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Abstract: Epithelial ovarian cancer (EOC) is one important cause of gynecologic cancer-related
death. Currently, the mainstay of ovarian cancer treatment consists of cytoreductive surgery and
platinum-based chemotherapy (introduced 30 years ago) but, as the disease is usually diagnosed at
an advanced stage, its prognosis remains very poor. Clearly, there is a critical need for new treatment
options, and immunotherapy is one attractive alternative. Prophylactic vaccines for prevention of
infectious diseases have led to major achievements, yet therapeutic cancer vaccines have shown
consistently low efficacy in the past. However, as they are associated with minimal side effects or
invasive procedures, efforts directed to improve their efficacy are being deployed, with Dendritic
Cell (DC) vaccination strategies standing as one of the more promising options. On the other hand,
recent advances in our understanding of immunological mechanisms have led to the development
of successful strategies for the treatment of different cancers, such as immune checkpoint blockade
strategies. Combining these strategies with DC vaccination approaches and introducing novel
combinatorial designs must also be considered and evaluated. In this review, we will analyze past
vaccination methods used in ovarian cancer, and we will provide different suggestions aiming to
improve their efficacy in future trials.
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1. Rationale for Immunotherapy in Ovarian Cancer

Epithelial ovarian cancer (EOC) is one important cause of gynecologic cancer-related death, with
an overall five-year survival rate of ~45% and an overall 10-year survival rate of 35% in the USA [1].
Globally, it is estimated that 282,741 new cases would be diagnosed with ovarian cancer in the world
in 2020, with about 66% of the cases affecting women aged <65 years [2]. Currently, the mainstay
of ovarian cancer treatment consists of cytoreductive surgery and platinum-based chemotherapy
(introduced 30 years ago) but, as the disease is usually diagnosed at an advanced stage, its prognosis
remains poor, with an overall five-year survival rate of ~45%, which drops to 28% for invasive EOC
diagnosed at stage IV [1]. There is a clear unmet need for developing new treatment approaches and
a potentially attractive approach for ovarian cancer treatment is immunotherapy [3].

It was recently demonstrated that EOC is an immunogenic tumor that can be recognized by
the host immune system [4]. Indeed, tumor reactive T cells and antibodies can be detected in the
blood, tumor and ascites of EOC patients with advanced disease [5,6]. The tumor reactive T cells
collected from patients harboring advanced ovarian cancer are oligoclonal, recognize autologous
tumor-associated-antigens (TAAs) and exhibit tumor-specific cytolytic activity in vitro [7]. In fact,
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the observed frequency of serological responses to these antigens is variable according to tumor
type, stage or grade [8]. However, in most tumors the tumor-reactive lymphocyte populations show
impaired antitumor function in vivo, due to several mechanisms. Ovarian tumors present multiple
mechanisms of immune evasion, which consequently reduce the efficacy of immunotherapy. Thus,
recruitment of Tregs in the tumor microenvironment in ovarian carcinoma confers immune privilege
and is associated with poor prognosis and reduced survival [9,10]. Other mechanisms include high
expression of PD-L1 and IDO production, which are independently associated with poor prognosis
in EOC [11–13]. Furthermore, it has been demonstrated that both local and systemic dysfunction
of plasmacytoid Dendritic Cells (pDCs) play a critical role in the progression of ovarian cancer via
induction of immune tolerance [14].

Immunotherapies include active, passive or immunomodulatory strategies; although some
overlap exists among them [15]. Active strategies (such as vaccines or adoptive-cell therapies with
autologous T-cells) aim to increase the ability of the patients’ own immune system to mount an immune
response against their own tumor. The first type of immunotherapy used in oncology was “Coley’s
toxin” [16], an adjuvant which induces in vivo vaccination. Vaccination strategies indeed represent
an attractive approach in ovarian cancer treatment, as they are associated with minimal side effects or
invasive procedures.

Vaccination strategies for the prevention of infectious diseases led to major medical successes,
such as global smallpox eradication [17]. Prophylactic vaccines against viruses with known oncogenic
potential (such as HPV or HBV) have a demonstrated effect in preventing cancer development [18],
although they do not confer any benefit on pre-existing infections or lesions [19]. For this reason,
therapeutic vaccines against established lesions have been developed, yet they have a long history of
low efficacy that has created a negative image on immunotherapy. First, it should be kept in mind
that prophylactic and therapeutic vaccines have different goals: in prophylactic vaccines, the aim is
to trigger a good humoral response, so that effective antibodies are produced, able to bind to and
inactivate the targeted pathogen when it enters the blood or mucosal surfaces. Yet, a therapeutic
vaccine should be able to induce cell mediated immunity, so that immune cells are activated to identify
and destroy their cellular targets in the affected tissues. Then, understanding the reasons for the
limited efficacy of therapeutic vaccines to date will allow the development of new approaches that
may aid to overcome the barriers to adequate anti-tumor activation. Some of these new strategies are
currently being developed and tested in ovarian cancer with encouraging results.

2. Therapeutic Vaccines in Ovarian Cancer

Cancer vaccines can be classified in different categories, according to the method of choice to
deliver the selected TAAs; thus, cell-based vaccines, peptide/protein, epigenetic, and genetic vaccines
have been developed so far [20] (see Table 1). Vaccines can be given alone or in combination with
different adjuvants, such as cytokines or other stimulatory factors [21]. Furthermore, different routes
for immunization can be used, which contribute differently to immune cells activation: vaccine
injections can be subcutaneous, intradermal, intranodal, intraperitoneal, or intravenous [22]. Finally,
another consideration is the vaccination schedule, in terms of dose, number of injections and time, to
initiate and maintain the appropriate immune response. More studies are warranted to determine
which of those elements (alone and in combination) would offer optimal clinical efficacy [23]. Here, we
will summarize the results obtained to date with all types of vaccination strategies in ovarian cancer
with the intent to provide a general overview allowing undertaking more rational decisions (Table 1).
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Table 1. Published results from therapeutic vaccines tested in ovarian cancer from 2000 to date.

Vaccine Class Vaccine Name Description Clinical
Development:
Phase

No. of Pts
(OvCa Pts)

Clinical Outcome

DCs APCEDEN DCs loaded with
whole-tumor lysate

Phase II; (Bapsy,
2014 [24])

38 pts
(9 OvCa pts)

No CR observed; ORR
was 28.9% (11/38) and
irRC was 42.1% (16/38)

OCDC DCs loaded with
autologous oxidized
tumor lysate

Pilot; (Chiang,
2013 [25])

5 OvCa pts 2/5 pts (40%)
demonstrated
PFS2 > PFS1

DCVax-L DCs loaded with
autologous oxidized
tumor lysate, combined
with bevacizumab and
metronomic Cy

Pilot; (Kandalaft,
2013 [26])

6 OvCa pts 4/6 pts (66%) achieved
clinical benefit
(including 2 PR and
2 SD)

DC-wtl DCs loaded with crude
whole tumor lysate

Phase I;
(Hernando,
2002 [27])

8 pts
(6 OvCa pts)

Data suggested
a positive correlation
with disease stabilization

DC-MFP DCs loaded with
mannan-MUC1 fusion
protein (MFP)

Phase I;
(Loveland,
2006 [28])

9 pts
(2 OvCa pts)

2/9 pts (22%) in
progression at entry
were stable after therapy,
for at least 3 years

Lapuleucel-T,
Neuvenge, APC
8024

DCs loaded with BA7072,
a fusion protein
HER-2/neu linked to
GM-CSF

Phase I;
HER-2+ tumors;
(Peethambaram,
2009 [29])

18 pts
(4 OvCa pts)

2/18 pts (11%) had SD
lasting > 48 weeks

HER-2/neu; MUC1
peptides

DCs loaded with synthetic
peptides derived from
HER-2/neu or MUC1
peptides

Phase I;
HER-2+ or
MUC1+ tumors;
(Brossart,
2000 [30])

10 pts
(3 OvCa pts),
HLA-A*02+

No data

hTERT;
HER-2/neu;
PADRE peptides

DCs loaded with synthetic
peptides derived from
hTERT; HER-2/neu;
PADRE

Phase I/II;
(Chu, 2012 [31])

14 OvCa pts,
HLA-A*02+

3 years-OS was 90%;
3 years-PFS was 80%
(with Cy)

