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Abstract: Alternaria toxins are emerging mycotoxins that gained considerable interest with increasing
evidence of their existence and toxicological properties. There is limited research and insufficient
data about their in vivo hazardous effects. We designed this study to evaluate histopathological and
genotoxic in vivo impacts of alternariol (AOH) on the parotid gland as well as to assess the competency
of gallic acid (GA) in reversing these effects. Forty healthy adult male Wister rats were utilized and
assigned equally on control, GA, alternariol and AOH+ gallic treated groups. Parotid gland samples
from experimental groups were collected and then examined for histopathological, ultrastructural
and immunohistochemical examination for 4-hydroxynonenal “4-HNE as lipid peroxidation marker”
as well as Comet assay for DNA damage. Additionally, parotid tissue homogenates were tested
for catalase “CAT”, superoxide dismutase “SOD” and malondialdehyde “MDA” levels. Our data
proved that alternariol produced various histopathological and ultrastructural alterations of parotid
acini as well as significant DNA damage, significant reduction of CAT and SOD enzymatic activity
and significant boosting of 4-HNE immunohistochemical expression and MDA levels as compared
to control group. On the other hand, gallic acid administration almost restored histological and
ultrastructural parotid architecture, 4-HNE immune-expression and biochemical levels. Ultimately,
we demonstrated alternariol-induced histopathological and genotoxic alterations on parotid gland as
well as the competency of gallic acid in reversing these effects.
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1. Introduction

Fungi are responsible for producing many toxic metabolites, especially mycotoxins. These fungi
mainly belong to Aspergillus, Penicillium and Alternaria genera [1]. Contagion of agricultural crops by
such fungi causes plant diseases and production of several mycotoxins as aflatoxins by aspergillus [2],
ochratoxin by penicillium [3] and fumonisins, trichothecenes, zearalenone by Fusarium [4]. Mycotoxins
occur naturally in cereals, fruits and vegetables, thus, they can appear in the food chain as a result of
fungal infection of crops, either when they are directly consumed by humans or when they are used as
livestock feed [5]. Alternaria alternata (black rot) are common plant pathogens with an observable ability
to adapt to surrounding environmental conditions. They are found in semidry and humid regions.
They can tolerate lower temperatures; therefore, food refrigerated during storage and transportation
can also be contaminated [6]. They produce more than 70 myco and phytotoxins; the most toxic are
alternariol (AOH), L-tenuazonic acid (TeA), tentoxin (TEN), alternariol monomethylether (AME) and
altenuene (ALT) [7].
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Alternariol is an unavoidable contaminant of fruit, vegetables, such as bell peppers, apple,
mandarin and tomato, and processed fruit products such as juices [8]. Moreover, it has been discovered
in cereals, grain [9] and in nuts and pistachios [10]. Random samples of agricultural foodstuffs in
Europe have been claimed 31% to be contaminated by alternariol. Alternariol concentrations diverge
from 6.3 to 1840 µg/kg [11]. However, alternariol concentrations in stored tomato for 4 weeks at normal
room temperature were elevated to 50 mg/kg [8]. In sunflower seeds, this may reach 1840 µg/kg and
in cereals 4310 µg/kg. Until now, there has been no policy for AOH contamination of food and feed.
Thus, the dietary exposure has to be low (1.9–39 ng/kg/bw/day) [11,12].

In vivo and non-genotoxic effects of Alternaria mycotoxins were not sufficiently estimated;
however, recent studies reported that they act as endocrine disruptors. Alternariol is a diphenolic
compound with structural similarities to natural or synthetic oestrogens. Therefore, it behaves as a
weak estrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway or
block estrogen receptors [13]. On the other hand, estradiol and progesterone production levels in
human adrenocortical carcinoma cells increased in response to alternariol exposure [14].

