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Abstract: Background/Objectives: Individuals with metabolic syndrome (MetS) present re-
duced 25(OH)D levels. We performed a two-sample Mendelian randomization (MR) study
to investigate whether causal relationships exist between 25(OH)D levels and MetS/MetS
risk traits, including waist circumference, body mass index (BMI), hypertension (sys-
tolic/diastolic blood pressure), triglyceride, high-density lipoprotein cholesterol, and glu-
cose levels. Methods: We employed genetic variants related to 25(OH)D levels from the
SUNLIGHT Consortium and a European genome-wide association study meta-analysis, in-
cluding UK Biobank (UKB) data, as well as variants for MetS and MetS risk traits from UKB
and multiple European consortia. Several MR methods were used, i.e., inverse-variance
weighted, weighted median, and MR–Egger regression. Heterogeneity and horizontal
pleiotropy analyses were performed to ensure the stability of candidate single-nucleotide
polymorphisms (SNPs) as the instrumental variable. We first conducted univariable MR to
investigate the relationship between 25(OH)D levels and MetS, including its related risk
traits, and subsequently performed multivariable MR to adjust for potential confounders.
Results: This study did not provide evidence of a causal relationship between 25(OH)D
levels and MetS/MetS risk traits. However, we found that several risk traits of MetS, such
as waist circumference, BMI, and TG, had an inverse–causal relationship with 25(OH)D
levels, suggesting that 25(OH)D levels could be secondary consequences of metabolic
illnesses. Conclusions: We identified no causal relationship between 25(OH)D levels and
MetS/MetS risk factors. However, 25(OH)D levels may result from MetS traits.

Keywords: metabolic syndrome; 25-hydroxyvitamin D; multivariable mendelian randomization;
inverse–causal relationship

1. Introduction
Metabolic syndrome (MetS) has become one of the most common health problems

worldwide, and it is related to age, sex, and ethnicity [1–5]. Although the cutoff for MetS
criteria differs among the guidelines of the World Health Organization (WHO), National
Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III), and Interna-
tional Diabetes Federation (IDF), it includes high blood pressure, hyperglycemia, low
levels of high-density lipoprotein (HDL) cholesterol, hypertriglyceridemia, and abdominal
obesity causing insulin resistance [6–10]. Individuals with MetS have a higher risk of
developing type-2 diabetes mellitus, cardiovascular disease, and stroke, which can lead to
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disability and/or early death [11–13]. Moreover, the increasing prevalence of obesity and
associated metabolic disorders, including MetS, has prompted urgent investigations into
the underlying factors underlying their progression [14–17].

The major biological role of 25(OH)D is to aid in mineral homeostasis, including that
of calcium and phosphorus, ultimately facilitating proper bone formation [18]. In addition
to its classic role in bone formation, numerous studies have highlighted its non-classic
role in certain diseases such as infection, neurodegenerative diseases, and metabolic ill-
nesses [19–22]. Low serum 25(OH)D levels are associated with various metabolic illnesses,
such as non-alcoholic fatty liver disease, obesity-related cancer, insulin resistance, and car-
diovascular disease [22–26]. Notably, initial efforts underscore a significant role of 25(OH)D,
not only as an essential nutrient but also as a potential therapeutic target and modifiable
risk factor in the management of these metabolic illnesses, including MetS. Investigating
the causal relationship between 25(OH)D and these conditions is crucial. However, further
evidence is still needed to clarify whether 25(OH)D levels have a relationship with MetS
and its associated risk traits [27,28].

Clinicians and researchers have designed methods for clarifying the causal relation-
ships between exposure and health outcomes to overcome biases in observational studies
that are limited by the interference of multiple known and unknown confounders [29–31].
Mendelian randomization (MR) was introduced to address the limitations of observational
studies and is increasingly used to explore causality based on observational results [32,33].
MR analysis utilizes single-nucleotide polymorphisms (SNPs), genetic variants robustly
associated with exposure in genome-wide association studies (GWAS), as instrumental vari-
ables (IVs) to understand the influence of exposure on various health, social, and economic
outcomes [30,34–36]. Because each individual’s genetic variants are randomly inherited and
predetermined at birth, they cannot be influenced by different confounders related to the
association between exposure and outcomes [37,38]. Thus, MR studies have the potential to
eliminate the inherent biases and confounders present in traditional observational studies.

