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Abstract: Targeted delivery of chemotherapeutics and diagnostic agents conjugated to carrier ligands
has made significant progress in recent years, both in regards to the structural design of the conjugates
and their biological effectiveness. The goal of targeting specific cell surface receptors through
structural compatibility has encouraged the use of peptides as highly specific carriers as short
peptides are usually non-antigenic, are structurally simple and synthetically diverse. Recent years
have seen many developments in the field of peptide based drug conjugates (PDCs), particularly for
cancer therapy, as their use aims to bypass off-target side-effects, reducing the morbidity common
to conventional chemotherapy. However, no PDCs have as yet obtained regulatory approval.
In this review, we describe the evolution of the peptide-based strategy for targeted delivery of
chemotherapeutics and discuss recent innovations in the arena that should lead in the near future to
their clinical application.

Keywords: targeted drug delivery; therapeutic carriers; peptide–drug conjugates; cancer therapy;
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1. Introduction

Selective delivery of chemotherapeutics to cancer cells has challenged modern chemotherapy
from its very beginning. Achieving maximized therapeutic effect as well as minimal off-target side
effects requires not only the development of effective strategies for targeted delivery of anti-cancer
agents, but also restricted release of the drug payload to the tumor cell or at least its local environment.
The strategy of Targeted Drug Delivery (TDD) to tumor tissues is based on the idea that despite
the overall molecular similarity between cancer and normal cells, there remains would sufficient
cellular heterogeneity to distinguish normal cells from cancer cells. One of the typical biological
consequences of cancer is the over expression or unique expression of certain cell surface receptors.
These “biomarkers” are often receptors whose activation can lead to enhanced proliferation, migration
and invasion of cancer cells and tumor angiogenesis, which are all essential for tumor progression.
Selective targeting of these receptors by high affinity biomolecular carriers can mitigate the selectivity
problems of chemotherapy [1,2]. Several types of ligands have been tested as potential drug carriers,
the most celebrated of which are antibodies [3]. However, there remain a number of pitfalls to
their use [3]. In this review, we summarize the strategies, biological activity, challenges and future
perspectives of peptide drug conjugates (PDCs) in the targeted treatment of cancer (Figure 1).
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Figure 1. Schematic representation of PDC (peptide based drug conjugate). 

2. Strategies for Cancer Cell Targeting Peptides Discovery 

2.1. Phage Display 

In 1985, Smith showed that filamentous bacteriophages (bf) can be genetically engineered to 
express foreign peptide sequences on their surface (protein coat) [4]. This led to the development of 
libraries of phages in which each clone displays a peptide of combinatorial sequence [5,6]. These 
libraries can be used in vitro to screen for and isolate clones displaying peptides with high selectivity 
for almost any desired target. They can also be injected into an animal to isolate clones that bind to a 
desired target tissue [7]. Multiple repetitions on these selection and amplification steps, termed 
panning, bring about enrichment of the clones with highest affinity to a specific target. 

In the literature, there are two approaches to isolating target specific clones; one approach is to 
expose the total phage pool to the target, for example, an antibody. The binding clones are then 
recovered and exposed to a non-relevant protein, such as a non-relevant antibody in order to recover 
only those clones specific to the target antibody’s paratope. The alternate approach proposes that the 
original phage pool contains mostly non-specific clones that indeed may compete or interfere with 
the binding of specific clones to the target. Therefore, in this approach, the phage pool is first exposed 
to one or several non-specific targets and non-binding clones are recovered. These clones are then 
exposed to the desired target and specific binders isolated. 

Since being introduced by Smith [4], this technology—known today as phage display peptide 
libraries—has become a powerful tool for the discovery of specific ligands [6,8] with high receptor 
affinity [6,9]. 

Notwithstanding the contribution of phage-display to the discovery of targeting peptides the 
technique has some critical disadvantages. One of these relates to the method of recovery of phage 
positive clones. Traditionally, recovered phage are titrated on bacterial lawns, however it is 
technically challenging to retrieve and sequence the peptide inserts of more than 10–20 such clones. 
Thus, many potentially interesting clones are missed. The introduction of Next Generation 
Sequencing (NGS) can now alleviate this problem [10]. While NGS is more expensive and time 
consuming, it allows analysis of the entire pool of target positive phage. Another disadvantage is that 
the technology has limited, in that it produces peptides with predetermined length and only from 
natural amino acids. These disadvantages can be overcome using synthetic combinatorial methods, 
which are described below. 