WT-1; MUC1;
CA125

DCs loaded with synthetic
peptides derived from
WT-1; MUC1; CA125

Phase II;
(Kobayashi,
2014 [32])

56 OvCa pts DCR and ORR were 29%
and 3.6%, respectively

Whole
tumor cells

Fang vaccine,
Vigil™ Ovarian,
Gemogenovatucel-T

Autologous tumor cells
eletroporated with FANG
vector, a plasmid encoding
GM-CSF and a bi-shRNA
targeting furin convertase,
thereby downregulating
TGF-b1 and b2

Phase I; (Senzer,
2012 [33])

27 pts
(5 OvCa pts)

23/26 pts (88%) showed
SD at month 2 or later

Listeria monocy
togenes

CRS-207 Lm strain engineered to
express human mesothelin

Phase I; (Le,
2012 [34])

17 pts
(2 OvCa pts)

37% of subjects
lived ě 15 mo (months)

Peptides/
proteins

Mixture of
peptides
(comparison)

Predesigned peptides vs.
PPV (personalized peptide
vaccine); admixed with
Montanide ISA-51

Pilot; (Tsuda,
2004 [35])

14 pts
(5 OvCa pts),
HLA-A*02+ or
HLA-A*24+

No clinical response
with predesigned; 3/5
cervical cancer pts (60%)
showed objective tumor
regression

Mixture
OvCa-associated
peptides

OvCa-associated peptides
admixed with Montanide
ISA-51 and GM-CSF

Pilot; (Morse,
2011 [36])

15 pts
(8 OvCa pts);
HLA-A*02+

With median follow-up
of 492 days, 4 OvCa pts
had relapsed and 3 died
(expected relapse rate
18–22 mo in 75% of pts)

Mixture of
different peptides

OvCa-associated peptides
plus a helper peptide from
tetanus toxoid protein,
admixed with Montanide
ISA-51 and GM-CSF

Phase I;
(Chianese-Bullock,
2008 [37])

9 OvCa pts,
HLA-A*01+,
-A*02+ or
A*03+

One participant
remained disease-free at
19 months after active
treatment

HER-2/neu Epitope p369–377,
admixed with GM-CSF

Phase I;
HER-2/neu++ Tu
(Knutson,
2002 [38])

6 pts
(2 OvCa pts),
HLA-A*02+

No data

- Multiple peptides derived
from either the
extracellular domain
(ECD) or the ICD,
admixed with GM-CSF

Phase I;
HER-2/neu++ Tu
(Disis1, 2002 [39])

38 pts
(5 OvCa pts),
HLA-A*02+

No data

- Peptides from the ICD,
admixed with GM-CSF

Phase I;
HER-2/neu++ Tu
(Disis, 2002 [40])

10 pts
(1 OvCa pts)

No data
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Table 1. Cont.

Vaccine Class Vaccine Name Description Clinical
Development:
Phase

No. of Pts
(OvCa Pts)

Clinical Outcome

Peptides/
proteins

- Multiple peptides derived
from either the ECD, the
ICD, or both, admixed
with GM-CSF

Phase I;
HER-2/neu++ Tu
(Disis, 2004 [41])

38 pts
(5 OvCa pts)

No data

HER-2/neu-ICD ICD protein, aas 676–1255,
His-tagged

Phase I;
HER-2/neu++ Tu
(Disis, 2004 [42])

29 pts
(1 OvCa pt)

No data

NY-ESO-1 Epitope p157–170,
admixed with Montanide
ISA-51

Phase I; (Odunsi,
2007 [43])

18 OvCa pts,
HLA-DPB1
*0401+ or
*0402+

Median PFS of 19.0 mo
(vs. 16–18 weeks in pts
receiving 2nd line
chemo)

- Epitope p157–165,
admixed with Montanide
ISA-51

Phase I;
NY-ESO-1+ or
LAGE-1+ Tu;
(Diefenbach,
2008 [44])

9 OvCa pts,
HLA-A*02:01+

Median PFS of 13 mo.
3/9 pts (33%) remained
in CR at 25, 38, and
52 mo

NY-ESO-1 OLP NY-ESO-1 overlapping
long peptides, +/´
Montanide and Poly-ICLC

Phase I;
(Sabbatini,
2012 [45])

28 OvCa pts
(HLA indep)

Pts NY-ESO-1+ receiving
OLP + Montanide +
Poly-ICLC showed
delayed time to
recurrence

NY-ESO-1 protein NY-ESO-1 protein +
Montanide + CM-CSF
+/´ decitabine

Phase I; (Odunsi,
2014 [46])

12 OvCa pts 5/10 (50%) pts had SD
(median duration
6.3 mo), and 1/10 (10%)
had PR (duration 5.8 mo)

P53 Wt p53: 264–272 peptide
admixed with GM-CSF
and Montanide ISA-51,
either SC (Arm A) or
loaded into DCs (Arm B)

Phase II;
p53++ Tu;
(Rahma,
2012 [47])

21 OvCa pts,
HLA-A*02:01+

No significant difference
between arms in median
OS (40.8 mo vs. 29.6 mo,
p = 0.26), nor in PFS
(4.2 mo vs. 8.7 mo,
p = 0.94)

P53-SLP Ten synthetic peptides
25–30 aa long overlapping
peptides (aas 70–248 in
wt-p53) admixed in
Montanide ISA-51

Phase II; (Leffers,
2009 [48])

18 OvCa pts
(HLA indep)

2/18 (11%) of pts with
SD, not clearly
attributable to
vaccination

- - Phase II; (Leffers,
2012 [49])

20 OvCa pts
(HLA indep)

No difference in survival
between p53-SLP treated
pts and historical
controls (median 44.0 mo
vs. 47.4 mo, p = 0.601)

- Same, but two days before
vaccination, 300 mg/m2

Cy i.v. was given

Phase II; (Vermeij,
2012 [50])

10 OvCa pts
(HLA indep)

No data

PPV Personalized peptide
vaccine: mixture of 4
peptides (from a panel of
31) previously tested for
immunity in each pt,
admixed in Montanide
ISA51VG

Phase II;
(Kawano,
2014 [51])

42 OvCa pts
(HLA-dep)

Median survival time
(MST) was 39.2 mo in
platinum-sensitive pts,
vs. 16.2 mo in
platinum-resistant

Flt3-L Truncated glycoprotein
Flt3-L (Fms-like tyr
kinase-3-ligand, which
increases DCs and
monocytes), either i.p.
or s.c.

Pilot; (Freedman,
2003 [52])

15 pts
(9 OvCa pts)

No objective responses
were observed

Genetic
vaccines

PANVAC-C +
PANVAC-V

Poxviral vaccine:
CEA-MUC1-TRICOM
(B7.1, ICAM-1, LFA-3)
engineered into vaccinia
(PANVAC-V) as prime and
fowlpox (PANVAC-C) as
booster vaccination

Pilot;
CEA+ or MUC1+
Tu; (Gulley,
2008 [53])

25 pts
(3 OvCa pts)

1 OvCa pt (1/25: 4%)
had durable (18 mo)
clinical response

rV-NY-ESO-1 +
rF-NY-ESO-1

NY-ESO-1 engineered into
vaccinia (rV) as prime and
fowlpox (rF) as booster
vaccination

Phase I;
NY-ESO-1+ Tu;
(Jager, 2006 [54])

36 pts
(1 OvCa pt)

7/9 pts with stage
II/IV MEL survived
17–63+ mo
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Table 1. Cont.

Vaccine Class Vaccine Name Description Clinical
Development:
Phase

No. of Pts
(OvCa Pts)

Clinical Outcome

Genetic
vaccines

- - Phase II;
NY-ESO-1+ Tu;
(Odunsi,
2012 [55])

47 pts
(22 OvCa pts)

In OvCa pts, median
TTP was 21 mo and
median OS was 48 mo

Epigenetic
vaccines

Theratope® Synthetic Syalyl-Tn-KLH
(STn: carbohydrate
associated with the MUC1
mucin), admixed with
Detox-B, after autologous
transplantation

Phase II/III;
MUC1+ Tu;
(Holmberg,
2003 [56])

70 pts
(17 OvCa pts)

Decreased risk for
relapse and death
(p = 0.07 and p = 0.1
respectively), as
compared to
transplanted pts only

Lewis(y) Synthetic Lewis(y)
pentasaccharide coupled
to KLH (Ley:
carbohydrate epitopes
overexpressed in OvCa),
admixed with QS-21

Phase I;
(Sabbatini,
2000 [57])

25 OvCa pts Median TTP was 6 mo
(2–17 mo)

Abbreviations: aas, aminoacids; CR, complete response; DCR, disease control rate (SD + PR + CR); irRC,
immune-related response criteria; mo, months; MST, median survival time; ORR, objective response rate
(PR + CR); OS, overall survival; PD, progressive disease; PFS, progression free survival; PR, partial response;
Pt(s), patient(s); SD, stable disease; TTP, time to progression. Source: PubMed search using the terms “ovarian
cancer clinical trial” plus “vaccine” or “active immunotherapy”, manually selecting the relevant publications.
Note: the HLA serotypes have been adapted to the new nomenclature established on 2010 by the WHO Naming
Committee for Factors of the HLA System [58].