Nowadays, antioxidants derived from natural sources, especially plants, attracted notable interest
in scavenging reactive oxygen species (ROS). These antioxidants include flavonoids, anthocyanins and
phenolic compounds [15]. Gallic acid (3,4,5-trihydroxybenzoic acid), a naturally occurring versatile
triphenolic compound found in a wide plethora of plants and herbs such as blueberries, walnuts, apples,
flax seed, and also in spices (sumac). It has reported antibacterial and antifungal properties against a
wide range of pathogens, including Escherichia coli, Staphylococcus aureus and Aspergillus [16]. It also
proved to express therapeutic effects such as anti-allergic, anti-inflammatory [17], anti-mutagenic and
anti-carcinogenic [18,19]. In addition, gallic acid was found to ameliorate impaired glucose and lipid
homeostasis in nonalcoholic fatty liver disease [20]. Moreover, Hsu and Yen [21] reported that gallic
acid modified high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress. Furthermore,
Sen et al. [22] proved antioxidant and antiulcerogenic potentials of gallic acid in gastric ulcer.

Only limited data about alternariol in vivo toxic effects are available; however, it has been
implicated in an elevated incidence of esophageal carcinogenesis [11]. Meanwhile, no further
experimental studies have been performed to clarify other possible risks. Hence, we designed this
study to evaluate histopathological and genotoxic in vivo impacts of alternariol on parotid gland,
and to assess the competency of gallic acid in reversing these effects.

2. Materials and Methods

2.1. Chemicals

Alternariol (AOH): 3,7,9-Trihydroxy-1-methyl-6H-dibenzopyran-6-one, as Empirical Formula
from Alternaria sp. (White to Yellow powder, CAS No: 641-38-3). It was purchased from Sigma-Aldrich
(St. Louis, MO, USA).

Gallic acid: 3,4,5-Trihydroxybenzoic acid (White powder, CAS No: 149-91-7). It was purchased
from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Experimental Animals

Forty Wistar rats; adult (7 to 9-week age); male; weighing 200–250 g were obtained from the
Animal House of the Faculty of Medicine, Zagazig University, Egypt. These animals were placed in
plastic cages under normal laboratory conditions with suitable humidity and controlled photoperiod of
12 h-dark and light. They were allowed ad libitum access to food and water. All procedures were done
according to institutional guidelines for the use of experimental animals and approved by IACUC,
Zagazig University (Zagazig, Egypt). All rats received humane care in compliance with the Ethical
Committee of Zagazig University and in accordance with the NIH Guidelines for the Care and Use of
Laboratory Animals (March 2019, No. ZU-IACUC/3/F/66/2019).
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2.3. Experimental Procedure

After 1-week acclimation, rats were parted randomly into four groups (10 rats each):
Group I (control group): continued to drink tap water and standardized diet.
Group II (GA group): received 50 mg/kg gallic acid dissolved in 1 mL saline solution by oral

gavage daily for 14 days [23].
Group III (Alternariol group): received single dose of Alternariol “AOH” mycotoxin 10 mg/kg

dissolved in ethanol and sunflower seed oil by oral gavage [24].
Group IV (AOH+ gallic acid treated group): received single dose of Alternariol 10 mg/kg,

then treated with 50 mg/kg gallic acid by oral gavage daily for 14 days.
At the end of experiment: rats were sacrificed by intraperitoneal thiopental injection 50 mg/kg [25],

parotid specimens were cut; parts of them for histopathological preparation; parts for comet assay and
others were frozen immediately and stored at –80 ◦C until the preparation of tissue homogenates for
biochemical and molecular analyses.

2.4. Histopathological Study

2.4.1. Haematoxylin and Eosin (H&E) Stain

Specimens for light microscopy were fixed in 10% saline formalin and processed to prepare
5-µm-thick paraffin sections for H&E stain [26].

2.4.2. Immunohistochemical Study

Avidin biotin complex (ABC) method (Dako ARK™, Peroxidase, Code No. K3954, Dako, Glostrup,
Denmark) is the method used for Immunohistochemical staining of 4-hydroxynonenal (4-HNE) as a
lipid peroxidation marker. Removal of wax and hydration of paraffin sections were the beginning points
of the procedure. Antigen recovery was then performed by using citrate buffer. Tissues block was done
by bovine serum albumin. Then, sections were incubated with the specific primary antibody overnight
(4 ◦C): anti-4-hydroxynonenal (4-HNE) antibody (mouse monoclonal antibody; No. ab48506; dilution
1/200; Abcam, Cambridge, UK). Recognition was performed by secondary antibodies and labeled
horseradish peroxidase, after that; colorimetric detection by 3, 3′-diaminobenzidine (DAB). Tissues
were counterstained with hematoxylin. Negative control sections were put in phosphate-buffered
saline instead of the primary antibody. Under light microscopes; the brown-color indicated the antigen
site [27].