2.2. Synthetic Peptide Libraries—OBOC 

In 1984, Geysen et al. [11] introduced a combinatorial approach for the segmental epitope 
mapping of the VP1 protein from the foot and mouth disease virus. A library of 208 overlapping 
hexapeptides, each peptide differing at one amino acid position, was synthesized, covering the whole 
213 amino acid sequence of the protein. The peptide library was synthesized on a solid support, 
enabling its rapid and feasible immunological screening [11]. In its original form this combinatorial 
method, later termed "multipin technology", utilized polyethylene pins covered with acrylic acid (for 
the formation of a polar support with improved solubility in polar solvents) as a solid support. These 
pins were adapted to a 96 well polypropylene plate, where each well served as a separate reaction 
vessel. At the end of the synthesis the peptides are directly subjected to a biological screening or are 
first removed from the pins by enzymatic [12] or chemical [13] cleavage. Several different 
combinatorial methods and techniques have since been introduced [14–16], and the field of synthetic 
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2. Strategies for Cancer Cell Targeting Peptides Discovery

2.1. Phage Display

In 1985, Smith showed that filamentous bacteriophages (bf) can be genetically engineered to
express foreign peptide sequences on their surface (protein coat) [4]. This led to the development
of libraries of phages in which each clone displays a peptide of combinatorial sequence [5,6].
These libraries can be used in vitro to screen for and isolate clones displaying peptides with high
selectivity for almost any desired target. They can also be injected into an animal to isolate clones
that bind to a desired target tissue [7]. Multiple repetitions on these selection and amplification steps,
termed panning, bring about enrichment of the clones with highest affinity to a specific target.

In the literature, there are two approaches to isolating target specific clones; one approach is
to expose the total phage pool to the target, for example, an antibody. The binding clones are then
recovered and exposed to a non-relevant protein, such as a non-relevant antibody in order to recover
only those clones specific to the target antibody’s paratope. The alternate approach proposes that the
original phage pool contains mostly non-specific clones that indeed may compete or interfere with the
binding of specific clones to the target. Therefore, in this approach, the phage pool is first exposed
to one or several non-specific targets and non-binding clones are recovered. These clones are then
exposed to the desired target and specific binders isolated.

Since being introduced by Smith [4], this technology—known today as phage display peptide
libraries—has become a powerful tool for the discovery of specific ligands [6,8] with high receptor
affinity [6,9].

Notwithstanding the contribution of phage-display to the discovery of targeting peptides the
technique has some critical disadvantages. One of these relates to the method of recovery of phage
positive clones. Traditionally, recovered phage are titrated on bacterial lawns, however it is technically
challenging to retrieve and sequence the peptide inserts of more than 10–20 such clones. Thus, many
potentially interesting clones are missed. The introduction of Next Generation Sequencing (NGS)
can now alleviate this problem [10]. While NGS is more expensive and time consuming, it allows
analysis of the entire pool of target positive phage. Another disadvantage is that the technology
has limited, in that it produces peptides with predetermined length and only from natural amino
acids. These disadvantages can be overcome using synthetic combinatorial methods, which are
described below.

2.2. Synthetic Peptide Libraries—OBOC

In 1984, Geysen et al. [11] introduced a combinatorial approach for the segmental epitope mapping
of the VP1 protein from the foot and mouth disease virus. A library of 208 overlapping hexapeptides,
each peptide differing at one amino acid position, was synthesized, covering the whole 213 amino acid
sequence of the protein. The peptide library was synthesized on a solid support, enabling its rapid and
feasible immunological screening [11]. In its original form this combinatorial method, later termed
“multipin technology”, utilized polyethylene pins covered with acrylic acid (for the formation of a polar
support with improved solubility in polar solvents) as a solid support. These pins were adapted to a
96 well polypropylene plate, where each well served as a separate reaction vessel. At the end of the
synthesis the peptides are directly subjected to a biological screening or are first removed from the pins
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by enzymatic [12] or chemical [13] cleavage. Several different combinatorial methods and techniques
have since been introduced [14–16], and the field of synthetic peptide libraries has now become a
powerful tool for drug discovery [17–19] as well as for fundamental biological investigation [20,21].
In the context of synthetic homing peptides, the one-bead-one-compound (OBOC) method has made a
particular impact [22].

The OBOC method is based on a “mix and split” technique and enables preparation of peptide
libraries with 106–108 different peptides [23]. The peptides are coated on to 100 µm diameter polymeric
beads, each bead covered with about 1013 copies of the same peptide [15]. The library can be screened
against various biological targets, including intact cells or specific receptors. Beads, which physically
bind to the target of interest, are isolated and the structure of the coating compound can then be
elucidated [15,24]. Recently a novel screening method for identification of targeting peptides derived
from a “mix and split” library was reported [25]. This method involves encoding of each member
of the library with a unique peptide nucleic acid (PNA) [26,27] which is biologically stable [28],
yet suitable for DNA microarray assays [29,30]. PNA encoded peptide libraries are appropriate for the
identification of targeting peptides to any biological target of interest, either in vitro or in vivo due to
the stability of the PNAs in biological environments.

The synthetic flexibility of the OBOC method, and the size of its libraries make it an
ideal optimization tool for peptide leads previously discovered by phage display or any other
methodology [23].