2.1. Cell-Based Vaccines

Cell-based vaccines can use DCs, which play a critical role in the interface between innate and
adaptive immunity [59]. Their function consists in the uptake, process and presentation of antigenic
peptides (either from pathogens or host-derived) to naïve T cells in peripheral tissues, and they
constitute the most important antigen-presenting cell (APC) population for activating antitumor T-cell
responses. For this reason, they are the most frequently used cellular therapeutics in clinical trials, also
because DC vaccination has demonstrated a good safety profile, rarely presenting immune-related
toxicities [60], and it is associated with preserved quality of life of cancer patients [61]. DCs can be
given alone after cytotoxic therapy (either chemo or radiotherapy, which increase antigen availability
in vivo [62]), or alternatively they can be loaded ex vivo with different antigens, such as whole tumor
lysate, peptides, proteins, or genetic material delivering the desired antigen (transfected/electroporated
DNA, RNA or transduced virus), prior to reinfusion into the patient.

The advantage of whole cells as a source for antigens is that they will present to the immune
system the complete repertoire of TAAs from that particular tumor, including the specific neo-antigens,
therefore predicting a better immune response [22]. In this direction, in a meta-analysis including
about 1800 patients, those who were immunized with whole tumor vaccines had a significantly
higher objective response (8.1%) than patients who were immunized with defined tumor antigens
(3.6%) [63]. Ovarian cancer lends itself to surgical intervention during the course of disease, including
for the recurrent setting. This enables whole tumor vaccination approaches, since tumor cells can be
easily recovered through cytoreductive surgery. Indeed, we as well as others have shown clinical
benefit in recurrent advanced ovarian cancer patients vaccinated with DCs loaded with whole tumor
lysate [24,25]. In our study, we treated five recurrent ovarian cancer patients with DCs loaded
with hypochlorus acid-oxidized whole tumor lysate (inducing primary necrosis and enhancing the
immunogenicity of lysed tumor cells), administered intranodally. We observed potent T-cell responses
against known ovarian tumor antigens, and two patients presented durable PFS of 24 months or more,
with only few grade 1 toxicities. We believe this is an approach that warrants further exploration [25];
thereby, our group has continued this pilot clinical study in heavily pretreated recurrent ovarian cancer
patients to test vaccine injected intranodally, alone or in combination with immunomodulatory therapy
(NCT01132014).
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An example of a whole tumor cell vaccine in ovarian cancer is gemogenovatucel-T (FANG vaccine);
it consists of autologous tumor cells eletroporated with FANG vector, a plasmid encoding GM-CSF
(granulocyte macrophage-colony stimulating factor; a potent stimulator of dendritic cell maturation)
and a bi-shRNA targeting furin convertase, thereby downregulating endogenous immunosuppressive
growth factors TGF-β1 and β2 [33]. This vaccine has been tested in a Phase I study including 27 patients
with advanced or metastatic non-curable solid tumors of different types (5 ovarian cancer), and in
26 of 27 patients evaluable for tumor response, 23 achieved SD at Month 2 or later as best response.
This vaccine is currently being tested in a Phase II/III study in women with stages III/IV high grade
serous/endometrioid ovarian, fallopian tube or primary peritoneal cancer (NCT02346747).

Other approaches use DCs loaded with specific antigens, either peptides or proteins. The first
validation of active immunotherapy as a viable approach to cancer treatment was the FDA approval
of Provenge® (sipuleucel-T) for advanced prostate cancer. Provenge® is an autologous DC-based
vaccine (developed by Dendreon), in which autologous peripheral blood mononuclear cells (PBMC)
are matured with a cytokine and a tumor-derived differentiation agent, and then pulsed with a fusion
protein composed of prostatic acid phosphatase (PAP; a tumor-associated differentiation antigen)
linked to GM-CSF prior to reinfusion into patients [64]. In the pivotal Phase III trial of this vaccine in
men with metastatic castration-resistant prostate cancer, clinical results showed little evidence of tumor
shrinkage or delay in disease progression [65]. Nevertheless, a 4.1 month improvement in median
survival was achieved (25.8 vs. 21.7 months), which was considered significant by the FDA in a patient
population that has almost no other effective therapeutic option. A similar vaccine was prepared and
tested by Dendreon (lapuleucel-T or Neuvenge), consisting of DCs loaded with a fusion protein of
HER-2/neu linked to GM-CSF. This vaccine was targeted to patients with advanced adenocarcinomas
of the breast, ovary, endometrium, or gastrointestinal tract with HER-2/neu positive tumors, yet in
a Phase I study including 18 patients, only two (11%) experienced stable disease lasting more than
48 weeks [29].

2.2. Peptide/Protein-Based Vaccines

The broad use of autologous cancer vaccines, including DCs or whole tumor cells, is limited
by both the availability of patient’s samples or specimens and the complex procedure of preparing
individualized vaccines and, from this point of view, recombinant vaccines have a clear advantage.
Peptide/protein-based vaccines are usually based on defined TAAs and administered together with
an adjuvant or immune modulator to improve their uptake by endogenous DCs. Unfortunately, many
initial attempts were compromised by a poor understanding of the mechanism of immunization:
frequently patients were treated with vaccines consisting of short peptides, binding exactly to HLA
class I molecules (usually HLA-A*02), which do not induce CD4+ T cells, resulting in short-lived
CD8+ T cell responses, often even without an effective adjuvant [66]. A better understanding of the
importance and function of DCs in stimulating T cell responses has led to a more rational design
of current vaccines. For instance, the use of peptides (~20 mer) somewhat longer than the optimal
MHC class I-binding molecules (10–12 mer), in the presence of a suitable DC-activating adjuvant, are
thought to be more efficient at generating effector T cells, due to additional processing required for
long peptides to allow loading in DC HLA molecules, leading to potential dual stimulation of CD4+ T
as well as CD8+ T cells [67]. However, results observed with this type of long peptides are still far from
clinically relevant [45,48–50]. On the other hand, the use of full length proteins (in principle available
for complete processing by DCs) has given mixed results to date [42,46]

In ovarian cancer, many different peptides targeting HER-2/neu have been tested. HER-2/neu is
a member of the epidermal growth factor receptor (HER/EGFR/ERBB) family, whose amplification
in breast cancer is associated with increased aggressiveness, therefore becoming an important target
of therapy for about 20%–30% of patients [68]. HER-2/neu overexpression/amplification has been
reported in ovarian cancer [69], and consequently it was considered a potential target for cancer
vaccination. However, in most studies using single or mixed HER-2/neu peptides, no immunogenicity
was observed [38–41], and no clinical data was obtained. Other vaccine targets in ovarian cancers using
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peptides have been tested [43–45,47–50], generally with low efficacy in the clinic. The best results in
ovarian cancer using peptide-based vaccines have been obtained using a personalized peptide vaccine
(PPV), in which a mixture of 4 peptides (from a panel of 31) previously tested for immunity in each
patient was admixed in Montanide ISA51VG and subcutaneously administrated. In this study [51],
median survival time (MST) was 39.2 months in platinum-sensitive patients, compared to 16.2 months
in platinum-resistant patients, whereas the corresponding values in standard of care patients are
18–30 months (platinum-sensitive) vs. 8–12 (platinum-resistant). Interestingly, it was observed that
PPV induced not only peptide-specific immunological boosting in response to the vaccinated peptides
but also promoted the spreading of immune responses to the other TAA-derived peptides, which
together resulted in the prolongation of OS. Results here indicate that vaccination strategies in which
the vaccine antigens are selected and administered based on the pre-existing host immunity before
vaccination can prolong OS in advanced ovarian cancer patients.

