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Abstract: Healthy kidneys are important for the efficient regulation of metabolism. However, there is
an ever increasing population of patients suffering from both acute and chronic kidney diseases that
disrupt this homeostasis. This review will explore the emerging roles that interleukin 6 (IL-6) cytokine
family members play in the pathogenesis of kidney disease. The IL-6 family of cytokines are involved
in a diverse range of physiological functions. In relation to kidney disease, their involvement is
no less diverse. Evidence from both preclinical and clinical sources show that IL-6 cytokine family
members can play either a deleterious or protective role in response to kidney disease. This appears
to be dependent on the type of kidney disease in question or the specific cytokine. Current attempts
to use or target IL-6 cytokine family members as therapies of kidney diseases will be highlighted
throughout this review. Finally, the involvement of IL-6 cytokine family members in kidney disease
will be presented in the context of three regularly overlapping conditions: obesity, hypertension
and diabetes.
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1. Introduction

As a pleiotropic cytokine, interleukin 6 (IL-6) is involved in a broad spectrum of biological
events including, but not limited to (i) inflammation, which is a response to infections and damage
in which the host defense eliminates the offending agents; (ii) glucose metabolism, which is the
production and utilisation of glucose and (iii) haematopoiesis, which is the formation of blood
cells [1]. All of these biological events are in some way shaped by the influence of IL-6 family
cytokine signalling. Aside from IL-6, members of the IL-6 cytokine family include interleukin-11
(IL-11), leukaemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF),
cardiotrophin-1 (CT-1), cardiotrophin-like cytokine factor (CLCF-1) and granulocyte colony-stimulating
factor (G-CSF) [2]. While there is overlap in the functions that IL-6 and its family members participate
in, they are also involved in a diverse range of physiological (natural state) and pathophysiological
(disease state) functions that are distinct from each other [3]. For example, the physiological process of
osteoclast formation is one that is promoted by a number of IL-6 cytokine family members, including
IL-6, IL-11, OSM and CT-1 [3]. On the other hand, a pathophysiological event such as the activation of
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T helper 17 cell populations (involved in the clearance of pathogens at mucosal surfaces) is promoted
by IL-6 and IL-11, but inhibited by OSM activity [4,5].

IL-6 cytokine family members have been found to be elevated in the renal tissue of patients with
kidney diseases, including diabetic nephropathy, glomerulonephritis and obstructive nephropathy.
Cells of the kidney that express and secrete IL-6 cytokine family members include podocytes,
endothelial cells, mesangial cells and tubular epithelial cells. In these cell types, IL-6 cytokine family
member signalling can promote cell proliferation, impact differentiation or increase tubulointerstitial
fibrosis [3]. In this review, we discuss the evidence from patient and preclinical models of kidney
disease that shows the involvement of IL-6 cytokine family members in the pathology of these renal
conditions. We also explore the possibilities of targeting IL-6 cytokine family signalling as viable
therapies for the treatment of a range of kidney diseases, as elevated levels IL-6 cytokine family
members is a common feature of these diseases. Therapeutic strategies being examined include
monoclonal antibodies and fusion proteins to inhibit IL-6 cytokine family signalling.

2. IL-6 Cytokine Family Members

The IL-6 cytokine family is a group of cytokines that possess a similar four-helical bundle structure
and share a common signalling subunit in glycoprotein (gp130) [6]. The sharing of the gp130 receptor
allows for some redundancy between the cytokine family members [7]. While gp130 is expressed
on all cells, the receptors for the individual IL-6 cytokine family members are cell specific, which
restricts the cell types that respond to these cytokines, as gp130 alone is unable to bind the cytokines [6].
Renal tissue cells may express specific IL-6 cytokine family member receptors but in those that do
not, IL-6 cytokine family signalling relies on the ubiquitously expressed gp130 beta receptor and a
combination of the soluble alpha receptors. Signalling pathways induced by IL-6 cytokine family
members include signal transducers and activators of transcription (STAT), mitogen-activated protein
kinase (MAPK) and phosphoinositide 3-kinase (PI3K) [8]. The IL-6 cytokine family members exhibit a
multitude of both beneficial and pathogenic consequences; hence, why they may be referred to as a
“double-edged sword” [9]. Quite often the pathogenic outcomes result due to the signalling surpassing
a critical threshold [10]. For example, IL-6 expression increases with the severity of an injury to the
kidney, promoting the damaging inflammatory response, but also protecting the kidney from further
acute injury by acting via its soluble receptor [10]. The following is a list of IL-6 cytokine family
members and their respective binding partners.