2.5. Ultrastructure Study

Fixation of the specimens was done by phosphate-buffered glutaraldehyde (pH 7.4), and post
fixation by 1% osmium tetroxide at 4 ◦C; then, dehydration and embedding in epoxy resin occurred.
Cutting by (Leica ultra-cut UCT), staining was performed by uranyl acetate and lead citrate [28].
Examination and photography using (JEOL JEM 1010 transmission electron microscope; Jeol Ltd., Tokyo,
Japan) in the Regional Center of Mycology and Biotechnology (RCMB), Al-Azhar University, Egypt.

2.6. Alkaline Single Cell Gel Electrophoresis (Comet Assay)

Parotid specimens from each rat were taken and kept in physiological saline (0.9% NaCl) at −20◦C
and 10% dimethyl sulfoxide (DMSO) for cryopreservation until used for the comet assay to determine
the extent of DNA damage [29].

The Animal Reproductive Research Institute (ARRI) of Agricultural Research Centre of Ministry of
Agriculture and Land Reclamation, Egypt was the place where the comet assay was done. pH condition
was >13 according to the method of [30], which is shortened as follows:

Crushed samples of 0.5 g each were put in 1 mL ice-cold PBS. The formed cell suspension (100 µL)
was mixed with 600 µL of low-melting agarose (0.8% in PBS). Spreading on pre-coated slides was
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performed. Then, the slides were put in lyses buffer (0.045 M TBE, pH 8.4, containing 2.5% SDS).
After that, they were exposed to electrophoresis containing the same TBE “Tris/Borate/EDTA” buffer,
but devoid of SDS “sodium dodecyl sulfate”. The slides then were stained by ethidium bromide
20 µg/mL at 4 ◦C. DNA fragments of 100 cells for each dose level were examined with a fluorescence
microscope using 20× objective lens. Measuring tail lengths was done from the center of the nucleus to
the end of the tail, with a 40× increase for the count, after which the comet size was measured.

We used Comet 5 image analysis software for the quantitation of SCGE data. This was developed
by Kinetic Imaging, Ltd. (Liverpool, UK) linked to a CCD camera. It measures the extent of DNA
damage in the cells (50 to 100 randomly selected cells are analyzed per sample) and tail moment.

2.7. Biochemical Analysis of Tissue Antioxidant Enzymes

Homogenates of the tissues were placed in cold ice 0,1 M Tris–HCl buffer (pH 7.4). These were
centrifuged at 8000× g for 30 min at 4 ◦C to get rid of the cell debris. The antioxidant enzymes Catalase
(CAT) and Superoxide dismutase (SOD), as well as malondialdehyde (MDA), the lipid peroxidation
marker, were caught in the supernatant by the aid of commercial kits (Bio Diagnostic Company, Dokki,
Giza, Egypt). The results were expressed as U/mg protein.

2.8. Morphometric Study

The data were investigated by Leica QWin 500 software using digital camera linked to an optical
microscope (Olympus, Tokyo, Japan). Area percent/20 mm2 frames at 400×magnification for positive
(4-HNE) immune reactions was performed. Ten non-overlapping fields were randomly selected and
investigated from each rat in each group by examiner who was ignorant about the experiment.

2.9. Statistical Analysis

SPSS statistical software version 20 was used to analyze the data. Values were expressed as
means ± standard error of means (SEM). ANOVA test followed by Tukey’s post-hoc test was used.
The probability values (p) less than 0.05 were thought to be significant and it will be highly significant
with p values less than 0.001.

3. Results

3.1. Histopathological Results

Examinations of group I and II revealed similar results. Only morphological results of group I
were presented.