2.3. SPOT-Synthesis

In 1992, Frank introduced a method using cellulose membranes as the solid support for peptide
synthesis [31]. In the SPOT synthesis, the peptides are synthesized on pre-functionalized cellulose,
which enables the attachment of activated amino acids. “Spotting” small volumes of reagents at
defined positions on the cellulose support actually results in a creation of microreactors, whose size
is defined by the volumes dispensed and the physical properties of the solid support. The scale
of the reaction, as well as the number of synthesized peptides are directly derived both from the
size of separate spots on the membrane sheet. Removal of the protecting groups and washings
are performed by dipping the sheet in the appropriate solution. After the accomplishment of the
synthetic procedure, the peptides can be assayed while attached to the solid support, or can be cleaved
for further performance of bioassays in solution. The advantages of SPOT synthesis are that it is a
flexible, simple and cheap method, it yields sufficient amounts of product [32], and can be applicable
for various biological [33,34] and synthetic [35–37] applications. Since the invention of this parallel
synthetic technology, it has been developed further by several groups, including the introduction of
new polymeric solid supports [38–40], linker anchors [35,41,42] and automated systems [42,43].

In contrast to biological combinatorial method such as phage display, synthetic combinatorial
methods have the advantage that they can incorporate D-amino acids, unnatural amino acids and
non-amino acid building units into the combinatorial sequence [22]. The increased stability of these
types of compounds in the proteolytic environment of biological fluids—compared to natural L-amino
acids—enhances the half-life of the targeting ligand and can contribute to increased efficacy of the
TDD system [44–46].

2.4. Rationally Designed Peptides

Multistep syntheses and the need for exhausting screening of random combinatorial peptide
libraries consisting of millions of different compounds are motivating the design of more target oriented
peptide libraries. Rational design of peptide ligands generally depends on bioinformatic databases
and a resolved crystallographic structure of the target–ligand complex together with computational
methods, in order to design more appropriate binding compounds [47].

One sophisticated approach is based on homology modeling. In this approach the design of
new ligands to target is performed by using known targets as structural templates. As we have
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recently described, the ligand interactions with the different targets can be studied by a stepwise
energy evaluation in which the effects of ligand mutations and different residues of the target are
examined [48,49]. Such an approach provides a valuable alternative to a costly and time-consuming
combinatorial approach since it can dramatically decrease the number of candidate peptides to be
synthesized and tested.

Rational design of peptides is usually validated by two optimization methodologies: cyclo
scanning (CYCLOSCAN) and positional scanning. These methods are also useful in phage display and
OBOC for optimizing peptide hits. Notably, classical modes of cyclization include the formation of a
lactam bridge through carboxyl and amino functional groups, or disulfide bridges through thiol groups
leading to side-chain-to-side-chain bridge formation (Figure 2). Two main drawbacks to this classical
mode were reported: (i) cyclization may lead to a loss of biological activity, due to the involvement of
side chain groups crucial for bioactivity; and (ii) the number of cyclization possibilities is limited. If the
linear peptide does not contain the appropriate amino acid to allow classical cyclization, various amino
acids in the native sequence need be replaced by amino acids bearing amine (Lys, Orn), carboxyl (Glu,
Asp) or thiol (cysteine), an operation that may lead to loss of biological activity [50,51].
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To overcome these pitfalls, Gilon et al., applied a new facile approach of backbone cyclization
in which any two backbone nitrogens are connected through bridges of various sizes and chemical
nature [52–55]. In this method, side-chains are not altered, and a highly variable and large set of
different cyclizations can be applied to any linear sequence [56]. Thus, one can generate conformational
libraries in which many diverse amino acid sequences share the same structure, thereby enabling the
optimization of a known three-dimensional biological motif, or libraries in which a single sequence is
contained within a large variety of conformations, thereby identifying the active conformation of a
biologically active sequence.

Positional scanning for peptide sequence begins with identification of an amino acid of interest at
a single position, followed by sequential substitution with other amino acids. Increased bioactivity of
the peptide indicates the preferred amino acids at altered positions in the sequence [57,58].

3. Targeted Delivery of Chemotherapeutics Based on Clinically Investigated Peptides: Arginine-
Glycine-Aspartic Acid (RGD), Somatostatin, Luteinizing Hormone-Releasing Hormone (LHRH)
and Bombesin

The success of using peptides to target over or exclusively expressed receptors in cancer cells,
including those that are associated with tumor angiogenesis, serves as a basis for the creation of
targeted drug delivery (TDD) systems. These systems are generally constructed with a peptide as
a targeting moiety, a linker moiety and a therapeutic agent, as schematically presented in Figure 1.
While a number of targeting peptides clinical applications have been isolated and are being developed),
the tripeptidic sequences—RGD—have received significant attention.
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3.1. RGD

In their pioneering work in the mid-1980s, Ruoslahti and Pierschbacher reported on the
importance of the Arginine-Glycine-Aspartic acid (RGD) tri-sequence in fibronectin as an essential
cell recognition site for integrin α5β1 [59]. This observation has rapidly led to other evidence for the
central role of RGD as a general ligand for additional proteins [60–65].