2.1. Interleukin-6

Originally identified in 1986, IL-6 target cells include lymphocytes, myeloid cells, epithelial
cells and hepatocytes, to mention a few [4,11]. IL-6 binds to dimers of the IL-6 receptor (IL-6R) and
gp130, as well as a soluble version of the IL-6R (Figure 1). IL-6 binding to the IL-6R/gp130 dimer is
considered classic signalling, which results in an anti-inflammatory response [12]. Trans-signalling is
when IL-6 interacts with the soluble IL-6R/gp130 dimer and initiates a pro-inflammatory response [12].
Soluble IL-6R is generated by alternative splicing, proteolytic release of the ectodomain of the
membrane-bound IL-6R or through shedding, which can be triggered by a multitude of factors
including the depletion of cellular cholesterol [13]. Therapies, such as the sgp130Fc protein, have been
developed that target soluble IL-6R trans-signalling and may be beneficial in treating various kidney
diseases, which will be discussed in more detail later [14].
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Figure 1. IL-6 signalling. IL-6 can signal by first binding to the membrane bound IL-6R or soluble IL-
6R (sIL-6R). After recruitment of the gp130 receptors, Janus kinase (JAK)/STAT signalling occurs on 
the intracellular domains of the gp130 receptors. Suppressor of cytokine signalling-3 (SOCS-3) can 
inhibit JAK/STAT signalling on the gp130 receptors by binding the Src Homology Phosphatase 2 
(SHP2)/Tyrosine (Tyr)759 binding sites. 

2.2. Interleukin-11 

IL-11 was first discovered being expressed in an immortalized primate bone marrow-derived 
stromal cell line and subsequently identified in lung fibroblasts and chondrocytes where it plays a 
role in haematopoiesis, adipogenesis, neuronal differentiation and bone metabolism [15,16]. Elevated 
levels of IL-11 have been observed in a variety of cancers, including primary ovarian carcinoma, 
prostate carcinoma, breast cancer and colorectal carcinoma, where it is believed to drive cell 
proliferation, invasiveness and metastatic potential [16]. IL-11 binds to dimers of either IL-11Rα and 
gp130 or IL-11Rβ and gp130 [2]. 

2.3. Leukaemia Inhibitory Factor 

LIF was independently cloned by multiple groups and is predominantly expressed in T cells, 
activated monocytes, fibroblasts and umbilical cord vein endothelial cells [17]. Studies have identified 

Figure 1. IL-6 signalling. IL-6 can signal by first binding to the membrane bound IL-6R or soluble
IL-6R (sIL-6R). After recruitment of the gp130 receptors, Janus kinase (JAK)/STAT signalling occurs
on the intracellular domains of the gp130 receptors. Suppressor of cytokine signalling-3 (SOCS-3)
can inhibit JAK/STAT signalling on the gp130 receptors by binding the Src Homology Phosphatase 2
(SHP2)/Tyrosine (Tyr)759 binding sites.

2.2. Interleukin-11

IL-11 was first discovered being expressed in an immortalized primate bone marrow-derived
stromal cell line and subsequently identified in lung fibroblasts and chondrocytes where it plays a role
in haematopoiesis, adipogenesis, neuronal differentiation and bone metabolism [15,16]. Elevated levels
of IL-11 have been observed in a variety of cancers, including primary ovarian carcinoma, prostate
carcinoma, breast cancer and colorectal carcinoma, where it is believed to drive cell proliferation,
invasiveness and metastatic potential [16]. IL-11 binds to dimers of either IL-11Rα and gp130 or
IL-11Rβ and gp130 [2].
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2.3. Leukaemia Inhibitory Factor

LIF was independently cloned by multiple groups and is predominantly expressed in T cells,
activated monocytes, fibroblasts and umbilical cord vein endothelial cells [17]. Studies have identified
numerous biological roles for LIF, including a vital role in reproduction, bone remodelling, regeneration
of neuronal and skeletal muscle cells in response to injury and protection of cardiomyocytes from
injury [18]. LIF signals via a dimer of LIFR and gp130 [6].