3.1.1. Light Microscope Results

Histological results of H&E-stained sections of parotid gland of control group revealed that the
glandular parenchyma was arranged in typical lobular structures containing serous acini and ducts.
These acini had central lumen and were seen lined by pyramidal cells. The lining epithelium of
intralobular ducts was cuboidal (Figure 1A). The alternariol treated group displayed widely separated
acini by thick connective tissue and congested blood vessels (Figure 1B,C). Acini appeared disorganized
with a reduction or disappearance of the central lumen, their epithelial lining revealed dark pyknotic
nuclei. Many dilated interlobular ducts and cellular infiltration also appeared (Figure 1D). Many
vacuoles appeared in the acinar cells, cytoplasm and displaced the nuclei peripherally (Figure 1E).
Some acini have dividing nuclei indicating mitosis and others contain large sized nuclei (Figure 1F).
The parotid gland of the recovery group showed acini with well-demarcated edges. However, some
acini had dark nuclei, while others still appeared to have dividing nuclei, indicating mitosis (Figure 1G).
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Figure 1. Haematoxylin and Eosin stained sections in parotid tissue of albino rats of the study groups 
show: Control group: (A) The lobular pattern of parotid glandular parenchyma with its serous acini 
(a) that are lined by pyramidal-shaped cells with rounded basal nuclei (arrow). The interlobular ducts 
(id) are lined with cubical epithelium (curved arrow). Alternariol group: (B) Thick connective tissue 
septa containing many fibers (CT) are observed between lobes. (C) large congested blood vessels (Bv) 
appeared in the septa. (D) disorganized acini with a reduction or disappearance of the central lumen 
(*). Dark pyknotic nuclei appeared in the epithelial lining the acini (arrows). Many dilated interlobular 
ducts (d) and cellular infiltration (if) are also seen. (E) The cytoplasm of the acinar cells showed 
variable sized vacuoles (v) that displace the nuclei more peripherally (zigzag arrow). (F) some acini 
have dividing nuclei indicating mitosis (arrow head) and others contain large sized nuclei (crossed 
arrow). AOH+ gallic acid group: (G) Most of the acini exhibit well-demarcated edges (a). However, 
some acini had dark nuclei, while others still appeared to have dividing nuclei indicating mitosis 
(arrow head). Some cells appeared with few vacuoles (v). 

3.1.2. Immunohistochemical Results 

Immunohistochemically stained sections for (4-HNE) antibodies in the parotid of the control 
group revealed weak positive cytoplasmic reaction in parotid acinar cells (Figure 2A). The alternariol 
treated group showed stronger positive immunoreactions (Figure 2B); however, gallic acid treated 
group revealed moderate immunoreactions compared to treated group (Figure 2C). 
  

Figure 1. Haematoxylin and Eosin stained sections in parotid tissue of albino rats of the study groups
show: Control group: (A) The lobular pattern of parotid glandular parenchyma with its serous acini (a)
that are lined by pyramidal-shaped cells with rounded basal nuclei (arrow). The interlobular ducts
(id) are lined with cubical epithelium (curved arrow). Alternariol group: (B) Thick connective tissue
septa containing many fibers (CT) are observed between lobes. (C) large congested blood vessels (Bv)
appeared in the septa. (D) disorganized acini with a reduction or disappearance of the central lumen
(*). Dark pyknotic nuclei appeared in the epithelial lining the acini (arrows). Many dilated interlobular
ducts (d) and cellular infiltration (if) are also seen. (E) The cytoplasm of the acinar cells showed variable
sized vacuoles (v) that displace the nuclei more peripherally (zigzag arrow). (F) some acini have
dividing nuclei indicating mitosis (arrow head) and others contain large sized nuclei (crossed arrow).
AOH+ gallic acid group: (G) Most of the acini exhibit well-demarcated edges (a). However, some acini
had dark nuclei, while others still appeared to have dividing nuclei indicating mitosis (arrow head).
Some cells appeared with few vacuoles (v).

3.1.2. Immunohistochemical Results

Immunohistochemically stained sections for (4-HNE) antibodies in the parotid of the control
group revealed weak positive cytoplasmic reaction in parotid acinar cells (Figure 2A). The alternariol
treated group showed stronger positive immunoreactions (Figure 2B); however, gallic acid treated
group revealed moderate immunoreactions compared to treated group (Figure 2C).
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serous acini covered by pyramidal cells holding euchromatic rounded nuclei with apparent nucleoli. 
Microvilli were projecting to the lumina. Rough endoplasmic reticula were abundant in the 
cytoplasm (Figure 3A). Electron-dense secretory granules and few electron-lucent granules were 
observed (Figure 3B). The cells were strictly interdigitated at their lateral borders and enclosed by 
intact basement membrane. (Figure 3C). 
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acini with pyramidal shaped cells which contained euchromatic rounded nuclei (N), prominent 
nucleoli (n) and rough endoplasmic reticulum (rer). Microvilli (arrow head) of the acinar cells 
appeared at the luminal surface (lu). (B) Electron-dense granules (d) and electron-lucent granules (L) 
(C) Serous acini with their lumen (lu); they are lined by pyramidal shaped cells with euchromatic 
nuclei (N) and intact basement membrane with interdigitations (arrow). 