2.3. Genetic Vaccines

Genetic vaccines (based on DNA, RNA or virus) can be used to induce expression in vivo of the
selected TAAs in somatic (keratinocytes, myocytes) or dendritic cells infiltrating muscle or skin at
the vaccination site, resulting in cross-priming or direct antigen-presentation to infiltrating T-cells.
Genetic vaccines present the advantage of easy delivery of multiple antigens in one immunization
and activation of various arms of immunity, in combination with cheaper and more standardized
manufacturing [70].

In ovarian cancer, two viral vaccines have been tested so far. One group has focused on
the “cancer-testis” antigen NY-ESO-1, engineered into vaccinia (rV) as prime and fowlpox (rF) as
booster vaccination. In a Phase II study including 22 patients with advanced NY-ESO-1-expressing
ovarian cancer at high risk of recurrence, showed encouraging results, as the median time to disease
progression or recurrence was 21 months (95% CI, 16–29 months) and median OS was 48 months (CI
non-estimable) [55]. A second genetic vaccine tested in ovarian cancer (PANVAC-C + PANVAC-V) is
a Poxviral vaccine, in which the CEA-MUC1-TRICOM (B7.1, ICAM-1, LFA-3) was engineered into
vaccinia (PANVAC-V) as prime and fowlpox (PANVAC-C) as booster vaccination. However, clinical
results from a Phase I clinical trial including 25 patients with CEA- or MUC1-expressing metastatic
cancers who had progressive disease following standard chemotherapy (three of them with ovarian
cancer) showed limited evidence of clinical activity [53]. Currently, several clinical trials are testing
different genetic vaccines in ovarian cancer treatments (see Table 2).

Table 2. Vaccines for ovarian cancer in clinical development (January 2016).

Type Product Name Description Clinical Development:
Phase
Indication
NCT

DC DCVAC/OvCa DCs activated with an ovarian tumor cell lysate Phase II
OC
NCT02107378

FRalphaDC vaccine DCs loaded with five immunogenic peptide
epitopes, derived from the tumor-associated
antigen human folate receptor alpha (FR alpha
or FOLR1), including FR30, FR56, FR76, FR113,
and FR238

Pilot
OC
NCT02111941

Ontak + DC vaccine Ontak (denileukin diftitox): a cytotoxic
recombinant protein consisting of interleukin-2
(IL-2) protein sequences fused to diphtheria
toxin; the use of Ontak is followed by
autologous DC vaccine to stimulate tumor
killing immune cells

Phase II
OC
NCT00703105

Ovapuldencel-T DCs loaded with autologous, lethally
irradiated cancer cells and mixed with GM-CSF

Phase II
OC
NCT02033616

Dendritic cell/tumor
fusion vaccine

DC/tumor fusion vaccine with GM-CSF and
imiquimod (cytokine production stimulation)

Phase II
OC
NCT00799110
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Table 2. Cont.

Type Product Name Description Clinical Development:
Phase
Indication
NCT

Whole tumor cells Fang vaccine,
Vigil™ ovarian,
Gemogenovatucel-T

Autologous tumor cells eletroporated with
FANG vector, a plasmid encoding GM-CSF and
a bi-shRNA targeting furin convertase, thereby
downregulating transforming growth factor
(TGF)-β1 and β2

Phase II/III
OC
NCT02346747

Peptide/protein OVax Autologous ovarian cancer cell peptide
antigens conjugated to the hapten
2,4-dinitrophenol (DNP)

Phase I/II
OC
NCT00660101

HER-2 peptide vaccine Combination of MVF-HER-2 (597–626) and
MVF-HER-2 (266–296) emulsified with
nor-MDP and ISA 720

Phase I
Solid Tumors
NCT01376505

FBP E39/J65 Two Folate Binding Protein Peptide Vaccines
(E39 and J65)

Phase I/II
BC/OC
NCT02019524

WT2725 Peptide derived from Wilms tumor gene 1
(WT1) protein

Phase I
WT1++ Tumors
NCT01621542

DSP-7888 Dosing
emulsion

WT1 protein-derived peptide vaccine Phase I
Different Tumors
NCT02498665

OC-L Trial to test the addition of 2 investigational
agents, Montanide and poly-ICLC (a TLR3
agonist) to a backbone of autologous oxidized
tumor cell lysate vaccine (OC-L) administered
with GMCSF

Phase I
OC
NCT02452775

Genetic Ad-sig-hMUC-1/
ecdCD40L

Ad-sig-hMUC-1/ecdCD40L adenoviral vector
encodes a fusion protein in which the hMUC-1
epithelial antigen is attached to the CD40L
(CD40 ligand), which binds to CD40 on DCs,
stimulating internalization of hMUC-1 Ag

Phase I
Epithelial Ca
(LC/BC/OC/PC/CRC)
NCT02140996

AdV-tk + valacyclovir AdV-tk: adenoviral vector expressing the
herpes simplex virus thymidine kinase
(HSV-tk) gene, which, when administered in
conjunction with a synthetic acyclic guanosine
analogue (valacyclovir), possesses potential
antineoplastic activity. Release of TAAs by
dying tumor cells may then stimulate an
antitumor cytotoxic T lymphocyte (CTL)
response

Phase I
Epithelial Ca
(LC/MES/BC/OC)
NCT01997190

ID-LV305 ID-LV305: An engineered lentiviral vector
targeting DCs and containing nucleic acids
encoding for the human tumor-associated
cancer-testis antigen NY-ESO-1

Phase I
MEL/NSCLC/OC/SAR
NCT02122861

p53MVA p53MVA vaccine: modified vaccinia virus
Ankara expressing tumor protein p53

Phase I
OC
NCT02275039

Trovax® Trovax®: modified vaccinia virus Ankara
(MVA) vector, encoding the 5T4 antigen

Phase II
OC
NCT01556841

Epigenetic OPT-822/OPT-821 OPT-822/OPT-821: Two carbohydrate-based
immunostimulants comprised of the Globo H
hexasaccharide 1 (Globo H) epitope linked to
KLH, which may stimulate a cytotoxic
T-lymphocyte (CTL) response against Globo
H-expressing tumor cells

Phase II
OC
NCT02132988

Abbreviations: BC, breast cancer; CRC, colorectal cancer; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4;
i.p., intraperitoneal; IDO1, indoleamine 2,3-dioxygenase; LC, lung cancer; MEL, melanoma; MES, mesothelioma;
moAb, monoclonal antibody; mOC, metastatic ovarian cancer; NSCLC, non-small cell lung cancer; OC, ovarian
cancer; PCRC, pancreatic cancer; PC, prostate cancer; PD-(L)1, programmed death-(ligand)1; ROC, recurrent
ovarian cancer; SAR, sarcoma; TAA, tumor-associated antigen; VEGF(R), vascular endothelial growth factor
(receptor); Note: This is not a complete list of all immunotherapies in clinical development in ovarian cancer.
Source: ClinicalTrials.gov.
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2.4. Epigenetic Vaccines

Glycosylation is the most diverse post-translational protein modification, playing a key
role in a wide range of biological processes. It has been shown that epigenetic regulation of
glycosyltransferases in cancer cells results in the creation of novel glycan structures [71–73], and this
correlates with the fact that most tumor cells present altered glycosylation relative to the normal tissue
from which they derive [74]. Altered glycosylation has been proposed to be one of the mechanisms
used by cancer cells to evade the host immune response, since cellular presentation of glycopeptide and
glycolipid antigens can be potent modulators of T cells [75]. Antiglycan vaccination strategies against
tumors were proposed early [76], and they have subsequently been developed, mostly against the
epithelial MUC1. However, due to poor immunogenicity, glycan-based vaccines need to be conjugated
to helper T epitopes, such as keyhole limpet hemocyanin (KLH) [77].