In parallel, a family of glycoprotein cell surface receptors was discovered that were recognized
by the RGD sequence, [66–72]. This class of cell surface receptors, consisting of two subunits in
mammalian cells [73,74], were for the first time termed “Integrins” in 1986 for their role as “an integral
membrane complex involved in the transmembrane association between the extracellular matrix and
the cytoskeleton” [75].

Since integrins are involved in processes which are usually associated with tumor progression such
as angiogenesis, invasion and metastasis, and since the RGD peptidic ligand selectively targets them,
integrins have attracted special focus. Currently, 24 distinct integrins are known [76] and they have been
shown to play key roles in many processes including cell adhesion, migration, and proliferation [77].
Enhanced expression of specific integrins in cancer cells is crucial for promoting metastasis [78–80],
angiogenesis [81], proliferation [82,83], migration [84–86] and invasion [87,88], as well as for the
proteolytic destruction of extra cellular matrix (ECM) [87], all essential components in the process
of tumor progression [89]. The variety of essential functions attributed to the different members of
this receptor family in the neoplastic process have been comprehensively reviewed [89,90]. The over
expression of integrins and their important role in different cancers, make them an obvious target
for therapeutic intervention [91,92], as well as for the selective delivery of chemotherapeutics [93–96],
nanoparticles [97], and imaging agents [98,99]. RGD has for several reasons often been selected as
an attractive targeting ligand in many peptide–drug conjugates: it is recognized by 8–12 of the 24
known integrins [93], and there is confirmation of the recognition of RGD by integrins on the structural
basis [100], which is also supported by the crystal structure of αvβ3 integrin with the RGD analog
Celingetide [101]. For example, Ruoslahti et al published a work in which RGD peptides were used
to selectively deliver cytotoxic compounds to cancer cells. The researchers showed that doxorubicin
covalently conjugated to the nonapeptide CDCRGDCFC considerably improved survival rates of mice
bearing human MDA-MB-435 breast carcinomas [94]. In another paper, Sherz and coworkers reported
on selective accumulation of the cyclic RGD analog conjugated to the fluorescent bacteriochlorophyll
analog in the tumor necrotic domain in MDA-MB-231-RFP bearing mice, allowing early detection of
tumor proliferation [102]. Conjugation of highly potent microtubulin poison paclitaxel to the bicyclic
RGD peptide Ec(RGDyK)2 resulted in increased drug efficacy towards tumor cells and decrease in
off-target toxicity [96].

Other highly effective RGD analogs include 9-RGD [103], iRGD [104], and the cyclic penta-peptide
Cilengitide, the latter being developed by Kessler and co-workers [105,106]. Cilengitide has reached
phase III clinical trials for the treatment of glioblastoma [107] and phase II clinical trials for some
other tumors [92]. In all these cases Cilengitide acts as a highly specific antagonist of αvβ3 and
αvβ5 integrins [92,101,107], which are found to be over-expressed integrins in many cancerous
cells. To enable conjugation of imaging and therapeutic payloads to Cilengitide, functionally
adopted derivatives had been designed [108]. Recently, we reported the synthesis of three novel
peptide–drug conjugates based on the cyclic (RGDf(NMe)V) penta-peptide in which the methylated
valine was mutated to either Lys or Ser enabling primary amine or hydroxy group as a site for drug
conjugation [109]. The chemotherapeutic drugs Chlorambucil (CLB) and Camptothecin (CPT) were
conjugated to the peptide carrier through amide, ester (for CLB) and carbamate (for CPT) bonds
(Table 1). In that report, we provided computational evidence that the conjugation of drug moieties
to the backbone of the parent peptide does not significantly alter its conformational space. Thus all
conjugates are expected to adopt solution conformations similar to the bio-active conformation of the
parent peptide as observed in its complex with the integrin (PDB code 1L5G) [101]. The importance
of keeping the correct conformation of the peptide backbone core to maintain binding affinity and
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receptor specificity was also discussed [92,110,111]. In another report, we described the design and
synthesis of four (RGDf(NMe)V) based conjugates with dual drug payload, which resulted in enhanced
cytotoxic effect towards cancer cells in comparison with mono-loaded counterparts [112]. A similar
effect of increased cytotoxicity as a result of multi-loading of the carrier was also observed with a
non-RGD peptide-based ligand. In this case, increased loading of the MPB peptide with the alkylating
agent CLB resulted in selective enhanced cytotoxicity towards leukemic cells [113].