2.4. Oncostatin M

OSM was initially discovered in the conditioned medium of histiocytic lymphoma cells that
had been treated with phorbol 12-myristate 13-acetate [19]. Expression of OSM has been detected in
monocytes, macrophages, neutrophils and T cells [20]. OSM has been found to act on hematopoietic
cells, hepatocytes, cardiomyocytes and neurons [2]. Biological functions that have been attributed to
OSM activity include haematopoiesis, bone turnover, lipid storage modulation, central nervous system
development and liver regeneration [21]. OSM is able to signal through a dimer of either OSMR and
gp130 or LIFR and gp130 [21].

2.5. Ciliary Neurotrophic Factor

Human CNTF was cloned from a human genomic library and mainly targets neurons and skeletal
muscle cells, promoting their growth and regeneration [2,22]. Immunohistochemistry has identified
CNTF expression in osteoblasts, osteocytes, osteoclasts and chondrocytes, where it is involved in
bone metabolism [23]. The systemic administration of CNTF has been trialled as a treatment to
promote weight-loss as CNTF has been shown to target multiple cell types involved in metabolism [24].
CNTF can affect satiety by acting on the hypothalamus, increasing insulin sensitivity in adipocytes
and regulating glucose uptake in skeletal muscle [23]. CNTF primarily binds to a dimer of CNTFR and
gp130. However, it is also capable of binding to a complex of IL-6R, gp130 and LIFR, although with a
lower affinity [6].

2.6. Cardiotrophin-1

CT-1 was first identified in a model of cardiac hypertrophy and is predominantly expressed
in cardiac myocytes, where it protects against apoptosis and induces cardiac hypertrophy [25,26].
Roles for CT-1 in the development and protection of nervous tissue, as well as the regulation of body
weight and intermediate metabolism, have also been identified [25]. Currently, CT-1 does not have a
unique receptor associated with it and binds to the dimer of LIFR and gp130 [2].

2.7. Cardiotrophin-Like Cytokine Factor-1

In 1999, CLCF-1 was discovered by two distinct methods, in a cDNA library screen of activated
Jurkat human T-cell lymphoma cells and computationally from a large EST database [27]. Based on
current evidence, including expression patterns, it is believed that CLCF-1 is involved in development;
in particular, the development of the autonomic nervous system [28]. Like CT-1, it does not have a
unique receptor and instead interacts with either dimers of LIFR and gp130 or CNTFR and gp130 [6].
It can also be secreted and form a complex with soluble CNTFR or cytokine receptor-like factor-1
(CRLF-1) [27].

2.8. Granulocyte Colony-Stimulating Factor

Human G-CSF was originally cloned from a cDNA library derived from a tumour cell line in
1986 by Souza et al., and is mostly found in macrophages and dendritic cells [2,29]. At the time,
IL-6 was first identified, G-CSF was the only sequenced protein that shared significant homology
with IL-6 with strikingly similar gene organisations [11]. While G-CSF is not always included as a
family member, this IL-6 relative shares similar disulphide structures with IL-6 and forms a hexameric
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receptor complex like IL-6 [30,31]. While the primary role of G-CSF is the regulation of granulopoiesis,
mutations of G-CSF have been associated with neutropenia and related diseases [32]. G-CSF binds to
both colony stimulating factor 3 receptor (CSF3R) and gp130 [2].

3. Implications of IL-6 Cytokine Family Members in Kidney Disease

Kidneys are involved in a number of key regulatory functions that help to maintain whole body
homeostasis. They filter blood, maintain fluid homeostasis and are crucial in the process of removing
toxins through urine. Deteriorating renal function and chronic kidney disease are closely associated
with cardiovascular morbidity and mortality [33]. Kidney diseases are commonly divided into two
major groups based on the duration of the disease, i.e. acute kidney injury (AKI) and chronic kidney
disease (CKD). IL-6 cytokine family members have been implicated in both AKI and CKD (Figure 2).
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3.1. Acute Kidney Injury

The current definition for AKI was first established in 2004 with a standardized set of criteria [34].
The primary dimension assessed is the magnitude of serum creatinine elevation (change from baseline
to peak creatinine), with an increasing emphasis on the duration of the AKI [35]. Based on this
definition, the global incidence rate of acute kidney injury is 23.2% [33]. Importantly, high levels of
circulating IL-6 in patients with acute kidney injury are predictive of an increased mortality rate [36].