In ovarian cancer, two antiglycan vaccines have been tested: one against Lewis(y) (Ley), and
the Theratope vaccine, targeting Syalyl-Tn (STn). Ley is a carbohydrate antigen overexpressed in
ovarian cancer [78]. In a phase I study, 25 patients with persistent or recurrent ovarian, fallopian
tube, or peritoneal cancer of any stage or grade at diagnosis were vaccinated with a synthetic Ley

pentasaccharide coupled to KLH carrier protein, together with the QS-21 immunological adjuvant.
At a median of 18 months follow-up, 19 of 24 patients had either biochemical or measurable disease
recurrence. The median TTP was six months (range 2–17 months), with five patients in CR at
18 months of follow-up. Theratope® is a Sialyl-Tn—keyhole limpet hemocyanin (STn-KLH) vaccine
that incorporates a synthetic STn antigen mimicking the unique tumor-associated STn carbohydrate,
designed to stimulate tumor antigen-specific immune responses in patients with mucin-expressing
tumors. STn expression is associated with a poor prognosis in metastatic breast [79] and ovarian cancer
patients [80], among others. Theratope® vaccine was tested in a Phase II/III trial including 70 patients
with either advanced breast or ovarian cancer expressing mucin. Vaccination was performed after
autologous stem cell transplantation, considering that patients with low tumor burden would be more
likely to respond immunologically to a cancer vaccine. Interestingly, it was observed that vaccinated
patients had a decrease in the risk for relapse and death (p = 0.07 and p = 0.10, respectively), as compared
to patients who underwent transplantation during the same period, but were not vaccinated [56].
However, later on this vaccine failed to show any improvement in TTP nor patient survival in a big
Phase III trial reported in 2011 for more than 1000 breast cancer patients, despite a vigorous and
specific humoral response to the STn antigen [81]. A different epigenetic vaccine using the Globo
H hexasaccharide 1 (Globo H) epitope linked to KLH is currently being tested in a Phase II study
including patients with non-progressive epithelial ovarian, fallopian tube, or primary peritoneal cancer
after cytoreductive surgery and platinum-based chemotherapy (NCT02132988). Globo H is an antigen
that was identified on a variety of epithelial cell tumors of ovarian, gastric, pancreatic, endometrial,
prostate, and lung (small cell and non-small cell) origin, and selected as potential target for cancer
immunotherapy [82].

3. Improving Vaccination Strategies in Ovarian Cancer

Cancer vaccines have shown, in general, low therapeutic efficacy, probably associated with their
inability to elicit a rapid and strong T-cell response, and this has generated a great deal of criticism [83].
Similar criticisms have been addressed specifically to DC-vaccination [84]. However, a systematic
review analyzing all published clinical trials performed to document the proportion of patients who
had an objective response rate after DC vaccination in melanoma, prostate cancer, malignant glioma,
and renal cell carcinoma [85] demonstrated that, in melanoma, DC therapy had similar objective
response (8.5%) than dacarbazine (standard of care), or ipilimumab (5%–15%). In prostate cancer
patients, objective response rate was 7.1% after DC vaccination, similar to 10% of the population treated
with conventional chemotherapeutic drugs. Comparably, objective response after DC therapy was
15.6% in patients with malignant glioma, and 11.5% in advanced RCC. Interestingly, in most studies
using DC therapies an increase of at least 20% in overall survival has been documented [85], although
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many of these studies were early phase, in which survival was not the main endpoint. Therefore,
given the positive toxicity profile associated with vaccines, it is important to identify novel strategies
to increase their efficacy, ideally without inducing significant changes in toxicity. Basically, an ideal
vaccination strategy should include: (i) an adequate mixture of immunogenic antigens (ex vivo or
in vivo); (ii) either a selected maturation signal for the target DC population in vivo, or the targeted
matured DC population loaded with those antigens ex vivo; (iii) a defined route of administration to
enhance presentation to T cells; and (iv) at least one immunomodulatory agent aiming to reduce the
immunosuppressor environment imposed by the tumor [66].

3.1. Choosing the Right Antigen

In ovarian cancer, the scarcity of well characterized tumor antigens and the elevated molecular
heterogeneity of the disease [86] have represented an important limitation to finding an adequate target
antigen for vaccination. Additionally, even when a defined target is known, and vaccination induces
an immune response, evolution of the tumor selecting antigen-loss variants following vaccination
by the process of immunoediting may hinder long-term benefit [43]. This proves that single-target
immunization can result in tumor variants facilitating immune escape following initial response,
and therefore vaccination with multiple defined antigens seems crucial for achieving significant
clinical benefit.

Another possible reason for reduced efficacy is that, to date, most vaccines were targeted against
defined non-mutated self-antigens [87]. Tumors express non-mutated self-antigens (the so-called
“public” antigens) as a result of tissue or lineage-specific gene expression or gene deregulation
induced by transformation. These tumor self-antigens are male germline antigens (such as NY-ESO-1),
overexpressed antigens (as HER-2/neu) or tissue/lineage-specific antigens, which are shared both
by the tumor and the tissue they originated from (as gp100 in melanoma). For most self-antigens,
T cell reactivity against them is low by definition, due to the development of tolerance toward them,
designed to avoid undesired autoimmune events.

On the other hand, tumors express a second class of TAAs that can be recognized by T cells:
mutated neo-antigens. These neo-antigens result from the large number of mutations that happen
in tumor cells as a consequence of their inherent genetic instability; therefore, they are fully tumor
specific. Deep sequencing analysis of tumor cells has revealed that they harbor usually between
10 and few thousand private somatic mutations; most of these mutations are different even among
tumors of the same histotype [88,89]. In contrast to self-antigens, T-cell reactivity towards neo-antigens
shows a functional avidity similar to the avidity observed in anti-viral T-cells [90]. Furthermore, T-cell
response against neo-antigens is not expected to induce any autoimmune toxicity against healthy
tissues, making vaccination toward neo-antigens a very attractive option. However, neo-antigens are
mostly patient-specific, since the individual mutations found in any part of the tumors are essentially
distinct [91]. Currently, it is possible to identify the repertoire of mutation-derived epitopes (the
mutanome) present in one tumor using state-of-the-art technology, such as next-generation sequencing
(NGS) to produce a list of individual cancer mutations or prediction of epitopes binding to the
patient’s haplotype using bioinformatics’ tools (e.g., NetMHC). This implies that, based on current
knowledge, no vaccine can be designed to target shared neo-antigens in a large group of patients.
Furthermore, identification of these “private-mutations” is currently laborious, and major automation
is required for adaptation in routine practice [86]. In spite of this, a recent pilot clinical trial has
demonstrated that vaccination with DCs pulsed with neo-antigen peptides is safe and effective
in boosting neo-antigen-specific T-cells in 3 melanoma patients [92]. For these reasons, targeting
neo-antigens is a potential source for vaccine improvement, and therefore several Phase I clinical
trials have been started to test the concept of neo-antigen vaccines in cancer patients, in melanoma
(NCT01970358, NCT02035956), glioblastoma (NCT02287428, NCT02510950, NCT02149225), and breast
cancer (NCT02316457), using peptides (admixed with adjuvants) in some trials, or RNA to deliver the
neo-antigens. This principle is also applicable to ovarian cancer.
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Alternatively to the use of selected antigens, tumor antigens can be obtained directly from tumor
cells or lysates, which will include both the public and the private antigens (the neo-antigens), without
the hurdles of neo-antigen identification and preparation. In most cases, autologous tumor lysates
used in vaccine preparation are subjected to multiple freeze–thaw cycles to induce primary necrosis
of cancer cells. However, freeze–thaw induced necrosis has not demonstrated high immunogenicity,
and it has been shown to even inhibit TLR-induced maturation and function of DCs [93]. It was
also shown that induction of tumor cell stress before lysis could partially reverse lysate-induced DC
suppression, and only DCs loaded with stressed lysates afforded protection against tumor challenge
in vivo. Other approaches to improve the immunogenicity of whole tumor lysate vaccination have
demonstrated some successes in the clinic. DC vaccines using whole lysate from irradiated tumor cells
have been successfully implemented in clinical trials including melanoma, high-grade glioma, and
prostate cancer patients [94–96]. Interestingly, in a clinical trial including 18 patients with relapsed
B-cell lymphoma patients treated with a DC vaccine loaded with whole autologous tumor lysate
treated by heat shock, γ-radiation, and UV ray, 6 patients (33%) showed clinical and immunological
responses, which were positively correlated with the extent of calreticulin and heat shock protein 90
(HSP90) surface expression in the DC antigenic cargo [97]. Consistently, we are currently running
two trials in ovarian cancer where we use autologous hypochlorous acid (HOCl)-oxidized whole
tumor cells lysate vaccines after demonstrating in mouse models that HOCl-based oxidation induces
primary necrosis of tumor cells, showing superior immunogenicity as compared to UVB irradiation
and freeze–thaw cycles [25].