This study aims to bridge the existent gap in knowledge, namely, understanding the
causal relationship between 25(OH)D and MetS, along with its risk traits. Although many
observational studies have found correlations, there is insufficient evidence to firmly estab-
lish causality. This gap presents a critical limitation in fully understanding the implications
of 25(OH)D in the context of MetS. Here, we address this gap by conducting a two-sample
MR analysis using the latest large-scale datasets to explore the causal relationship between
25(OH)D and MetS, or its risk traits, thereby contributing valuable insights to future health
intervention strategies.

2. Materials and Methods
2.1. Data Resources

The datasets for the GWAS summary statistics used in this analysis were obtained from
the GWAS Catalog, Pan-UK Biobank, FinnGen, and other large-scale consortia. A schematic
of the study flow is shown in Figure 1. For the exposure and outcome datasets, we employed
SNPs associated with 25(OH) D levels from the SUNLIGHT Consortium and those related
to MetS or each risk trait of MetS (waist circumference (WC), triglyceride (TG), HDL
cholesterol, systolic/diastolic blood pressure (SBP/DBP), and glucose levels) from the UK
Biobank [39,40]. Both forward and reverse MR analyses were initially performed using
this dataset (dataset 1). However, owing to the low genetic contribution to the variation in
25(OH)D levels reported by the SUNLIGHT Consortium, this dataset was utilized solely
for reverse MR analysis to support our findings. To complement this, the second exposure
and outcome dataset (dataset 2) was added, leveraging SNPs associated with 25(OH)D
levels from meta-analyses of UKB and other European GWAS data. This second dataset
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allowed us to perform both forward and reverse MR analyses. The outcome traits in this
dataset included MetS and its associated risk factors, such as WC, body mass index (BMI),
TG, HDL cholesterol, hypertension, and glucose levels, obtained from various large-scale
consortia. Additionally, confounder data were incorporated to account for potential biases
in both forward and reverse MR analyses. For reverse MR analysis, confounders such as
skin color and physical activity (walking) were obtained from the UKB. For forward MR
analysis, confounders, including physical activity (strenuous sports), alcohol consumption,
and smoking, were also sourced from the UKB. The summary statistics of the data resources
are listed in Table 1.
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Figure 1. Overview of instrumental variable selection and the workflow of two-sample MR analyses.
25(OH)D, 25-hydroxyvitamin D; MetS, metabolic syndrome; HTN; hypertension, SBP; systolic blood
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Mendelian randomization; MVMR, multivariable MR.

Table 1. Summary statistics of data sources.

Traits Data Sources No. of
Participants Population No. of Variants Reference

Dataset 1

25(OH)D level SUNLIGHT Consortium 79,366 European 2,579,296 PMID: [40]
29343764

Metabolic syndrome UK Biobank (UKB) 291,107 European 9,463,307 PMID: [39]
31589552

Waist circumference UKB 419,807 European 23,861,814

‡

TG UKB 400,639 European 23,861,718
HDL UKB 367,021 European 23,861,539
SBP UKB 396,663 European 23,861,710
DBP UKB 396,667 European 23,861,710

Glucose UKB 366,759 European 23,861,541
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Table 1. Cont.