The ultra-thin sections of the parotid gland of AOH group revealed several forms of 
degeneration in the serous acinar cells in the form of rarefied cytoplasm and cytoplasmic vacuoles, 
dark heterochromatic irregular shrunken nuclei. Some cells had electron dense secretory granules 
and others had electron lucent granules, some of them are huge in size (Figure 4A,B). Some cells 
contain residual bodies (Figure 4C), other cells contain double nuclei (Figure 4D). Some acinar cells 
had wide lumina, others had dilated irregular rough endoplasmic reticulum, deformed mitochondria 
and numerous large cytoplasmic vacuoles (Figure 4E,F). Widening of intercellular spaces was seen 

Figure 2. Immunohistochemically stained sections in the parotid of albino rats of different groups.
Cytoplasmic immune reaction for 4-hydroxynonenal (4-HNE) (A) Control group (weak positive reaction
“arrow”) (B) Alternariol group (stronger positive reaction “arrow”) (C) AOH+ gallic treated group
(moderate reaction “arrow”).

3.2. Electron Microscope Results

The ultra-thin sections of the control group revealed that the parotid gland appeared containing
serous acini covered by pyramidal cells holding euchromatic rounded nuclei with apparent nucleoli.
Microvilli were projecting to the lumina. Rough endoplasmic reticula were abundant in the cytoplasm
(Figure 3A). Electron-dense secretory granules and few electron-lucent granules were observed
(Figure 3B). The cells were strictly interdigitated at their lateral borders and enclosed by intact basement
membrane. (Figure 3C).
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Figure 3. Electron microscope sections in parotid tissue of albino rats of the control group: (A) serous
acini with pyramidal shaped cells which contained euchromatic rounded nuclei (N), prominent nucleoli
(n) and rough endoplasmic reticulum (rer). Microvilli (arrow head) of the acinar cells appeared at the
luminal surface (lu). (B) Electron-dense granules (d) and electron-lucent granules (L) (C) Serous acini
with their lumen (lu); they are lined by pyramidal shaped cells with euchromatic nuclei (N) and intact
basement membrane with interdigitations (arrow).

The ultra-thin sections of the parotid gland of AOH group revealed several forms of degeneration in
the serous acinar cells in the form of rarefied cytoplasm and cytoplasmic vacuoles, dark heterochromatic
irregular shrunken nuclei. Some cells had electron dense secretory granules and others had electron
lucent granules, some of them are huge in size (Figure 4A,B). Some cells contain residual bodies
(Figure 4C), other cells contain double nuclei (Figure 4D). Some acinar cells had wide lumina, others
had dilated irregular rough endoplasmic reticulum, deformed mitochondria and numerous large
cytoplasmic vacuoles (Figure 4E,F). Widening of intercellular spaces was seen with many collagen
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fibers (Figure 4G). Many inflammatory cells as mast cells with many secretory granules were seen
(Figure 4H).

1 
 

 
Figure 4. Electron microscope sections in parotid tissue of albino rats of the Alternariol group: (A) acinar
cells with rarified cytoplasm (r). Heterochromatic irregular shrunken nuclei (HN). Electron dense
secretory granules (d), electron lucent granules (L). (B) Huge granules (HL), cytoplasmic vacuoles (V).
(C) Some cells contain residual bodies (rb). (D) Other cells contain double nuclei (NN). (E) Dilated,
irregular, rough endoplasmic reticulum (rer), electron dense secretory granules (d) and wide acinar
lumen (WL). (F) Deformed mitochondria (m) and dilated, irregular, rough endoplasmic reticulum (rer).
(G) Widening of intercellular spaces (double arrows) with many collagen fibers (co). (H) Mast cells
with many secretory granules (zigzag arrow) and collagen fibers (co).