3.2. LHRH

Over expression of luteinizing hormone releasing hormone (LHRH) receptors in
hormone-associated cancers makes it another attractive target for a selective delivery of
chemotherapeutics. In the mid-1980s, analogs of LHRH peptide were introduced to target
LHRH receptor in prostate [114] and breast [115] cancers. Since then this class of peptides has been
extensively tested as carriers of chemotherapeutic agents to cancer cells. For example, LHRH analogs
were conjugated to doxorubicin (DOX) (conjugate AN-152) or its counterpart 2-pyrollino-DOX
(conjugate AN-207), resulting in targeted therapeutic conjugates in various cancer models [116–128].
In AN-152, the α-keto hydroxyl group on ring A of Dox is linked through an ester glutarate on Lys
in position 5 of LHRH. AN-152 (currently named AEZS-108) has reached clinical trials [129–131].
Conjugation of LHRH analogs with other toxic agents, such as membrane disrupting peptide [132],
toxins [133] and PEGylated delivery systems containing the apoptotic agent camptothecin [134,135],
for targeted therapy of cancer cells, were prepared and tested as well (Table 2).

3.3. Somatostatin

Somatostatins are a five-membered family [136] of transmembrane G-protein coupled cell-surface
receptors widely distributed in a variety of tumors [137–142], which also makes them an attractive
target for selective delivery of chemotherapeutics. While the native somatostatin peptide has high
affinity to all five receptor subtypes, its very short in vivo half-life limits its utility as a targeting
agent [46]. However, several effective analogs of this peptide have been developed, including
two FDA approved and clinically applied radiolabeled conjugates—Octreoscan [143–145] and
Depreotide [146,147]. Apart from radiolabeled conjugates of somatostatin analogs, several drug
conjugates for targeted delivery were reported as well [148]. For example a CPT-somatostatin conjugate,
which was developed by Coy and coworkers by directly coupling CPT to the N-terminus of the
targeting peptide, showed potent inhibitory activity against various human tumors in vivo [149–151].
Paclitaxel (PXT) (which interferes with the normal breakdown of microtubules during cell division)
was conjugated to the N-terminal of the SST analog octreotide, which resulted in selective activity of
PTX towards breast cancer cells MCF-7 [152]. DOX-SST conjugate (AN-238) [153] displayed significant
antitumor activity against various cancers including ovarian, prostate, pancreatic, melanoma,
lymphoma and glioblastoma [2,154]. Importantly, AN-238 was also able to overcome multidrug
resistance induced by conventional chemotherapy [155]. Despite the abundance of reported
drug–peptide conjugates in TDD applications, in our opinion the chemistry of carrier–drug attachment
has not received enough attention. Characteristics like linker attachment sites that retain carrier activity,
linker length and composition, and the design of drug analogs for attachment to the linker are crucial
for securing successful drug delivery [156–160]. Redko and co-workers described the synthesis of five
novel peptide–drug conjugates based on the disulfide bridged backbone cyclic somatostatin peptide
analog 3207-86 which is SSTR2 selective inhibitor [161]. Five chemotherapeutic molecules, acting
through different oncogenic mechanisms, were linked to the core peptide carrier, yielding SST–drug
conjugates (Table 3). In that work chemo- and biostability of the peptide drug conjugates in various
media were measured, representing release profiles for each drug. This information is useful for
further optimization of drug release capabilities from 3207-86 peptide–drug conjugates. The 3207-86
cyclic somatostatin peptide was developed by Kostenich et al. [162]. In addition, these conjugates were
found to be specifically cytotoxic to the cancer cell lines that overexpressed SSTR2, such as HCT 116
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human colon adenocarcinoma, H1299 human non-small-cell lung carcinoma and TRAMP C2 human
prostate cancer cell lines as oppose to the free drug.

3.4. Bombesin

Mammalian Bombesins (BN) are a family of growth receptors (gastrin-releasing peptide receptors
(GRPR), neuromedin B receptor (NMBR) and Bombesin receptor subtype 3 (BRS3)) which are frequently
overexpressed by a number of common cancers such as prostate, breast, lung, gastric, malignant
gliomas and colon [163]. The human GRP, as well as mammalian bombesin—BN receptor ligands are
brain–gut peptides—plays an important role in cancer [164,165]. It has been observed that various
types of cancers can also synthesize bombesin and GRP [166]. The autocrine mode of action of these
peptides brings about stimulation of the growth of the tumor that produces them via bombesin
receptors expressed on their surfaces [165,167]. Consequently, BN receptors are interesting targets for
TDD to cancer cells. Development of various CPT–BN conjugates has led to the discovery of a potent
BN agonist drug conjugate (CTP-L2-BA3) that is cytotoxic for cells overexpressing all mammalian BN
receptor subtypes [168]. With the aim of improving the targeting efficacy of the BN–drug conjugate,
a multi-ligand approach, whereby paclitaxel (PTX) is conjugated to a divalent BN analog BBN carrier
was prepared, resulting in a product with enhanced cytotoxicity [169]. Another BN conjugate was
prepared with DOX as a toxic payload [170]. Additionally, cytotoxic conjugates of BN peptides have
been prepared by loading them with marine toxins [171], mitochondria-disruptive peptides [172],
radiolabeled agents [173,174] and others [175] (Table 4).