A potential alternative to increase antigen immunogenicity would be the combined use of DC
vaccination with oncolytic viruses, given their potential to induce Immunogenic Cell Death (ICD).
The beneficial effect of intratumoral delivery of oncolytic viruses prior to DC vaccination has been
demonstrated in different murine tumor models [98,99]. These oncolytic viruses, active in ovarian
cancer models, could be either directly injected into tumors prior to DC vaccination, or alternatively,
oncolysates could be prepared from whole tumor cells, that could be loaded into DCs for more
efficient vaccination. Finally, when using whole tumor cell extracts (either loading DCs or by direct
vaccination), immunogenicity could be enhanced by adding specific molecules, such as a fusion
protein of single-chain antibody variable fragment (scFv) mesothelin (MSLN), to Mycobacterium
tuberculosis (MTB) heat shock protein 70 (HSP70), which is a potent immune activator able to stimulate
monocytes and DCs, enhancing DC maturation and aggregation, and improving cross-priming of
T cells. Intraperitoneal injection of this bifunctional fusion protein in murine models of ovarian cancer
and mesothelioma increased tumor-specific CD8+ T-cell dependent tumor responses, significantly
enhancing survival and slowing tumor growth [100].

3.2. Providing DC Maturation Signals to Enhance T Cell Activation

One important consideration regarding T cell activation is that, in the absence of adequate DC
maturation signals, presentation of antigens to T cells may induce tolerance by production of regulatory
T cells (Treg) [101–103]. Consequently, in vaccination strategies using peptides or proteins (single or
mixtures; synthetic or whole cell lysates), either directly or pulsed onto DCs, an appropriate adjuvant
must be incorporated, in order to provide the required activation/maturation signal to DCs that
will allow them to differentiate, as well as to process and present tumor-antigen derived peptides
to T cells [104,105]. For this reason, a number of different adjuvants are currently available, such as
Toll-like receptor ligands, which play a key role in DC maturation [21]. However, the best adjuvant
choice is still not defined. To this end, we are currently running a trial in ovarian cancer (NCT02452775)
comparing OC-L vaccine alone with the addition of either Montanide (a water-in-oil emulsion
possessing an immune stimulatory effect) or poly-ICLC alone (a TLR-3 agonist able to upregulate
genes involved in innate immune pathways including IFN-α, IFN-β, IFN-γ upon administration
in healthy volunteers [106]). In a previous pilot clinical study with ovarian cancer patients, we
have also demonstrated that LPS-activated DCs produced high levels of Th-1 polarizing cytokines
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including IL-12p70 and CXCL10, as well as stimulated potent polyclonal tumor T cells in patients [25].
Other TLR agonists with potential interest in ovarian cancer vaccines are imiquimod, motolimod, or
CpG-oligodeoxynucleotides (ODNs). Imiquimod is a TLR7 agonist approved by the FDA for topical
use in basal cell skin cancer, which has been shown to induce IFN-α and other cytokines [107], as well
as to efficiently activate DC maturation [108]; it has been successfully used as an adjuvant for NY-ESO-1
protein for treating metastatic melanoma [109]. Motolimod (VTX-2337) is a TLR8 agonist which is able
to stimulate production of TNF-α and IL-12 from monocytes and myeloid DCs, and stimulates IFN-γ
production from NK cells [110]; motolimod has been tested for dose finding in a clinical trial including
patients with advanced solid tumors and lymphoma [111], and is currently being tested in patients
with recurrent ovarian cancer, in combination with doxorubicin (NCT01666444).

Unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, which are relatively common in
bacterial and viral DNA but are suppressed and methylated in vertebrate DNA, are recognized by and
able to activate TLR9. Several synthetic CpG-ODNs have been developed for cancer treatment [112].
In an ovarian preclinical model, CpG-ODNs have been tested as adjuvants in combination with DCs
electroporated with whole tumor cell RNA, and found to enhance their efficacy [113]. Similarly, in
a murine glioblastoma model, 55% of mice vaccinated with CpG/lysate combination demonstrated
over two times greater median survival compared to mice treated with CpG only, tumor lysate only
or no treatment (p < 0.05) [114]. Furthermore, CpG-ODNs can synergize with other TLR agonists to
activate more than one DC subset, such as flagelin (a TLR5 agonist, leading to activation of pDCs and
dermal DCs) [115], or poly-ICLC, a combination leading to Langerhans cells activation with strong
production of IL-6 and IL-12 and enhanced antitumor immunity [116].

3.3. Targeting the Right DC

In DC vaccination strategies, another important consideration to increase immunogenicity is
the choice of the DC subset. In most immunotherapy trials, monocyte-derived DCs are used, which
are differentiated ex vivo with recombinant GM-CSF and IL-4 [117]. These mature DCs are efficient
phagocytes of antigens, able to produce high IL-12 upon activation. Their major advantage is that they
can be easily manipulated before infusing them into patients. However, the ex vivo production of these
DCs is labor intensive and costly. One attractive alternative is to specifically target DCs in vivo with
appropriate tumor antigens, activating them to elicit potent anti-tumor T cell responses. In the immune
system, hematopoietic stem cells (HSCs) differentiate into common lymphoid progenitors (CLPs)
and common myeloid progenitors (CMPs). CMPs subsequently differentiate into monocytes and
pre-DCs in the bone marrow. Both monocytes and pre-DCs enter the blood and migrate to lymphoid
organs and peripheral tissues, where they can differentiate into lymphoid DCs and tissue-resident
DCs [118]. Differentiated DCs can be classified in different subsets, according to their phenotype,
receptor expression, chemokine and cytokine production, tissue location, and the type of immune
response they induce. Ideally, we could use specific adjuvants, as previously discussed, to selectively
activate in vivo one or more DC subsets by their surface receptors. For instance, TLR7 and TLR9
are uniquely expressed in plasmacytoid DCs (pDCs) [119], and they can be activated to become
potent secretors of IFN-α and -β with imiquimod and CpG-ODNs, respectively [120,121]. Langerhans
cells present TLR3, and therefore can be activated using poly-ICLC; and dermal DCs present TLR4,
thereby they can be activated with monophosphoril A (MPLA), which is a derivative of LPS with
lower toxicity. Lastly, blood and lymph node DCs expressing TLR8 can be activated using motolimod.
However, targeting DCs in vivo one would have less control over the quality and magnitude of the
anti-tumor response.

Additionally, selection of the administration route for vaccination can also have an effect in the
effectiveness of DC maturation process. Traditionally, the routes used for vaccination against many
infectious diseases have been subcutaneous (s.c.) and intramuscular (i.m.). However, different studies
demonstrate that the intradermal (i.d.) route is more effective in inducing protective immunity, even
inducing seroconversion in subjects unresponsive to i.m. HBV vaccination [122]. This is probably due
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to the fact that the dermis contains a much larger population of DCs compared to subcutaneous fat and
muscles, as well as the extensive network of lymphatic vessels present in the dermis, which will favor
an effective loading of antigen on DCs and their subsequent transport to draining lymph nodes for
presentation to T cells. Alternatively, direct administration of antigens into the regional lymph node
(intranodally, i.n.) is perhaps the most effective way to ensure maximum display of antigens to DCs,
which will not have to migrate after antigen loading. Different routes of antigen-coding mRNA delivery
has been analyzed in a mouse model, showing that following intranodal injection, resident DCs in the
nodes selectively took up the mRNA, inducing potent CD4+ and CD8+ T cell responses after repeated
i.n. injections in tumor-bearing mice, which was not observed with subcutaneous, intradermal, or
near nodal administrations [123]. However, a different possibility is direct antigen administration to
tumor-infiltrating DCs (TIDCs), which have been documented in different types of cancers, including
ovarian cancer [124], although their function is not yet well characterized. Interestingly, in a review of
54 trials using DC vaccines in melanoma performed to evaluate the relationship between clinical effects
and vaccine parameters, it was concluded that the objective (11.7%) and clinical (27.7%) responses for
the i.n. route were the highest, but the type of response did not differ significantly among the injection
routes (p = 0.40 and p = 0.64, respectively, by Kruskal–Wallis test) [125].