The ultra-thin sections of the parotid gland of AOH+ gallic acid group disclosed normal acinar
structure covered by pyramidal cells having euchromatic nuclei. Their cytoplasm hold abundant small,
dense granules, rough endoplasmic reticulum and few vacuoles (Figure 5A,B).
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Figure 5. Electron microscope sections in parotid tissue of albino rats of the AOH+ Gallic acid group:
(A) serous acini are lined with pyramidal-shaped cells with euchromatic nuclei (N) and small, dense
granules (d). (B) Rough endoplasmic reticulum (rer). Few acinar cells have cytoplasmic vacuoles (v).

3.3. Results and Statistical Analysis of Comet Assay

The present study tested the in vivo genotoxic potential of alternariol in rats using the single
cell gel electrophoresis (comet assay). The control specimens revealed normal condensed nuclei and
undamaged cells of control group (Figure 6A). Group (III) shows abnormal tailed nuclei and damaged
cells (Figure 6B). Group (IV) shows some tailed nuclei together with the undamaged cells (Figure 6C).
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Figure 6. Comet assay of acinar cells of the parotid of adult male albino rats of study groups. (A) Control
group, normal condensed type nuclei and undamaged cells (arrow head). (B) AOH group, abnormal
tailed nuclei and damaged cells (arrow). (C) AOH+ gallic group, some cells with tailed nuclei (arrow)
and other are normal (arrow head).

3.4. Morphometric Results

Our statistically analyzed results for area (%) of positive (4-HNE) immune reactions were
summarized in (Table 1).
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Table 1. The area percent of anti-4-HNE immune stained sections in different groups.

Group Area Percent (Mean ± SD) ANOVA LSD POST Hoc Test (Compared to Control Group)

Control group I 4.69 ± 0.43
0.000Alternariol group III 15.52 ± 0.74 a 0.000

Gallic + AOH group IV 5.12 ± 0.62 b 0.086

Values are presented as mean ± SD. a Significant as compared to control. b Non-significant as compared to control.

The parameters used to measure DNA damage in the cells were the following: % of tailed nuclei,
tail length (length of DNA migration), tail DNA % (percentage of migrated DNA in the tail) and unit
tail moment (correlation between tail length and tail DNA %) (Table 2). Alternariol treated group (II)
showed a significant increase in % of tailed nuclei, tail length, tail DNA % and unit tail moment of
nuclei of acinar cells compared with the nuclei of both control (I) and gallic acid (IV) groups.

Table 2. Statistical comparison of Comet assay results in different groups.

Group COMET % (Mean ± SD) ANOVA LSD POST Hoc Test (Compared to Control Group)

Control group I 9.9 ± 2.7
0.000Alternariol group III 16.6 ± 5.3 a 0.000

Gallic+ AOH group IV 11.7 ± 4.7 b 0.021

TAIL LENGTH (Mean ± SD)

Control group I 5.68 ± 1.9
0.000Alternariol group III 3.84 ± 0.9 a 0.011

Gallic+ AOH group IV 5.13 ± 1.1 b 0.045

TAIL DNA % (Mean ± SD)

Control group I 9.51 ± 1.4
0.000Alternariol group III 10.58 ± 1.7 a 0.034

Gallic+ AOH group IV 9.65 ± 1.5 b 0.142

TAIL MOMENT (Mean ± SD)

Control group I 0.48 ± 0.09
0.000Alternariol group III 0.62 ± 0.13 a 0.014

Gallic+ AOH group IV 0.51 ± 0.11 b 0.236

Values are presented as mean ± SD. a Significant as compared to control. b Non-significant as compared to control.

3.5. Biochemical Results

Assessment of the activities of CAT, SOD and MDA revealed a significant decrease in group III
compared with group I and IV (Table 3).

Table 3. Malondialdehyde (MDA), Catalase (CAT) and superoxide dismutase (SOD) and activity in
different groups.

