



Supplementary material

## Vitamin B6 deficiency impairs gut microbiota and its metabolites in rats

## Shyamchand Mayengbam<sup>1</sup>, Faye Chleilat<sup>2</sup> and Raylene A. Reimer<sup>2,3\*</sup>

- <sup>1</sup> Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7; <u>smayengbam@mun.ca</u>
- <sup>2</sup> Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4; Fatima.chleilat1@ucalgary.ca
- <sup>3</sup> Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4; <u>reimer@ucalgary.ca</u>
- \* Correspondence: Raylene A. Reimer, <u>reimer@ucalgary.ca</u>;







**Supplementary Figure 1.** Effect of vitamin B6 levels on food intake of rats fed control, HB6 and LB6 for 6 weeks. Values are mean  $\pm$  SD (n=15-16/group). Values with different superscripts indicate significant differences between groups at the same time points (p < 0.05). HB6, high vitamin B6; LB6, low vitamin B6.







**Supplementary Figure 2.** Cecal microbiota showing significant sex effect for alpha diversity (Shannon index, p=0.009) and beta diversity (p=0.038). n=7-8/group of each sex.







**Supplementary Figure 3.** The effect of vitamin B6 on the relative abundance of the top 20 family levels for male (A) and female (B) rats. \* indicates the taxa that differed between the control and LB6 rats at fdr p-value <0.05 (n=7-8/group of each sex). HB6, high vitamin B6; LB6, low vitamin B6.







**Supplementary Figure 4.** PLS-DA score plot for metabolite features showing a significant sex effect on cecal matter (A): R2Y=0.94, Q2Y=0.89, p<0.05; and serum (B): R2Y =0.83, Q2Y=0.67, p<0.05; n=23-24/group.







**Supplementary Figure 5.** Effect of vitamin B6 on cecal short-chain and branched-chain fatty acid concentrations in rats fed control, HB6, LB6 for 6 weeks. Values are mean ± SD (n=7-8/group of each sex). Values with different superscripts indicate a significant difference between the treatment group within sex (p<0.05). HB6, high vitamin B6; LB6, low vitamin B6.





Supplementary Table 1. Effect of high and low vitamin B6 on body composition at the end of a 6 week feeding period.

|           |                         | Male                    |                         | Female |                         |                        |                         |
|-----------|-------------------------|-------------------------|-------------------------|--------|-------------------------|------------------------|-------------------------|
|           | Control                 | HB6                     | LB6                     |        | Control                 | HB6                    | LB6                     |
| BMC       | 12.4±0.7ª               | 13.2±1.0 <sup>a</sup>   | 9.7±0.5 <sup>b</sup>    |        | 9.6±0.3 <sup>a</sup>    | 8.9±0.6 <sup>a</sup>   | 7.8±0.4 <sup>b</sup>    |
| BMD       | 0.16±0.0                | 0.16±0.0                | 0.16±0.0                |        | 0.16±0.0                | 0.15±0.01              | 0.15±0.01               |
| Fat mass  | $94.9 \pm 19.3^{a}$     | 110.8±30.5 <sup>a</sup> | 34.9±4.2 <sup>b</sup>   |        | 56.8±4.9 <sup>a</sup>   | 46.7±3.6 <sup>b</sup>  | 21.1±3.4 <sup>c</sup>   |
| Lean mass | 395.5±32.3 <sup>a</sup> | 422.9±30.2 <sup>a</sup> | 313.3±30.3 <sup>b</sup> |        | 257.5±29.6 <sup>a</sup> | 259.2±7.2 <sup>a</sup> | 224.7±11.8 <sup>b</sup> |
| HOMA-IR   | 4.2±1.4                 | 4.2±2.2                 | 2.3±1.1                 |        | 1.6±0.4                 | 1.6±0.7                | 1.1±0.7                 |

Values are mean  $\pm$  SD (n=7-8/group of each sex). Values with different superscripts indicate significant differences between groups within the same sex (p<0.05). BMC, bone mineral content; BMD, bone mineral density; HB6, high vitamin B6; LB6, low vitamin B6.





**Supplementary Table 2.** Putatively identified metabolites involved in the significant pathways identified in cecal and serum-linked metabolism with their adducts and mass differences.

| Source | mz                             | KEGG                       | Adducts       | Mass diff      | Pathway                        | Putative metabolites              |
|--------|--------------------------------|----------------------------|---------------|----------------|--------------------------------|-----------------------------------|
| Cecal  | 136.040500                     | C00049                     | M(S34)+H[1+]  | 0.000084483770 | Arginine biosynthesis          | L-Aspartate                       |
|        | 177.104780                     | )4780 C00437 M(Cl37)+H[1+] |               | 0.000139290770 | Arginine biosynthesis          | N-Acetylornithine                 |
|        | 154.049741 C00624 M-H4O2+H[1+] |                            | M-H4O2+H[1+]  | 0.000058133770 | Arginine biosynthesis          | N-Acetyl-L-Glutamate              |
|        | 349.235792                     | C01595                     | M+HCOONa[1+]  | 0.000885565230 | Biosynthesis of unsaturated FA | Linoleate                         |
|        | 301.212653                     | C06427                     | M+Na[1+]      | 0.001203370770 | Biosynthesis of unsaturated FA | Linolenate                        |
|        | 426.153402                     | C00415                     | M-H2O+H[1+]   | 0.001393594230 | Folate biosynthesis            | Dihydrofolate                     |
|        | 358.184051                     | C00504                     | M-HCOOK+H[1+] | 0.001607141770 | Folate biosynthesis            | Folate                            |
|        | 269.114849                     | C00921                     | M-HCOOH+H[1+] | 0.000233989230 | Folate biosynthesis            | Dihydropteroate                   |
| Serum  | 84.080494                      | C00408                     | M-HCOOH+H[1+] | 0.000361257770 | Lysine degradation             | L-Pipecolate                      |
|        | 146.117586                     | C01181                     | M[1+]         | 0.000517661000 | Lysine degradation             | Butyro-betaine                    |
|        | 162.112812                     | C00487                     | M+H[1+]       | 0.000345233230 | Lysine degradation             | Carnitine                         |
|        |                                |                            |               |                | Nicotinate & nicotinamide      |                                   |
|        | 153.065839                     | C05843                     | M+H[1+]       | 0.000014876770 | metabolism                     | 1-Methyl-4-pyridone-3-carboximide |
|        |                                |                            |               |                | Nicotinate & nicotinamide      | N1-Methyl-2-pyridone-5-           |
|        | 175.048303                     | C05842                     | M+Na[1+]      | 0.000449023230 | metabolism                     | carboxamide                       |
|        | 168.065362                     | C00250                     | M+H[1+]       | 0.000157225770 | Vitamin B6 metabolism          | Pyridoxal                         |
|        | 285.988022                     | C00018                     | M+K[1+]       | 0.000672164230 | Vitamin B6 metabolism          | Pyridoxal 5 phosphate             |