Renal Ischemia and Reperfusion Injury

Patients undergoing major surgery (cardiac, liver, vascular or kidney) frequently suffer renal
ischemia and reperfusion (I/R) injury as a serious complication. Renal I/R occurs when there is
an initial restriction of blood supply to kidneys, which is followed by restoration of perfusion and
concomitant reoxygenation [37].

Although CNTF is primarily expressed in neuronal tissue, the kidney is the next most abundant
source of the cytokine. CNTF expression was found to be further increased in rat kidneys that had
experienced an I/R renal injury [38]. The increase in CNTF levels paralleled the recovery of the
renal structure following I/R suggesting it also has renal protective characteristics [38]. CNTF levels
return to basal within 28 days of the I/R renal injury [38]. As LIF has a role in nephrogenesis, it was
hypothesised that LIF could participate in renal regeneration following acute kidney injury [39]. In the
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days following an I/R event, LIF mRNA expression was significantly increased [39]. Yoshino et al.,
were able to demonstrate in both in vivo and in vitro models of I/R injury that LIF was specifically
involved in the regeneration of damaged kidney [39]. As IL-11 had been shown to be cytoprotective
in non-kidney tissues, a murine model of I/R kidney injury was used to examine the effectiveness
of the IL-6 cytokine family member as a therapy for I/R injury [40]. The administration of human
recombinant or PEGylated IL-11 before or after renal I/R reduced the level of renal necrosis, tubular
injury, renal apoptosis and neutrophil infiltration [40]. Experiments in human kidney proximal tubule
cells demonstrated that the renal protective characteristics of IL-11 were due to its ability to increase the
nuclear translocation of HIF1-α and subsequently induce sphingosine kinase-1 (SK1) expression [40].
The induction of IL-11 has also been shown to be a key intermediary step in the renal protective effects
of A1 adenosine receptor agonists, which also increases the expression of SK1 [41]. In a model of I/R
injury, rats receiving CT-1 had better renal function and lower tubular damage than control rats [42].
However, there is still conflicting evidence from other rat models of renal injury on whether CT-1
treatment is protective [43] or disrupts renal function and causes renal damage [44]. These contrary
results may be a dose-dependent effect or vary depending on the model of kidney injury. However,
overall IL-6 family cytokines appear to be mostly protective in the context of renal I/R injury. As much
of the research to date has focused on examining the effects of a single IL-6 cytokine family member at
a time, experiments involving the combination of CNTF, LIF, IL-11 and CT-1 (a cocktail of IL-6 cytokine
family members) for the treatment for I/R injury may prove highly beneficial.

3.2. Chronic Kidney Disease

CKD is a common disorder that is defined by structural or functional abnormalities of the kidney
and/or a sustained reduction in the glomerular filtration rate. As a high risk condition, the global
rise in the prevalence of CKD is alarming [45]. Between 1990 and 2010 chronic kidney disease rose in
the rankings from twenty-seventh to eighteenth in the list of causes of total number of global deaths,
which was the second largest rise up the list [46].

3.2.1. Diabetic Nephropathy

The leading cause of CKD has become diabetic nephropathy (DN), which is morphologically
defined by tubulointerstitial fibrosis and glomerular sclerosis [47]. DN is clinically categorised by
progressive albuminaria and a decline in glomerular filtration rate [48]. Nearly 40% of diabetes
patients develop DN, irrespective of their management of blood glucose and/or blood pressure [49,50].
Diabetic patients with DN were found to have elevated levels of IL-6 in their serum compared to
diabetic patients without DN [51]. The likelihood of a diabetic patient to develop DN appears to be
linked to polymorphisms in the IL-6 gene [47]. Following the observation that both IL-6 and soluble
IL-6R were elevated in the sera of a DN patient population, Lei et al., examined the roles of classic
and trans-signalling in a cell culture model. Interestingly, both classic and trans IL-6 signalling were
responsible for renal damage [52]. Elevated levels of another IL-6 cytokine family member, OSM, were
found in tubular epithelial cells from diabetic mice compared to those from nondiabetic mice [53].
There was also a higher level of tubulointerstitial fibrosis in the diabetic mice. Both the level of OSM
expression and tubulointerstitial fibrosis were reduced in the diabetic mice via the overexpression of
either SOCS1 or SOCS3 [53]. However, Sarkozi et al. has demonstrated that in human kidney proximal
tubule cells, OSM stimulation can provide a protective effect against tubulointerstitial fibrosis [54].
This may be due to differences in the models used.