Traits Data Sources No. of
Participants Population No. of Variants Reference

Dataset 2

25(OH)D level UKB + European GWAS 443,734
(UKB: 401,460) European 16,668,957 PMID: [41]

32059762

Metabolic syndrome (a) Multiple cohorts 1,384,348 * European 2,265,555 PMID: [42]
39349817

Waist circumference GIANT Consortium
2015 232,101 European 2,565,407 PMID: [43]

25673412

BMI GIANT Consortium
2015 322,154 European 2,554,637 PMID: [44]

25673413

TG GLGC Consortium 864,240 European 37,005,452 PMID: [45]
37237109

HDL GLGC Consortium 888,227 European 36,588,494 PMID: [45]
37237109

Hypertension FinnGen release 12 500,264 European 21,327,062 †

Glucose MAGIC Consortium 200,622 European 34,064,006 PMID: [46]
34059833

Confounders, for reverse direction
Skin color UKB 415,018 European 9,463,307 ‡

Physical activity (walking) UKB 418,278 European 23,088,387
Confounders, for forward direction

Physical activity (strenuous
sports) UKB 418,278 European 22,111,708

‡
Alcohol consumption UKB 419,936 European 21,143,063

Smoking UKB 418,817 European 22,122,417

‡ Data were obtained from https://pan.ukbb.broadinstitute.org/downloads/index.html (assessed 17 June 2024).
† Data were obtained from https://finngen.gitbook.io/documentation/data-download (assessed 22 October 2024).
* The effective sample size of the metabolic syndrome was estimated. (a) GIANT Consortium 2018 for BMI; MAGIC
Consortium for Glucose; GLGC Consortium for HDL and TG; FinnGen release 7 and UKB for Hypertension;
FinnGen release 7, meta-analysis of 32 cohorts, and Million Veteran Program for Type-2 diabetes; and UKB for
Waist circumference. 25(OH)D, 25-hydroxyvitamin D; TG, triglyceride; HDL, high-density lipoprotein cholesterol;
SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index.

2.2. Selection of SNPs as IVs

In MR studies, intense IVs should be used to ensure a significant correlation between
exposure and outcomes and minimize any possible weak IV bias [47]. We selected SNPs as
IVs satisfying the following conditions: (i) SNPs associated with exposure at the genome-
wide significance threshold (p < 5 × 10−8) were used as IVs; (ii) SNPs were pruned for
linkage disequilibrium (LD; r2 < 0.001; clumping distance, 10,000 kb) to ensure indepen-
dence among the IVs, and LD calculations utilized the 1000 Genomes Phase III European
dataset as a reference; (iii) to verify the reliability of each genetic instrument, we assessed
their F-statistics for univariable MR as follows:

F = R2(n − 2)/(1 − R2) (1)

where R2 is the proportion of exposure variance by genetic variance, and n is the sample
size [48]. An F-value of >10 suggests that the causal estimates are likely not biased by weak
instruments [49]. IV strength was assessed for the multivariable MR (MVMR) analysis using
conditional F-statistics; values greater than 10 similarly indicated adequate instrument
strength for the analysis [50].

2.3. MR Study

TwoSampleMR, simex, and MVMR packages (version 3.6.3) in R (version 3.6.3; R
Foundation for Statistical Computing, Vienna, Austria) were used to analyze the data of
the MR study. MR results were interpreted based on the following assumptions: (i) genetic