Another option in DC vaccination strategies to increase immunogenicity while keeping control
over the anti-tumor response would be using a different subset of DCs to be loaded ex vivo.
For instance, in some cases the use of naturally occurring DCs has been tested, such as antigen-loaded
purified plasmacytoid DCs [126]. However, whether this strategy is more efficacious than the use of
monocyte-derived DC vaccine remains to be determined [127]. Other groups are exploring the use of
Langerhans-like cells (named “IL-15 DCs”) as sources for the DC vaccines, given their strong potential
to stimulate cytotoxic T cell responses [128,129]. IL-15 DCs can be obtained by culturing monocytes
from blood in IL-15 instead of IL-4 in standard protocols, and the resulting DCs have an increased
capacity to stimulate NK cells cytotoxicity, which could be a crucial contribution in anti-tumor efficacy
of DC vaccines [130]. In this respect, we (in collaboration with other leading groups in the field)
are planning a clinical trial in ovarian cancer patients to receive an autologous vaccine comprised
of selected professional crosspriming autologous dendritic cells (XP-DC), loaded in vitro with lysate
from autologous oxidized tumor cells, administered intranodally. XP-DC are a rare subset of human
myeloid DCs, representing 0.2%–0.3% of total mononuclear monocytes and expressing BDCA-3 (a.k.a.
CD141 or thromobomodulin), which have been confirmed as functional equivalents to mouse CD8a+
family [131]. BDCA-3+ DC (XP-DC) are superior in cross-presentation of cell-associated antigens to
CD8+ T cells to induce CTL [132–134], and this cross-priming capacity of XP-DC has proven essential
for the initiation of effective CTL cell responses against tumors.

3.4. Improving the Immunocompetent Status of Vaccinated Patients

Tumor progression is generally associated with both central and peripheral tolerance mechanisms
to deplete or inactivate the relevant T cell repertoire, generating an immunosuppressive tumor
microenvironment (TME) allowing tumor cells to evade immune attack [66]. Some of the mechanisms
elaborated by tumors that have been observed in ovarian cancer include downregulation of class I
MHC molecules [135], upregulation of surface molecules that induce T cell anergy of exhaustion (i.e.,
PD-L1 [136]), releasing immunosuppressive molecules such as IDO [12], or Treg recruitment to the
TME [9]. Other cells in the TME can also release factors implicated in immunosuppression, such as
VEGF release by tumor vascular cells [137,138]; or myeloid-derived suppressor cells (MDSC) recruited
into the TME, which may release T cell inhibitors such as arginase and nitrous oxide synthase [139].
Additionally, it has recently been identified that the critical soluble mediators of type-1 immune
effector cells, IFNγ and TNFα, synergize in the induction of COX-2, the key enzyme in PGE2 synthesis,
implicated in hyperactivation of MDSC within the TME of ovarian cancer patients. Interestingly,
this negative feedback limiting type-1 responses could be eliminated by COX-2 blockade, allowing
amplification of type-1 immunity in the TME [140].
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Consistent with reduced immunocompetence associated with tumor progression, in a review
of 54 trials using DC vaccination including 967 patients with melanoma, it was observed that the
objective response rate did not differ significantly between stages III and IV, but the clinical response
differed significantly between the two groups (p = 0.03), and PD cases differed significantly between
stages II (18.8%) and IV (52.6%) and between stages III (23.1%) and IV (both p = 0.0001) [125]. Therefore,
efficacy of vaccination strategies and clinical benefit could be improved by selecting patients with
either minimal burden disease, or with NED (no evidence of disease) after debulking strategies, and
with good performance status, whenever possible.

Additionally, most patients enrolled in clinical trials involving cancer vaccines are elderly patients
with already significantly compromised immune systems, due to immunosenescence [141]. This fact
could contribute to the decreased ability of the elderly to control infectious diseases, their generally
poor response to vaccination, as well as to the increased incidence of cancer with age. We as well
as others have demonstrated that patients with advanced ovarian cancer exhibited a dampened
T-cell response to the diphtheria carrier protein CRM197, a potent xeno-neoantigen of Prevnar™,
which was given to monitor immune responsiveness in an autologous whole tumor lysate vaccine
protocol [26,142]. Interestingly, myeloma patients have previously been shown to exhibit robust T-cell
responses to CRM197, suggesting that ovarian cancer patients may be characterized by a profound
level of systemic immunosuppression. Supplementary interventions might be required to boost T cell
immunity. For instance, implanting genetically engineered stromal cells in the thymus to secrete IL-7
(a T cell survival factor) has been explored in the mouse [143]. Nutritional interventions might also
be useful, such as supplements of either vitamin E [144], or conjugated linoleic acid [145], as well as
controlling cholesterol levels [146], which could all improve T cell function in cancer patients.

4. Immunomodulatory and Combinatorial Strategies in Ovarian Cancer

One way to improve vaccine efficacy would be combining them with other immunomodulatory
agents aiming to obtain a synergistic effect [147–149]. In this respect, immune checkpoints are
mechanisms established to maintain self-tolerance (therefore preventing autoimmunity), and to protect
tissue from damage after immune activation in response to pathogens. Checkpoint molecules include
CTLA-4 (Cytotoxic T Lymphocyte Antigen-4), PD-1 (Programmed Death-1), LAG-3 (Lymphocyte
Activation Gene-3), TIM-3 (T cell Immunoglobulin and Mucin protein-3), and several others (reviewed
elsewhere; [150]). They have been found to modulate T cell responses to self-proteins, but also to
chronic infections and tumor antigens, with CTLA-4 being the first shown to augment antitumor
immune responses [151]. Following their success in other types of immunogenic tumors [152],
immunomodulatory agents are currently being tested in ovarian cancer. For instance, Hodi et al.
reported that periodic infusions of anti-CTLA-4 antibodies after vaccination with irradiated, autologous
tumor cells engineered to secrete GM-CSF (GVAX) demonstrated an objective response with durable
remission for four years in one patient with ovarian cancer [153]. To clarify the role of anti-CTLA-4
as monotherapy in ovarian cancer, a new Phase II clinical trial is being conducted in the USA
(NCT01611558). Other immunomodulatory agents, such as antibodies blocking PD-1/PD-L1 pathway
(from different sources [154]) are currently tested; for instance, a Phase I study is being conducted to test
an anti-PD-L1 moAb as monotherapy in patients with metastatic or advanced solid tumors, including
ovarian cancer (NCT01772004). However, although therapies blocking the immune checkpoints
show significant clinical efficacy in advanced tumors [155], attributed to potent activation of T cells,
in general terms monotherapy with a single moAb yields a low rate of objective responses [156].
For this reason, the combination of vaccination with immune checkpoint blocking agents is also
worth testing in clinical trials, as tumors employ both PD-1 and CTLA-4 pathways to depress the
immune system. CTLA-4 and PD-1 are both coinhibitory molecules that belong to the same family
of molecules, yet there is evidence suggesting that they use distinct non-redundant mechanisms to
inhibit T-cell activation [157]. In preclinical models using mice with pre-implanted B16 melanomas,
it has been shown that concomitant blockade of both pathways can modulate Treg functions and
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enhance antitumor responses, as compared to single immune checkpoint blockade [158]. In this
direction, clinical trials are currently being performed to test double immune checkpoint blockade,
either specifically in ovarian cancer patients (NCT02498600), or in patients with solid tumors, including
patients with ovarian cancer (NCT01975831).

Interestingly, preclinical studies in ovarian cancer mouse models have demonstrated a consistently
greater anti-tumor effect when checkpoint blockade and vaccines are used in combination, compared
with either alone. In an ID8 ovarian cancer tumor model it was demonstrated that PD-L1 blockade
can restore antitumor immunity, and synergize with whole tumor antigen vaccine (GVAX) to produce
tumor rejection. Remarkably, vaccine alone was completely ineffective, while PD-L1 antibody
monotherapy produced half the cure rate than GVAX plus PD-L1 blockade combination [159]. Blockade
of both PD-1 and CTLA-4 in those mice resulted in reversal of CD8+ TIL dysfunction and led to
tumor rejection in two-thirds of mice. Double blockade was associated with increased proliferation
of antigen-specific effector CD8+ and CD4+ T cells, antigen-specific cytokine release, inhibition
of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T cell
function [160]. Therefore, these encouraging preclinical results warrant the initiation of clinical trials
trying the combination of vaccines with checkpoint inhibitors in ovarian cancer.