3.5. Angiopeptin-2

Receptor-mediated transcytosis expedites BBB (Blood-Brain-Barrier) crossing of various
macromolecules after initial binding of a targeting molecule to a receptor expressed on brain endothelial
cells [176]. Low-density lipoprotein receptor (LDLr) is targeted by angiopeptin-2, defining it as a
specific “gate” for delivery of payloads to brain malignancies. The most promising PDC based on
this peptide ligand is 19-amino-acid linear angiopeptin-2-paclitaxol PDC (ANG1005) that targets
LDLr-1 over expressed on solid tumor [177] and is associated with enhanced transcytosis across the
Blood-Brain-Barrier (BBB) [178].

ANG1005 is composed of three molecules of Paclitaxel connected to the two Lys at positions 5 and
9, and to the N-terminal Thr (Table 4). ANG1005 exerts remarkable efficiency in preclinical studies and
was well tolerated in phase I clinical studies in glioblastoma. However, phase II clinical trials utilizing
ANG1005 were terminated because of lack of efficacy [179]. Other angiopeptide drug conjugates
include ANG1007 (angiopep-2–doxorubicin) [180], ANG1009 (angiopep-2–dimethylglycine etoposide),
and ANG4043 (angipep 2–trastuzumab). ANG4043 is a novel brain-penetrating peptide–mAb
conjugate that is efficient against HER2-positive intracranial tumors in mice (Table 5). This peptide Ab
conjugate retains in vitro binding affinity for the HER2 receptor and antiproliferative potency against
HER2-positive BT-474 breast ductal carcinoma cells [181]. Applications of angiopeptides as targeting
moieties for other anticancer applications are still under investigation [181–185].
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Table 1. Luteinizing Hormone-Releasing Hormone (LHRH) cytotoxic analogs.* For additional biological models of these conjugates see [2,154,186].

Sequence of the
Targeting Peptide

Name of the
Targeting Peptide Formulation Therapeutic

Agent Target In-Vitro Model In-Vivo Model Ref.

GlpHWSYKLRPG-NH2
(Glp = Pyroglutamic acid) (D-Lys6)LH-RH PDC DOX LHRH

* Human breast cancer
cells MCF7 a,
Mouse mammary
carcinoma cells MXT a,
Human breast cancer
cells MX-1 b

a [126]
b [118]

GlpHWSYKLRPG-NH2
(Glp = Pyroglutamic acid) (D-Lys6)LH-RH PDC 2-pyrrolino-DOX LHRH

* Human breast cancer
cells MX-1 a/
MDA-MB-231 b/
MDA-MB-435 c

* MX-1 a/
MDA-MB-231 b/
MDA-MB-435 c tumor
in mice

a [126]
b [127]
c [128]

Ac-D-Nal(2)-f(4Cl)-D-Pal(3)-
SYkLRPa-NH2 [where Nal(2) =
3-(2-naphthyl)alanine, Pal(3) =
3-(3-pyridyl)alanine, and f(4CI) =
4-chloro-D-phenylalanine)

Antagonistic
analog PDC 2-pyrrolino-DOX LHRH

* Human breast cancer
cells MCF7 a,
Mouse mammary
carcinoma cells MXT a

a [126]

QHWSYkLRP-NH–Et
(D-Lys6)LH-RH
Des-Gly10,
Pro-NHEt9

PEGylated
carrier system CPT LHRH Human ovarian cancer

cells A2780 [134]

GlpHWSYKLRPG-NH2
(Glp = Pyroglutamic acid) (D-Lys6)LH-RH PDC Curcumin LHRH

Human pancreatic
cancer cells MIAPaCa-2,
BxPC-3 and Panc-1

Pancreas cancer-MIA
PaCa-2-tumor in mice [187]
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Table 2. Targeted drug delivery (TDD) systems based on Arginine-Glycine-Aspartic acid (RGD) sequence as targeting agent. * For additional examples of
RGD–therapeutic proteins conjugates see [188]. ** For additional examples of RGD–nanocarriers targeted therapies see [189].

Name of the
Targeting Peptide

Sequence of the
Targeting Peptide Formulation Therapeutic

Agent Target In-Vitro Model In-Vivo Model Ref.