https://pan.ukbb.broadinstitute.org/downloads/index.html
https://finngen.gitbook.io/documentation/data-download
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variants should be significantly correlated with exposure (in multivariable analysis, it is
necessary but not sufficient for each exposure to be strongly predicted by IVs, given the
other exposures included in the model); (ii) these variants should be unrelated to any
confounder of the exposure–outcome relationship; and (iii) these variants should solely
affect the outcomes through exposure, showing no directional horizontal pleiotropy effect.
Heterogeneity may also indicate the pleiotropic effects of genetic variations [51]. Thus, it is
critical to evaluate heterogeneity (p < 0.05, significant heterogeneity of individual SNP) or
pleiotropy (p < 0.05, strong possibility of pleiotropy of each SNP) of SNPs to implement
the MR study. The Cochran’s Q test from inverse-variance weighted (IVW) and Rücker’s
Q′ test from MR–Egger were employed to test the heterogeneity of candidate SNPs, and a
no-measurement-error (NOME, I2) test was conducted to stabilize the validity of IVs. The
IVW method was used as the primary analysis, and the weighted median and MR–Egger re-
gression, with or without adjustment via the Stimulation Extrapolation (SIMEX) approach,
and MR-PRESSO were applied as supplementary methods for the MR analysis [52]. The
IVW analysis is most plausible when all genetic variations satisfy the three assumptions
for IVs [30]. The weighted median method provides plausible results even when some IVs
are invalid (<50%) [37]. The MR–Egger method can obtain preferable causal effects even
when pleiotropic effects exist by correcting for horizontal pleiotropy [53]. If the NOME
assumption is violated (I2 < 90%), then MR–Egger (SIMEX) is suitable for addressing the
bias. The MR-PRESSO test has an advantage over MR–Egger when horizontal pleiotropy is
present in that it identifies and removes pleiotropic SNPs [54]. Consequently, the findings
were interpreted based on suitable univariable MR approaches [53,55,56]. For the MVMR
analysis, which allows for the simultaneous evaluation of multiple exposures, we used
MVMR IVW to adjust for confounders and isolate the relation between 25(OH) D levels
and MetS, including its risk traits [50]. Heterogeneity and potential pleiotropy among IVs
were assessed using the QA statistic, a refinement of Cochran’s Q [50]. In cases where
the conditional F or QA statistics suggested weak instruments or possible pleiotropy, a
Q-minimization method (Q-het) was employed to derive robust causal estimates, comple-
menting the MVMR-IVW framework. Standard errors were computed using the jackknife
method [50]. For exposures with overlapping samples, calculating the conditional F and
QA statistics required covariance estimates for the effect of each SNP on each exposure.
These covariances were obtained via a phenotypic correlation matrix derived from the
intercept of bivariate LD score regression [57–59]. Statistical significance was set at p < 0.05.

3. Results
3.1. Genetic IVs in Univariable MR

To clarify the causal relationship between 25(OH)D levels and MetS, including its risk
traits, we conducted a two-sample MR analysis. Several statistical approaches were applied
to select SNPs as IVs. A schematic representation of the study flow for the selection of IVs
is presented in Figure 1. In dataset 1 (reverse direction), 71 SNPs were selected as IVs for
MetS. Additionally, 318, 277, 327, 244, 229, and 114 SNPs were extracted as IVs for MetS risk
traits, namely WC, TG, HDL cholesterol, SBP, DBP, and glucose, respectively. For dataset 2
(forward direction), a total of 89, 92, 93, 104, 104, 101, and 104 SNPs were selected as IVs for
25(OH)D levels when MetS, WC, BMI, TG, HDL cholesterol, hypertension, and glucose
were the outcomes, respectively. In dataset 2 (reverse direction), 543, 41, 67, 369, 414, 268, and
71 SNPs were selected as IVs for MetS, WC, BMI, TG, HDL cholesterol, hypertension, and
glucose, respectively. Each set of IVs demonstrated significant genome-wide associations
(p < 5 × 10−8) with exposure traits and was not in the LD within 10,000 kb. The F values
for all selected SNPs exceeded 10, indicating strong IVs with a low probability of weak
instrument bias (Table 2 and Supplementary Table S1).
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Table 2. Heterogeneity and horizontal pleiotropy of instrumental variables in univariable MR.