Group MDA (Mean ± SD) ANOVA LSD POST Hoc Test (Compared to Control Group)

Control group I 9.1 ± 4.3
0.000Alternariol group III 19.3 ± 6.7 a 0.000

Gallic + AOH group IV 10.7 ± 5.4 b 0.042

CAT (Mean ± SD)

Control group I 0.49 ± 0.03
0.023Alternariol group III 0.31 ± 0.01 a 0.012

Gallic+ AOH group IV 0.47 ± 0.02 b 0.134

SOD (Mean ± SD)

Control group I 22.19 ± 1.12
0.000Alternariol group III 9.38 ± 4.59 a 0.000

Gallic+ AOH group IV 20.47 ± 1.19 b 0.078

Values are presented as mean ± SD. a Significant as compared to control. b Non-significant as compared to control.
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4. Discussion

As Alternaria toxins now represent emerging mycotoxins with increasing evidence of their
existence and toxicological properties, they gained considerable interest. Humans especially children
and vegetarians are daily exposed two- to three-fold higher to Alternaria toxins according to the
European Food Safety Authority (EFSA) assessment of the human dietary exposure of Alternaria
toxins [31]. Alternaria toxins have been investigated at in vitro scale by several research studies over
the past decade. However, insufficient data are available about their in vivo hazardous effects [12].

Gastrointestinal organs are thought to be the most liable to harmful alternariol consequences [32].
Homeostasis of oral cavity depends mainly on salivary glands as saliva is responsible for fighting
microbes, maintaining pH and carbohydrates catalysis in the mouth [33]. The most common way of
Alternariol toxicity is the oral way through food, after which it can be absorbed by enterocytes [24].
The experimental model of oral gavage, utilized in this work, declared the Alternariol intake by
food consumption.

Our histopathological examination of Alternariol (AOH) treated group revealed parenchymal
disorganization of parotid acini, ultrastructural examination confirmed these results; it demonstrated
several forms of degeneration in the serous acinar cells and widening of intercellular spaces with many
collagen fibers. Fernández-Blanco et al. [34] and Tiessen et al. [35] attributed cellular degenerative insult
of AOH to induction of ROS generation, with a suggested provenance of this ROS production being
through AOH metabolism. Burkhardt et al. [36] elucidated this assumption, they documented that AOH
undergo aromatic hydroxylation by CYP450 enzymes and phase 1 metabolism enzymes generating
both reactive catechols and hydroquinone. It is well-established that such reactive semiquinones and
quinones go through a redox cycling process resulting in the generation of ROS [37].

The results of our work provide evidence that AOH induces various cyto-degenerative changes
in parotid acini of group III; we reported several vacuoles that appeared in the acinar cells’ cytoplasm
that displaced the nuclei peripherally. Ultrastructural picture clarified these results; numerous large
cytoplasmic vacuoles, irregularly dilated rough endoplasmic reticulum and whopping electron lucent
granules affected acinar cells exposed to AOH treatment. Ambudkar [38] explained these results as
ROS induce damage of selective lipid raft domains (LRDs) of plasma membrane including caveolin1
which significantly increases Ca2+ influx into acinar cells. In turn, this increases intracellular Na+ influx
into the cell [39]. Synchronously, the rise in intra-acinar Ca2+ regulates the insertion of AQP5 water
channels into the apical plasma membrane, thus substantially increasing water tension and distention
of rough endoplasmic reticulum “RER” cisternae. Furthermore, the redox cycling process induced
by AOH and subsequent ROS generation [40] directly alter acinar lysosomal membranes. Sohar et
al. [41] confirmed that disruption of lysosomal membranes favors leakage of damaging lysosomal
exoglycosidase, which is synthesized by epithelial cells of salivary ducts.

We observed that AOH induced various pro-inflammatory morphological responses; parotid acini
were widely separated by thick connective tissues, congested blood vessels and cellular infiltrations
with different inflammatory cells such as mast cells with many secretory granules and plasma cells
with heterochromatic nuclei and prominent RER. These findings were in line with Solhaug et al. [42],
who reported significant upregulation of inflammatory cytokines TNFα and IL-6 mRNA expression in
RAW 264.7 mouse macrophages. Bansal et al. [43] confirmed AOH inflammatory potential in skin;
it induced hyperplasia, enhanced prostaglandin E2 and cAMP production side by side with increased
COX-2, cyclin D1 and prostanoid EP2 receptor expression in mouse keratinocytes.

Notably, we observed that AOH elicited variable nuclear responses in light microscope slides;
some nuclei appeared small and pyknotic, others were actively dividing nuclei. Ultrastructurally,
some acinar cells contained large sized nuclei, whereas others had heterochromatic irregular shrunken
nuclei. These findings were in line with Schrader et al. [44] and Solhaug et al. [45], who studied AOH
effects on nuclear morphology in mouse macrophages; they reported large G2 nuclei, few true mitotic
cells, several abnormally shaped nuclei, chromatid breaks, kinetochore-negative micronuclei and
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abnormal Aurora B bridges suggesting interfered cytokinesis, which could also explain abnormally
large sized nuclei.

