00 NA

Cabozantinib N-oxide 1.54 ± 0.04 9.56 ± 0.69 NA

CYP3A4 + cyt b5

Monohydroxy cabozantinib 3.60 ± 0.11 26.00 ± 2.92 NA

Desmethyl cabozantinib 5.70 ± 0.24 38.53 ± 5.35 NA

Cabozantinib N-oxide 9.96 ± 0.92 32.03 ± 5.68 490.22 ± 139.7
a Values represent means ± SD of three independent in vitro incubations (n = 3). NA—not applicable.
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4. Discussion

In the present study, we utilized several approaches to identify individual CYP enzymes oxidizing
cabozantinib. Ketoconazole, an inhibitor of CYP3A [33,34], and CYP3cide, a specific inhibitor of
CYP3A4 [35], were highly efficient in the inhibition of cabozantinib oxidation. Inhibitors of other CYPs,
namely α-NF, sulfaphenazole and DDTC, showed no inhibitory effects or, in the case of quinidine, the
value of IC50 was not reached. However, it is important to point out that results found with inhibitors
are sometimes difficult to interpret because inhibitors can act more efficiently with one enzyme substrate
than another and may influence multiple forms of cytochrome P450. Therefore, we employed additional
experimental approaches: (i) correlation analysis between the CYP- and FMO-catalytic activities in each
microsomal sample with the amounts of individual metabolites formed by the same microsomes; and
(ii) analysis of the oxidation of cabozantinib by human recombinant CYPs, FMOs and AO. In the human
hepatic microsomal systems, CYP3A4 was determined as the most important enzyme in the formations
of cabozantinib metabolites based on correlation analysis. Human recombinant CYP3A4 expressed
in Supersomes™ was also the most effective enzyme responsible for the formation of cabozantinib
metabolites. The significant role of CYP3A4 in the oxidation of cabozantinib was proposed and indicated
by others [36,37]. Many other TKIs are also known substrates of CYP3A4 [31,38–41]. All these data, and
the fact that CYP3A4 is the predominant form of cytochrome P450 in human liver [25,42], indicate the
privileged role of this enzyme in the oxidation of TKIs including cabozantinib.

The oxidation of cabozantinib by CYP3A4 is stimulated by cytochrome b5. The stimulatory effect
of cyt b5 on CYP3A4-mediated oxidation is known for endogenous [28,43] as well as exogenous
substrates [30,43–46], including TKIs [31]. However, the catalytic activity of CYP3A4 shows large
interindividual variability depending on many factors such as modulation of CYP3A4 expression by
xenobiotics and the diet or genetic polymorphism. Polymorphism in CYP3A4 genes has a great impact
on enzymatic activities, thereby influencing the metabolism and elimination of drugs [42,47]. The effect
of CYP3A4 polymorphism on the oxidation of cabozantinib to cabozantinib N-oxide was described
recently [37]. Cytochrome b5 also exhibits interindividual variability. Protein and mRNA contents show
variations with 11- and 6-fold range, respectively. However, the content of cyt b5 mRNA does not
strongly correlate with that of cyt b5 protein [48]. Other studies also reported variability in cyt b5 protein
and mRNA [49,50]. Correlation between cyt b5 and CYP3A4 activity was found [48]. Further, single
nucleotide polymorphisms in cyt b5 were associated with very low activity and protein expression [51].
All these factors can contribute to interindividual differences in the CYP3A4-mediated pharmacokinetic
profiles of cabozantinib.

Cabozantinib showed generally broader and more potent kinase inhibition compared to its
metabolites. Estimated IC50 of cabozantinib for MET, RET and VEGFR2 are 2, 8 and 14 nM, respectively.
Cabozantinib N-oxide activities against these kinases are 190, >1000 and 140 nM, respectively [18].
Effectiveness of cabozantinib might thus be significantly reduced by CYP3A4-mediated oxidation in
enterocytes and liver cells. This can lead to different anticancer activity and/or adverse effects after
cabozantinib treatment. Cabozantinib could cause many side effects, which require subsequent dose
modification [52]. To better understand the forming of metabolites, kinetics of cabozantinib oxidation
by CYP3A4, the most efficient enzyme oxidizing cabozantinib, was analyzed. All metabolites formed
by CYP3A4 exhibit K0.5 from 9 to 12 µM and very similar VMax. Addition of cyt b5 into the incubation
mixture causes an increase in these parameters. Particularly, K0.5 is approximately three times higher in
the presence of cyt b5. Nevertheless, the change of VMax is up to 6.5-fold higher. These results indicate
that cyt b5 affects the affinity of CYP3A4. Further evidence for the influencing of affinity comes from
changing hyperbolic kinetics into substrate inhibition in the case of cabozantinib N-oxide or vice versa
in the case of desmethyl cabozantinib. Substrate inhibition for the formation of cabozantinib N-oxide
was recently observed with many isoforms of CYP3A4 in the presence of cyt b5 [37]. Another previously
published study claimed that cabozantinib is not the only substrate of CYP3A4 but also a direct inhibitor
of this enzyme with a IC50 value 272 µM (midazolam 1′-hydroxylase), while cabozantinib did not inhibit
CYP3A4-mediated testosterone 6β-hydroxylation [18]. Our results confirm the ability of cabozantinib
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to inhibit CYP3A4; however, the IC50 is higher than the value presented in the above-mentioned
study. With respect to plasma concentration of cabozantinib in patients, it is unexpected for CYP3A4
inhibition by cabozantinib to be observed. Plasma concentration of cabozantinib in metastatic renal
cell carcinoma patients has a mean of 973 ± 501 ng/mL. The range of measured concentrations was 203
to 2100 ng/mL [53]. In patients with thyroid cancers, a therapeutic window between 500–1500 ng/mL
has been proposed for cabozantinib trough levels to ensure an acceptable efficacy/toxicity balance [54].
Metabolites formed by CYP3A4 exhibit K0.5 near 10 µM, thus only at three times higher concentration
than is observed in patients. Because of the lower efficiency of cabozantinib metabolites, extensive
metabolizers may require higher doses, and inducers and inhibitors of CYP3A4 should be avoided or
dose modifications should be considered during cabozantinib treatment.

5. Conclusions

Cabozantinib N-oxide, desmethyl cabozantinib and monohydroxy cabozantinib were identified
as major oxidation products of cabozantinib, the drug used for the treatment of metastatic medullary
thyroid cancer and advanced renal cell carcinoma. CYP3A4 was identified as a prominent cytochrome
P450 forming cabozantinib metabolites, which is responsible for nearly all cabozantinib oxidation in
the human liver. The oxidation of cabozantinib by CYP3A4 is stimulated by cyt b5 and may be prone
to substrate inhibition. Therefore, the presence of CYP3A4 modulators should be considered during
cabozantinib treatment.
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CYP Cytochrome P450
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HPLC High-performance liquid chromatography
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MET Hepatocyte growth factor receptor
POR NADPH:CYP oxidoreductase
RET Rearranged during transfection receptor
TKI Tyrosine kinase inhibitor
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