Exposure Outcome Heterogeneity Horizontal Pleiotropy

Cochran’s
Q

Rücker’s
Q’

MR-
PRESSO

Global Test
MR–Egger MR–Egger (SIMEX)

N F I2 (%) p-Value p-Value p-Value Intercept,
β (SE) p-Value Intercept,

β (SE) p-Value

Dataset 1 (reverse direction)

Metabolic
syndrome

25(OH)D
level 71 65.21 89.27 0.044 0.049 0.042 −0.0010

(0.0008) 0.240 −0.0010
(0.0009) 0.252

WC 318 55.98 86.18 0.190 0.198 0.185 −0.0005
(0.0004) 0.198 −0.0006

(0.0005) 0.228

TG 277 128.43 98.11 <0.001 <0.001 <0.001 −0.0002
(0.0003) 0.415 −0.0003

(0.0003) 0.406

HDL 327 127.80 97.72 <0.001 <0.001 <0.001 0.0005
(0.0003) 0.067 0.0005

(0.0003) 0.072

SBP 244 57.37 90.79 0.070 0.079 0.072 −0.0008
(0.0005) 0.128 −0.0010

(0.0006) 0.111

DBP 229 56.92 82.45 0.039 0.036 0.040 −0.0003
(0.0006) 0.646 −0.0003

(0.0007) 0.647

Glucose 114 115.39 97.99 <0.001 <0.001 0.001 −0.0002
(0.0005) 0.647 −0.0002

(0.0005) 0.645

Dataset 2 (forward direction)

25(OH)D
level

Metabolic
syndrome 89 114.98 97.72 <0.001 <0.001 <0.001 −0.0027

(0.0011) 0.012 −0.0027
(0.0011) 0.013

WC 92 117.20 96.47 <0.001 <0.001 <0.001 −0.0020
(0.0015) 0.199 −0.0020

(0.0016) 0.192

BMI 93 116.40 96.72 <0.001 <0.001 <0.001 −0.0018
(0.0014) 0.208 −0.0018

(0.0014) 0.208

TG 104 118.64 97.46 <0.001 <0.001 <0.001 −0.0072
(0.0032) 0.028 −0.0072

(0.0033) 0.030

HDL 104 118.64 97.46 <0.001 <0.001 <0.001 −0.0023
(0.0051) 0.650 −0.0023

(0.0052) 0.659

HTN 101 124.84 97.79 <0.001 <0.001 <0.001 0.0008
(0.0022) 0.703 0.0009

(0.0022) 0.697

Glucose 104 118.64 98.17 <0.001 <0.001 <0.001 0.0002
(0.0008) 0.805 0.0002

(0.0009) 0.813

Dataset 2 (reverse direction)

Metabolic
syndrome

25(OH)D
level 543 74.23 88.79 <0.001 <0.001 <0.001 −0.0004

(0.0005) 0.385 −0.0003
(0.0005) 0.537

WC 41 59.80 87.11 <0.001 <0.001 <0.001 −0.0030
(0.0017) 0.087 −0.0029

(0.0018) 0.119

BMI 67 67.60 90.07 <0.001 <0.001 <0.001 −0.0016
(0.0011) 0.162 −0.0015

(0.0012) 0.211

TG 369 138.96 97.82 <0.001 <0.001 <0.001 −0.0004
(0.0005) 0.402 −0.0003

(0.0005) 0.446

HDL 414 147.02 98.17 <0.001 <0.001 <0.001 0.0008
(0.0004) 0.075 0.0008

(0.0004) 0.077

HTN 268 55.19 91.24 <0.001 <0.001 <0.001 −0.0009
(0.0007) 0.178 −0.0011

(0.0008) 0.181

Glucose 71 121.30 96.85 <0.001 <0.001 <0.001 −0.0035
(0.0012) 0.003 −0.0035

(0.0012) 0.004

Cochran’s Q test from IVW and Rücker’s Q’ test from MR–Egger test were performed for heterogeneity analysis.
N, number of instruments; F, F statistic mean; IVW, inverse-variance weighted; MR, Mendelian randomization;
PRESSO, pleiotropy residual sum and outlier; SIMEX, simulation extrapolation; β, beta coefficient; SE, standard
error; 25(OH)D, 25-hydroxyvitamin D; WC, waist circumference; TG, triglyceride; HDL, high-density lipoprotein
cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index.
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3.2. Heterogeneity and Pleiotropy Tests for IVs in Univariable MR

We conducted Cochran’s Q test from IVW and Rücker’s Q’ test from MR–Egger for
heterogeneity, as well as horizontal pleiotropy analyses, to assess the stability of candidate
SNPs as IVs.