Therapies for DN that target IL-6 cytokine family signalling are at various stages of development.
Blockage of IL-6 signalling using monoclonal antibodies targeting either IL-6 (Siltuximab) or its
receptor IL-6R (Tocilizumab) are currently in clinical trials [47]. Signalling molecules downstream of
IL-6 cytokine family receptors are also being targeted. There is a phase 2 randomised control trial being
conducted using the Janus kinase inhibitor, bacitrinib, to treat DN in Type 2 Diabetes (T2D) patients by
inhibiting IL-6-mediated JAK/STAT signalling [55]. The administration of a SOCS1 peptidomimetic to
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diabetic mice was shown to reduce the renal changes associated with DN, although its impact on OSM
expression has not been measured [56]. Alternatively, administration of G-CSF is being examined as a
possible therapy in a DN mouse model with evidence that it can reduce the level of renal damage [57].

3.2.2. Glomerulonephritis

Glomerulonephritis exists as a range of kidney diseases that are characterised by damage to
glomeruli. Diseases that fall under the umbrella of glomerulonephritis include IgA nephropathy and
lupus nephropathy, amongst others.

In 1989, it was reported that transgenic mice expressing human IL-6 displayed the pathology of
glomerulonephritis, including the profound cell proliferation of mesangial cells in the kidneys [58].
Subsequent studies examining IL-6 excretion in urine found higher levels in the urine of patients with
glomerulonephritis compared to urine from healthy individuals or patients with other types of kidney
disease. In fact, IL-6 urine levels increased with the severity of glomerulonephritis [59]. Evidence from
a mouse model of lupus nephritis suggests that the increase in IL-6 is the result of a decrease in
expression of a micro-RNA that regulates IL-6 [60]. This finding is supported by a study looking
at the urine excretion of another IL-6 cytokine family member in glomerulonephritis patients [61].
Increasing levels of IL-11 excretion in the urine of IgA nephropathy and lupus nephropathy patients
correlated with increased severity of their proteinuria [61]. This correlation was not observed in patients
with proteinuria due to idiopathic nephrotic syndrome, indicating that this correlation is specific to
glomerulonephritis [61]. Idiopathic nephrotic syndrome has an undetermined pathogenesis, shares the
proteinuria symptoms observed in glomerulonephritis but renal biopsies show minimal renal changes
unlike glomerulonephritis [62]. While examining the effect of LIF on the lymphoid system, Shen et al.,
generated transgenic mice that overexpressed LIF specifically in their T lymphocytes [63]. Among the
pathologies found in these transgenic mice was a proliferative mesangial glomerulonephropathy with
extensive hyaline deposits [63]. When mesangial or epithelial cells from the biopsies of patients with
glomerulonephritis were cultured, they were found to express LIF at a higher level than those from
non-diseased kidneys [64]. In a mouse model of lupus nephritis, elevated levels of OSM were detected
in renal tissue [65]. In an effort to understand the mechanisms by which the elevation of IL-6 cytokine
family members may cause renal damage, an angiotensin II infusion mouse model of hypertension and
CKD was used [66]. Ablation of IL-6 in these mice attenuated the angiotensin II-induced hypertension
and features of CKD, including proteinuria and renal fibrosis [66].

Targeting IL-6 signalling is being examined as a treatment for glomerulonephritis. A clinical
trial using a neutralising monoclonal antibody to IL-6 to treat patients with lupus nephritis failed to
show efficacy in ameliorating the features of the disease, including proteinuria [67]. A neutralising
monoclonal antibody to the IL-6 receptor was found to preserve glomerular function and structure in a
lupus nephritis mouse model, but failed to prevent the associated cell proliferation and proteinuria [68].
In a Lyn-deficient mouse, which has elevated IL-6 and lupus nephritis symptoms, treatment with
the IL-6 trans signalling inhibitor sgp130Fc attenuated the disease and improved renal function [69].
In another study using a lupus nephritis mouse model, an anti-OSM antibody was shown to attenuate
renal fibrosis and partially improve urinary protein excretion [65]. This finding is similar to what
Liu et al. showed in an in vitro model of diabetic nephropathy, where less OSM correlated with
less fibrosis [53]. Interestingly, studies using a rat model of glomerulonephritis demonstrated that
administration of IL-11 could reduce the glomerular necrosis and proteinuria associated with the
disease [70]. Further research using murine models of glomerulonephritis identified NF-Kappa B
activity and TGF-β expression as key components involved in the reduction of renal injury due to IL-11
treatment [71,72]. G-CSF has been examined as a possible therapeutic agent for lupus nephropathy
with mixed results. In the MRL-lpr lupus mouse model, a low dose of G-CSF was found to exacerbate
the lupus nephropathy, while a high dose was able to prevent lupus nephritis [73]. A later study using
the higher dose of G-CSF was examined in the NZB/W F1 lupus mouse model and corroborated the
findings that G-CSF treatment could protect against lupus nephritis [74]. However, there are case
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reports of patients with systemic lupus erythematosus and associated glomerulonephritis that have
received G-CSF treatment which have resulted in disease flares with a rapid and irreversible decline in
renal function observed [75].