The IDO pathway is another regulator of the immune response in the tumor microenvironment.
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme that induces immune
tolerance, by depleting tryptophan locally and producing toxic tryptophan catabolites, such as
kyneurine, inhibiting proliferation of T-cells (both CD4+ and CD8+), and natural killer (NK)
cells [161,162]. There is evidence showing that ovarian cancer patients with elevated IDO expression
show significant impairment both in OS and PFS as compared to patients with low or no IDO
expression [12]. For this reason, one IDO inhibitor, epacadostat, is currently being tested in
ovarian cancer in different clinical trials, either alone as neoadjuvant treatment (NCT02042430),
or in combination with checkpoint inhibitors (NCT02327078, NCT02178722) aiming to obtain
a synergistic effect. One phase I/II trial (NCT02575807) is currently testing CRS-207, a recombinant
Listeria-based cancer vaccine containing a live-attenuated strain of the facultative intracellular
bacterium Listeria monocytogenes (Lm) expressing human mesothelin, in combination with epacadostat
in adults with platinum-resistant ovarian cancer.

Other combinations of immunomodulatory therapies with vaccines in patients with advanced
ovarian cancer include the use of Ontak (denileukin diftitox, a cytotoxic recombinant protein consisting
of IL-2 protein sequences fused to diphtheria toxin) aiming to deplete CD4+CD25+ immunoregulatory
T-cells (Treg) in combination with a DC based vaccine, which is currently being investigated in
a Phase II study (NCT00703105). Additionally, combinatorial strategies with DC vaccination and other
interventions such as radiation, chemotherapy, hyperthermia, T-cell transfer, and antibody therapy
might produce important breakthroughs in treating patients with ovarian cancer. There is growing
evidence that radiation therapy targeted to the tumor can convert it into an in situ tumor vaccine by
inducing release of antigens during cancer cell death in association with pro-inflammatory signals that
trigger the innate immune system to activate tumor-specific T cells [163]. Radiation also affects the
tumor microenvironment allowing increased infiltration by activated T cells and overcoming some of
the mechanisms of tumor immunosuppression. Recently, in a pilot clinical trial including patients with
metastatic solid tumors, the combination of radiotherapy with GM-CSF produced objective abscopal
responses (radiotherapy-induced immune-mediated tumor regression at sites distant to the irradiated
field) in some patients (26.8%) [164]. Additionally, it has been observed that including TGFβ blockade
and anti-PD-1 antibodies extended survival achieved with radiation [165]. Further strategies using
combinations of radiotherapy and immunotherapy are therefore currently being explored [166,167].
In ovarian cancer, although radiation is not widely accepted as a routine treatment modality in the
initial treatment in EOC patients, it can be considered in higher-risk stage I and II disease and in
stage III disease where small-volume residual disease is present after surgery.
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The potential of chemotherapy combination with DC vaccination has also been explored.
In a pilot clinical study including seven stage III colon cancer patients receiving standard
adjuvant oxaliplatin/capecitabine chemotherapy and vaccinated at the same time with keyhole
limpet hemocyanin (KLH) and carcinoembryonic antigen (CEA)-peptide pulsed DCs, an enhanced
non-specific T-cell reactivity upon oxaliplatin administration was observed, results that support
further testing of the combined use of tumor vaccination with oxaliplatin-based chemotherapy [168].
Importantly, platinum-based chemotherapy is the mainstay of treatment in EOC, and therefore
chemotherapy should be considered in combination strategies to improve vaccine efficacy in ovarian
cancer treatment.

Other immunomodulatory agents could also enhance antitumor responses in DC-based
immunotherapy. It was recently described that the infiltration of T cells into the tumor endothelial
barrier was mediated by the death mediator Fas ligand (FasL/CD95L) in the tumor vasculature of
human and mouse solid tumors [169] and it was demonstrated that tumor-derived VEGF-A, IL-10
and prostaglandin E (PGE) cooperatively induced FasL expression in endothelial cells, allowing them
to kill effector CD8+ T cells but not Treg cells, which express higher levels of c-FLIP. Dual inhibition
of VEGF and PGE with anti-VEGF and aspirin, demonstrated a significant effect in tumor regression.
These observations led us to conclude that modulating the tumor endothelial barrier with aspirin and
bevacizumab is a promising approach to combine with vaccinations. Thereby, we conducted a clinical
trial for subjects with recurrent ovarian cancer using OCDC (DC loaded with oxidized tumor lysate)
administered intranodally alone, or in combination with i.v. bevacizumab and cyclophosphamide
(aiming to reducing Tregs), or in combination with i.v. bevacizumab, cyclophosphamide and aspirin
(NCT01132014) and the results are currently being analyzed.

5. Concluding Remarks

At present, a plethora of different options is open to discovery in the treatment of ovarian
cancer. This represents a great opportunity to improve patients’ condition, and we can be reasonably
optimistic that some of those options will surely translate into clinical benefit for patients. However,
new opportunities come always together with new challenges, which we will have to confront and
overcome. Among these, the first obvious challenge is to choose the options with more chances to
yield clinical benefit, which requires a sound understanding of deep biological processes engaged in
immune response to tumor development, and this implicates continuous investment in fundamental
research. DC vaccines are one of the most promising options, due to a currently acceptable objective
response rate, comparable to that obtained using standard of care approaches or checkpoint inhibitors,
which has been demonstrated in different indications [85], coupled to a good safety profile (rarely
presenting immune-related toxicities [60]), and associated with preserved quality of life of cancer
patients [61]. Nevertheless, as we have previously discussed, results could be further improved by
carefully selecting the right antigen to target, the right DC subtype, and the adequate adjuvant and
delivery route. In addition, choosing the right patient population to vaccinate and improving patients’
immunocompetent status could also contribute to increased clinical benefit (see Figure 1).

Finally, using combinatorial approaches aiming to obtain synergistic effects could lead to major
breakthroughs in treating patients with ovarian cancer. However, it should be taken into account
that some options will be limited by technical capacities, being restricted to centers with the right
infrastructure and finances to successfully develop these strategies. This will undoubtedly generate
deep discussions regarding patients’ access to treatment. From the clinical point of view, although
combination of DC vaccines with other agents can provide long-term benefit to incurable patients,
this has to be tempered by the observation that patients may present severe (even lethal in some
cases) auto-inflammatory events, mostly in the lungs and in the gastrointestinal tract, that need to
be early recognized by oncologists to allow effective management, implicating close monitoring of
patients during and after treatment, as it is the case for checkpoint inhibitors [170]. Furthermore,
it has to be noted that clinical trials design in immuno-oncology needs to be carefully planned, as



Biomedicines 2016, 4, 10 17 of 28

safety and efficacy concerns differ substantially from those evaluated in clinical trials with cytotoxic
agents [171]: immuno-oncology agents present unique kinetics, compared with traditional targeted
or chemotherapeutic agents [172], and their combination require a rational design of synergistic
combination strategies [173]. Finally, a detailed strategy for early detection and management of toxicity
as well as planned demonstration of predicted additive or synergistic benefit are also required.
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Abbreviations

The following abbreviations are used in this manuscript:

BC breast cancer
CEA carcinoembryonic antigen
CRC colorectal cancer
CTLA-4 cytotoxic T-lymphocyte-associated antigen 4
DC dendritic cells
EOC epithelial ovarian cancer
GM-CSF granulocyte-macrophage colony-stimulating factor
i.p. intraperitoneal
IDO1 indoleamine 2,3-dioxygenase
IFN interferon
KLH keyhole limpet hemocyanin
LC lung cancer
MDSC myeloid derived suppressor cells
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MEL melanoma
MES mesothelioma
MHC major histocompatibility complex
moAb monoclonal antibody
mOC metastatic ovarian cancer
NED no evidence of disease
NSCLC non-small cell lung cancer
OC ovarian cancer
OCDC DC loaded with oxidized tumor lysate
PCRC pancreatic cancer
PC prostate cancer
PD-(L)1 programmed death-(ligand)1
PGE prostaglandine E
PPV personalized peptide vaccine
ROC recurrent ovarian cancer
SAR sarcoma
shRNA short hairpin RNA
TAA tumor-associated antigen
TGF transforming growth factor
TIL tumor infiltrating lymphocytes
TME tumor microenvironment
Tregs regulatory T cells
VEGF(R) vascular endothelial growth factor (receptor)
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