In forward MR analyses, the assumption of NOME was satisfied (I2 > 90) (Table 2,
dataset 2). Significant heterogeneity was observed across all outcomes (Cochran’s Q, all
p < 0.001; Rücker’s Q’, all p < 0.001). Despite this heterogeneity, the MR–Egger regression
intercepts indicated no horizontal pleiotropy for most outcomes, with non-significant
p-values for waist circumference (p = 0.199), BMI (p = 0.208), HDL (p = 0.650), hypertension
(p = 0.703), and glucose (p = 0.805). However, a pleiotropic effect was detected for MetS
(MR–Egger intercept p = 0.012; SIMEX-adjusted p = 0.013) and TG (MR–Egger intercept
p = 0.028; SIMEX-adjusted p = 0.030). The MR-PRESSO global test was significant across all
outcomes. Consequently, it is recommended to use MR-PRESSO for all outcomes [39].

In reverse MR analyses, the assumption of NOME was satisfied (I2 > 90) except when
MetS, WC, and DBP were exposed (Table 2). In dataset 1, no heterogeneity was observed for
WC (Cochran’s Q, p = 0.190; Rücker’s Q’, p = 0.198) or SBP (Cochran’s Q, p = 0.070; Rücker’s
Q’, p = 0.079), and no pleiotropic effects were detected in the MR-PRESSO global test (WC,
p = 0.185; SBP, p = 0.072). Conversely, when MetS, TG, HDL cholesterol, DBP, and glucose
levels were exposure factors, heterogeneity of IVs was apparent (Cochrane’s Q, all p < 0.05;
Rücker’s Q′, all p < 0.05), and the MR-PRESSO global test was significant. Despite this
heterogeneity, the MR–Egger regression intercepts also revealed no horizontal pleiotropic
effects (all p > 0.05) regardless of SIMEX adjustment (Table 2, dataset 1). Consequently, the
IVW approach was used to determine the causality between WC or SBP and 25(OH)D levels.
The effects of MetS and DBP on the 25(OH)D levels were evaluated using the MR–Egger
(SIMEX) approach. The MR-PRESSO method was used to investigate the effects of TG,
HDL cholesterol, and glucose levels on 25(OH)D levels [51]. For TG exposure to 25(OH)D,
an MR-PRESSO outlier test was conducted; however, no outliers were found. In dataset
2, significant heterogeneity was observed across all outcomes (Cochran’s Q, all p < 0.001;
Rücker’s Q’, all p < 0.001). Despite this heterogeneity, the MR–Egger regression intercepts
indicated no horizontal pleiotropy for most outcomes except glucose. The MR-PRESSO
global test was significant across all outcomes. Consequently, it is recommended to use
MR-PRESSO for most outcomes, except MetS and WC. The effects of MetS and WC on
25(OH)D levels were evaluated using the MR–Egger (SIMEX) approach because I2 < 90 [51].