RGD4C Cyclic CDCRGDCFC * Fusion protein TNFα αVβ3

Human glioblastoma cells U87MG,
Human breast cancer cells MDA-MB-435,
Rat glioma cells C6,
Mouse fibroblast cells L929

U87MG tumor
in mice,
MDAMB-435
tumor in mice

[190]

RGD4C Cyclic CDCRGDCFC PDC DOX αVβ3
MDAMB-435
tumor in mice [94]

RGD4C Bicyclic CDCRGDCFC
Drug conjugate with
plasmin self immolative
linker vFK

DOX αVβ3
Human fibroblast cells HT1080,
Human endothelial cells HUVEC [191]

Acyclic RGD4C Acyclic CDCRGDCFC PDC Doxsaliform αVβ3 Human breast cancer cells MDA-MB-435 [95]

c(RGDfK) c(RGDfK) PDC CLB, CPT αVβ3

Human non-small lung carcinoma
cells H1299,
Murine melanoma cells B16-F10,
Human embryonic kidney cells HEK-293

[109]

c(RGDfK) c(RGDfK) Drug conjugate with
dual drug payload CLB, CPT αVβ3

Human non-small lung carcinoma
cells H1299,
Murine melanoma cells B16-F10,
Human embryonic kidney cells HEK-293

[112]

c(RGDfK) c(RGDfK) PAMAM Drug loaded
PEGylated dendrimers DOX αVβ3 Human glioblastoma cells U87MG [192]

c(RGDfK) c(RGDfK) PEG polymeric micelles (DACHPt) αVβ3/5 Human glioblastoma cells U87MG U87MG tumor
in mice [193]

c(RGDfK) c(RGDfK) ** Nanoparticles DOX αVβ3/5 Human endothelial cells HUVEC
Pancreas tumor
in mice-murine
R40P cells

[194]

c(RGDfK) c(RGDfK) PDC CPT αVβ3

Human prostate cancer cells PC3,
Human renal carcinoma cells A498,
Human ovarian cancer cells A2780

A2780 tumor
in mice [195]



Biomedicines 2016, 4, 11 10 of 24

Table 2. Cont.

Name of the
Targeting Peptide

Sequence of the
Targeting Peptide Formulation Therapeutic

Agent Target In-Vitro Model In-Vivo Model Ref.

Celingitide cyclic-(N-Me-
VRGDf-NH) PDC Doxsaliform αVβ3 Human breast cancer cells MDA-MB-435 [95]

c(RGDyK) c(RGDyK) Drug loaded
PEG-PLA micelles PTX αVβ3 Human glioblastoma cells U87MG U87MG tumor

in mice [196]

c(RGDfS) c(RGDfS) PDC CLB αVβ3

Human non-small lung carcinoma
cells H1299,
Murine melanoma cells B16-F10,
Human embryonic kidney cells HEK-293

[109]

E[c(RGDyK)]2 E[c(RGDyK)]2 PDC PTX αVβ3 Human breast cancer cells MDA-MB-435 MDA-MB-435
tumor in mice [96]

E-[c(RGDfK)2] divalent cyclic peptide
E-[c(RGDfK)2]

PGA nano-scaled
conjugate PTX

Human glioblastoma cells U87MG,
Murine breast cancer cells 4T1,
Human endothelial cells HUVEC

[197]

E-[c(RGDfK)2] E-[c(RGDfK)2]

Peptide drug conjugate
with the MMP2/9
sensitive linker
GPLGILG

DOX αVβ3
Human endothelial cells HUVEC,
Human ovarian cancer cells OVCAR-3

OVCAR-3 tumor
in mice [198]

E-[c(RGDfK)2] divalent cyclic peptide
E-[c(RGDfK)2] PDC PTX αVβ3 Human endothelial cells HUVEC

ovarian cancer-
OVCAR-3-
tumor in mice

[199]
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Table 3. Somatostatin cytotoxic analogs. * For additional biological models of these conjugates see [2,154,186,200].

Name of the
Targeting Peptide

Sequence of the
Targeting Peptide Formulation Therapeutic

Agent Target In-Vitro Model In-Vivo Model Ref.

RC-160 Cyclic fCYwKVCW-NH2 PDC 2-Pyrrolino-DOX,
DOX SSTRs

* MDA-MB-435 tumor
in mice, mouse
mammary
carcinoma-MXT in
mice, Dunning AT-1
prostate cancers in rat

[201]

RC-121 Cyclic fCYwKVCT-NH2 PDC MTX SSTRs Pancreas cancer-MIA
PaCa-2-tumor in mice [202]

RC-121 Cyclic fCYwKVCT-NH2 PDC 2-Pyrrolino-DOX,
DOX SSTRs

* Human gastric cancer cells MKN-45,
Human breast cancer cells MDA-MB-231,
Human prostate cancer cells-PC-3,
Human pancreatic cancer cells-MIA PaCa2,
Human SCLC cells H-345

* MDA-MB-435 tumor
in mice, mouse
mammary
carcinoma-MXT in
mice, Dunning AT-1
prostate cancer in rat

[201]

3207-86 PDC
Amonafide,
ABT-751, CPT,
COMB, CLB

SSTR2

Human non-small lung carcinoma cells H1299,
Human embryonic kidney cells HEK-293,
Human colon cancer cells HTC 116,
Human prostate cancer cells TRAMP C2

[161]
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Table 4. Bombesin (BN) cytotoxic analogs. * For additional biological models of these conjugates see [2,186]. ** For additional BN analogs with 2-pyrrolino-DOX and
DOX tested in the same biological models see [170].