3.2.3. Focal Segmental Glomerulosclerosis

Focal segmental glomerulosclerosis (FSGS) causes nephrotic syndrome and frequently leads to
end-stage renal disease. It is diagnosed pathologically from renal biopsies and presents with varied
clinical features and etiologies. Circulating permeability factors are believed to play a major role
in the pathogenesis of FSGS with many studies examining the plasma of FSGS patients to identify
these factors.

The IL-6 cytokine family member, CLCF-1, was found to be at levels 100 times higher in FSGS
patient plasma compared to controls [76]. CLCF-1 was isolated from FSGS patient plasma via galactose
affinity chromatography and identified by mass spectrometry [76]. An in vitro system was used to
verify that CLCF-1 was a biologically active component involved in the pathogenesis of FSGS and
was found to mimic the effects of FSGS patient plasma [77]. A monoclonal antibody was able to
block the activity of FSGS patient plasma in this in vitro system [77]. The addition of the CLCF-1
heterodimer binding partner, CRLF-1, also attenuated the activity of FSGS patient plasma and CLCF-1
in the in vitro system [78]. As CLCF-1 was isolated by galactose affinity chromatography, galactose
has been proposed as a treatment of FSGS, but so far this treatment has had limited success with only
some patients showing a reduction in proteinuria with stable glomerular filtration rate [79]. As no
essential role for CLCF-1 has been identified post-foetal development, antibodies targeting CLCF-1
or its receptors have been proposed as a potential treatment [77]. Further studies are warranted to
elucidate the role CLCF-1 may have in homeostatic functions, as well as in diseases, both kidney
related and in other organs. Recently, there has been a case report of a patient with FSGS associated
with cutaneous and systemic plasmacytosis that had elevated IL-6 serum levels suggesting that other
IL-6 cytokine family members may be involved in the pathogenesis of FSGS [80].

3.2.4. Obstructive Nephropathy

Chronic obstructive nephropathy is a form of CKD that develops from the obstruction of the
urinary tract. Tubulointerstitial fibrosis is a common morphological feature shared between obstructive
nephropathy and other CKDs like DN. Elevated levels of OSM were detected in the renal tissue
of patients that had developed obstructive nephropathy through variable means [81]. OSM was
also found to be upregulated in a surgically created rat model of obstructive nephropathy [81].
Using the same model, Lee et al., showed that CNTF expression levels in their kidneys were well
above those observed in the kidneys of sham-operated mice [82]. Unlike the short-term elevation of
CNTF expression observed in renal I/R injury, CNTF expression remained elevated to day 28 in the
obstructive nephropathy rat model [38,82].

4. Obesity, Hypertension, Diabetes and Kidney Disease

It has been reported that 70% of all cases of end-stage renal disease are related to central obesity,
diabetes and/or hypertension [83]. As such, separating kidney disease from other conditions like
obesity, diabetes and hypertension is difficult because they are all entwined. The global prevalence
of obesity continues to increase with over 600 million adults and over 100 million children estimated
to be obese worldwide [84]. Obesity causes a number of structural changes in the kidneys, including
fewer nephrons and abnormal renal tubular exchange. This results in a decline in sodium excretion
and an impaired diuretic response, which leads to an inability to effectively decrease blood pressure
elevations [85]. Visceral adipose tissue in obese subjects can completely encapsulate the kidneys
and could exert a compressive force on them which would increase the renal capsular pressure and
subsequently increase arterial pressure [86]. Adipose tissue is also a major source of the metabolic
factors known as adipokines, which provide the means of crosstalk between adipose tissue and the
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kidney. Under obese conditions there is an imbalance in this crosstalk that leads to renal damage [82].
We have shown that IL-6 appears to be protective against the renal changes that this imbalance of
crosstalk in obesity creates. We observed that obese IL-6 knockout mice were far more susceptible to
renal abnormalities than their obese wild type counterparts [87]. This result suggests that although
IL-6 neutralising therapies have renal benefits, there is clearly a minimal level of IL-6 activity required
for healthy renal function.