For the past decade, researchers focused mainly on the in vitro mutagenic potentials of AOH.
Therefore, we sought to explore the in vivo genotoxic potential of AOH via comet assay. Our results
proved alternariol-induced DNA damaging effect in parotid acini, as it revealed a significant increase
in percentage of tailed nuclei, tail length, tail DNA % and unit tail moment of nuclei of acinar cells
compared with that of the control group. These findings were in accordance with Lehmann et al. [13],
who evidenced AOH related inhibition of DNA synthesis and cell proliferation, and Brugger et al. [46],
who reported changes in the hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene locus in
mouse lymphoma cells. Interestingly, DNA damaging events included phosphorylation of histone
H2AX and check point kinase-1 in addition to turning on of p53 and subsequent increase of p21 [40].
Several mechanisms are involved in alternariol DNA damaging effects; however, AOH oxidative
pathway and interaction with DNA topoisomerase remain the benchmarks [34]. Fleck et al. [47] reported
that AOH- induced reactive catechols react covalently with DNA forming depurinating adducts at the
N-7 of guanine and the N-3 of adenine. Tiessen et al. [48] added that AOH exposure induced complex
distributions of γH2AX histones which are paramount biomarkers of DNA double strand breaks
(DSBs) and strong indicator that AOH-induced DSBs are important triggering signals for G2 arrest
and autophagy [49]. AOH has been proved as a DNA topoisomerase poison with certain selectivity
for its IIa isoform [50]. DNA topoisomerases are mainly required for rejoining of the phosphodiester
bonds of DNA strands during the final stages of DNA replication. Somma et al. [51] reported
that AOH establishes stabilized covalent topoisomerase–DNA intermediates, besides inhibiting its
catalytic activity.

Gallic acid was used in the present study, since earlier research featured its role as an
extremely potent natural antioxidant [52]. Our histopathological and ultrastructural results proved
considerable restoration of parotid cyto-architecture after gallic acid treatment of AOH-induced
changes. Interestingly, we reported significant decrease in percentage of tailed nuclei and other
DNA parameters in nuclei of acinar cells after gallic treatment compared with the nuclei of AOH
group. The potency of gallic acid as paramount antioxidant owes to three principle features; free
radical scavenging activity, maintenance of endogenous antioxidant defense system and prevention of
lipid peroxidation. Marino et al. [53] reported GA scavenging efficiency as compared to melatonin,
sesamol, protocatechuic acid and capsaicin. In accordance with our results, Reckziegel et al. [54] and
Ghaznavi, et al. [55] confirmed GA-induced elevated levels of SOD and CAT, which reported substantial
improvement after GA treatment. The observable amelioration of AOH-induced inflammatory cellular
infiltrations in GA group suggests its anti-inflammatory properties. These results were in line with
Ahn et al. [56] who proved that GA suppressed prostaglandin E2 (PGE2), TNF-α, IL-1β and NF-κB
expression in RAW264.7 macrophages.

4-hydroxynonenal (4-HNE) is α,β-unsaturated hydroxyalkenal generated by peroxidation of n-6
polyunsaturated fatty acid, it is a stable product of lipid peroxidation that acts as a key mediator of
oxidative stress-induced cytotoxic effects [57]. We investigated lipid peroxidation status via 4-HNE
immunohistochemical expression in parotid acini. We reported significant increase of area percent of
4-HNE expression in AOH treated group in comparison to a control one. Interestingly, MDA levels in
parotid tissue homogenates were also substantially elevated. Sadhu et al. [58] explained these results;
they claimed that AOH-induced nitric oxide elevation is a key mediator of lipid peroxidation and
induced cell death. On the contrary, our results asserted gallic acid mediated significant reduction of
both area percent of 4-HNE expression and MDA levels in parotid acini. These results were in line
with Akinrinde and Adebiyi [59], who proved GA mediated neuroprotection via reduction of NO and
lipid peroxidation products levels in the brain.

Taken together, our data demonstrated alternariol-induced in vivo histopathological and genotoxic
alterations on parotid gland. Furthermore, they proved the competency of gallic acid in reversing
these effects.
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