Name of the
Targeting Peptide

Sequence of the
Targeting Peptide Formulation Therapeutic Agent Target In-Vitro Model In-Vivo Model Ref.

RC-3094 ** QWAVGHL–Ψ(CH2-
NH)–L-NH2

PDC 2-pyrrolino-DOX,
DOX Bombesin

* Human pancreatic cancer cells CFPAC-1,
Human lung cancer cells DMS-53,
Human prostate cancer cells PC-3,
Human gastric cancer cells MKN-45

[170]

RC-3094 QWAVGHL–Ψ(CH2-
NH)–L-NH2

PDC 2-pyrrolino-DOX,
DOX Bombesin * Human SCLC cells NCI-H-69 * NCI-H-69

tumor in mice [203]

BBN(7-13) WAVGHL-NH2
PDC with
PEGylated linker PTX Bombesin Human SCLC cells NCI-H-69 [204]

Table 5. Angiopep-2 cytotoxic analogs.

Name of the
Targeting Peptide

Sequence of the
Targeting Peptide Formulation Therapeutic

Agent Target In-Vitro Model In-Vivo Model Ref.

Angiopep-2 TFFYGGSRGKRNNFKTEEY PDC 3 ˆ PXT Low-density lipoprotein
receptor (LDLr) U87 glioma [180]

Angiopep-2 TFFYGGSRGKRNNFKTEEY PDC 3 ˆ DOX Low-density lipoprotein
receptor (LDLr)

Glioblastoma (U87 MG)
Hepatocarcinoma (SK-Hep-1)
Lung carcinoma (NCI-H460)

U87 glioma [180]

Angiopep-2 TFFYGGSRGKRNNFKTEEY PDC dimethylglycine
etoposide (ETO)

Low-density lipoprotein
receptor (LDLr)

Glioblastoma (U87 MG)
Hepatocarcinoma (SK-Hep-1)
Lung carcinoma (NCI-H460)

U87 glioma [180]

Angiopep-2 TFFYGGSRGKRNNFKTEEY Peptide–Ab
Conjugate Trastuzumab Low-density lipoprotein

receptor (LDLr)
HER2-positive BT-474 breast
ductal carcinoma cells

HER2-positive
intracranial
tumors in mice

[181]
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4. Summary and Conclusions

This review has focused on and compared vital parameters of several advanced targeted drug
delivery systems. We envisage that these technologies will continue to improve and demonstrate
their clinical effectiveness. These technologies are developing in parallel to other drug delivery
strategies, which also present technical challenges that need to be overcome. For example,
Antibody Drug Conjugates (ADCs) are effective drug delivery systems but present limitations
such as complexity of preparation and manufacture, irreproducibility and only modest solid tumor
penetrability [205]. Despite these drawbacks ADCs are promising therapeutic modalities and have
generated intense interest in recent years. Currently, there are 271 ongoing clinical trials involving
ADCs (www.clinicaltrials.gov), suggesting that in the coming years at least several more ADCs
will receive regulatory approval. Nanoparticle–drug conjugates (NDCs) are another example.
These targeted vehicles successfully extend the circulation time and improve the accumulation and
uptake of drugs in tumors due to the Enhanced Permeability and Retention (EPR) phenomenon
associated with tumor vasculature. In addition, nanoparticles can be utilized as nano-theranostics,
by incorporation of therapeutic and diagnostic agents allowing for simultaneous detection and
treatment of tumors [206]. However, NDCs are prone to the same challenges as ADCs, including
difficulties in achieving reproducible and controlled synthesis. In addition the EPR effect is
unpredictable, and there is currently a lack of a universal standard for evaluating the potent cytotoxicity
of NDCs.

Fortunately, PDCs combine the advantages of both ADCs and NDCs and obviate many of their
disadvantages. The synthetic and structure–activity relationship strategies mentioned above for
rational design and manipulation of the peptide carriers overcome perceived shortcomings of using
only linear peptides. These techniques significantly reduce their sensitivity to enzymatic degradation,
extensive renal filtration and nonspecific uptake into tissues and organs, all of which contribute
to favorable bioavailability and increased half-life in the circulation as compared to other carriers.
Another merit of PDCs is their fast and completely reproducible synthesis mostly by solid phase
chemistry, enabling their utilization in high throughput screening for rapid optimization of structural
parameters. Progress in optimization of “smart” linkers with various activation modes (enzymatic
and pH dependent), identification of novel targets and recent discoveries of new peptide carriers for
conjugation in TDD [207] will pave the way for greater insight into the contribution of these various
characteristics to PDC efficacy, safety and pharmacokinetic properties. Moreover, the development
of multi-drug PDCs therapies, namely PDCs that carry cytotoxic “cocktails” instead of single drug,
will continue to grow. In conclusion, targeted drug therapies will contribute to major developments in
cancer therapy in the near future. ADCs, NDCs and PDCs each have advantages and disadvantages
and a better understanding of these will allow a more rational design of combined targeted therapies.
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