A high body mass index (BMI) contributed to approximately 7% of deaths globally in 2015 with
cardiovascular disease and diabetes being the two leading causes [84]. While genetic predisposition is
the underlying factor to developing T2D, obesity is also a driving force to the development of T2D,
with endoplasmic reticulum stress being the molecular link between the two [88]. Briefly, the induction
of ER stress signalling by obesity leads to reduced insulin receptor signalling, systemic insulin
resistance and eventually T2D [88]. Alternatively, T2D leads to obesity as the inherent insulin resistance
increases glucose production and insulin levels, resulting in obesity [89]. Diabetes can result in kidney
diseases like the aforementioned DN, but also athero-embolic renal disease, ischemic nephropathy and
interstitial fibrosis [90].

There is a high prevalence of hypertension amongst the obese population, with an increasing risk
of developing hypertension being shown with weight gain [91]. The development of hypertension in
obese patients can be dependent on a wide variety of factors, including an adipokine imbalance, insulin
resistance, renal abnormalities, maladaptive immunity, gut microbiome alterations and activation of
either the sympathetic nervous system (SNS) or the renin-angiotensin-aldosterone (RAAS) system [91].
As previously stated, renal damage associated with kidney disease can promote hypertension, as there
is a decline in sodium excretion, which is essential for the regulation of blood pressure [85]. However,
kidney disease can also progress the propensity for hypertension to increase the activity of the SNS or
the RAAS system [85]. Activation of the SNS via afferent signals of sensory renal nerves is an early
event in the pathophysiology of kidney disease [92]. Renal sympathetic activation leads to volume
retention, stimulates the release of renin and the secretion of noradrenaline, the major neurotransmitter
of the SNS [92]. As conditions such as obesity and T2D have hyperglycaemia occurring, we posed the
question as to whether hyperactivation of the SNS, as evidenced by elevated noradrenaline signalling,
may increase the primary protein involved in glucose reabsorption, sodium-glucose co-transporter 2
(SGLT2). We found that in human kidney proximal tubule cells, noradrenaline stimulation increased
SGLT2 mRNA levels [93] and protein levels [94]. Of importance to the context of the current review,
we have also demonstrated that IL-6 mRNA expression [93] and protein secretion were also elevated
with noradrenaline stimulation [94]. This may be the mechanism behind the increase in SGLT2 as it
has been previously documented that IL-6 directly increases SGLT2 expression [95]. SGLT2 expression
has become increasingly relevant in terms of renal function as SGLT2 inhibitors continue to be trialled
for the treatment of kidney disease [96].

5. Conclusions

As highlighted in this review, multiple members of the IL-6 cytokine family are involved in a
variety of kidney diseases. Currently, levels and activity of IL-6 cytokine family members can only
be used as surrogate markers for disease severity and progression [1]. Elucidating the mechanisms
by which they act in kidney diseases is complicated, as in some instances they appear beneficial
and in others pathogenic. Due to i) duality of roles; ii) redundancy between IL-6 cytokine family
members and iii) the fact that kidney diseases often occur with other diseases like diabetes or obesity,
further complicates their exact nature in specific diseases. To untangle this complicated interplay
between cytokines and multiple diseases, requires further studies in vitro and in animal models.
There are many therapies that target IL-6 cytokine family members to treat kidney diseases currently
being investigated in clinical trials at various phases, which include kinase inhibitors and IL-6
neutralising antibodies. Efficacy of these strategies will depend on their ability to overcome the
possible redundancy of multiple IL-6 cytokine family members impacting the same disease. Only with



Biomedicines 2019, 7, 19 10 of 15

a greater understanding of the molecular mechanisms of IL-6 family cytokines and the interplay
between them, can we develop better targeted therapies towards this promiscuous family of cytokines.
With additional knowledge and more sophisticated therapies, targeting IL-6 cytokine family members
will become a viable strategy to treat kidney diseases.
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