3.3. Effect of 25(OH)D on Metabolic Syndrome and Its Risk Factors in Univariable MR

Forward MR analyses (dataset 2) using MR-PRESSO as the main method revealed sig-
nificant causal associations between 25(OH)D and specific metabolic outcomes, particularly
MetS and TG (Figure 2). For MetS, MR-PRESSO identified a significant negative association
(odds ratio [OR] = 0.96; 95% confidence interval [CI] 0.93–0.98; p = 0.004), consistent with the
IVW method (OR = 0.93; 95% CI 0.89–0.99; p = 0.014), indicating that higher 25(OH)D levels
may reduce the risk of MetS. Similarly, for TG, MR-PRESSO demonstrated a significant
negative effect (β = −0.19; 95% CI −0.24 to −0.14; p < 0.001), aligned with IVW (β = −0.27;
95% CI −0.42 to −0.11; p < 0.001), suggesting a potential role of 25(OH)D in lowering TG
levels. In contrast, no significant associations were observed for WC (β = 0.06; 95% CI
−0.01–0.12; p = 0.099), BMI (β = 0.0005; 95% CI −0.06–0.06; p = 0.986), HDL (β = −0.04;
95% CI −0.09–0.0007; p = 0.059), hypertension (OR = 0.96; 95% CI 0.89–1.03; p = 0.258), or
glucose (β = −0.001; 95% CI −0.03–0.02; p = 0.938). The scatter plots of the forward MR
analysis are shown in Figure 3.
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Figure 2. Forest plots of forward MR study (dataset 2) to explore the effect of 25(OH)D on MetS
and MetS risk factors. 25(OH)D, 25-hydroxyvitamin D; MetS, metabolic syndrome; Waist, waist
circumference; BMI, body mass index (weighted median; β 0.0044, MR–PRESSO; β 0.0005); HDL,
high-density lipoprotein cholesterol; TG, triglyceride, glucose (IVW, β 0.0022; weighted median,
β −0.0001, MR–Egger, β 0.0002; MR–Egger (SIMEX), β 0.0002; MR–PRESSO, β −0.0010); SNPs,
single-nucleotide polymorphisms; IVW, inverse-variance weighted; MR, Mendelian randomization;
PRESSO, pleiotropy residual sum and outlier; SIMEX, simulation extrapolation; OR, odds ratio; Beta,
beta coefficient; CI, confidence interval; *, p < 0.05.
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Figure 3. Scatter plots of forward MR study (dataset 2) exploring the effect of 25(OH)D on MetS
and MetS risk traits. Light blue, dark blue, light green, and dark green regression lines represent
the estimates from the IVW, MR–Egger, MR–Egger (SIMEX), and weighted median methods, re-
spectively. Black dots were shown on SNPs as IVs. Red dots highlight the outliers identified in the
MR–PRESSO analysis. 25(OH)D, 25-hydroxyvitamin D; MetS, metabolic syndrome; BMI, body mass
index; Waist, waist circumference; TG, triglyceride; HDL, high-density lipoprotein cholesterol; SNPs,
single-nucleotide polymorphisms; IVW, inverse-variance weighted; MR, Mendelian randomization;
PRESSO, pleiotropy residual sum and outlier; SIMEX, simulation extrapolation.

3.4. Effect of Metabolic Syndrome on 25(OH)D Levels on Univariable MR

In the reverse MR analyses for dataset 1, the MR–Egger (SIMEX) method did not reveal
a significant causal association between MetS and 25(OH)D (β = 0.01; 95% CI −0.01–0.04;
p = 0.336), as shown in Figure 4. Additionally, no significant causal associations were
identified between MetS and 25(OH)D levels using the IVW, weighted median, and MR–
Egger methods, with p-values of 0.819, 0.800, and 0.325, respectively. However, WC, one of
the risk traits of MetS, demonstrated significant inverse causality on 25(OH)D levels using
IVW (β = −0.03; 95% CI −0.05 to −0.01; p = 0.001), although other MR approaches did not
yield significant results. The IVW method was primarily employed because the IVs for WC
satisfied the assumptions. Additionally, suitable primary MR approaches were conducted
for the causality of other MetS risk traits on 25(OH)D levels using assumptions for IVs [51].
The IVW approach for SBP (β = 0.01; 95% CI −0.003–0.03; p = 0.111), MR–Egger (SIMEX)
approach for DBP (β = 0.02; 95% CI −0.04–0.08; p = 0.564), and MR-PRESSO method
for genetic variants of HDL cholesterol (β = 0.01; 95% CI; −0.002–0.02; p = 0.136) and
glucose (β = −0.0008; 95% CI −0.02–0.02; p = 0.925) were conducted to assess the effect
of metabolic risk traits on 25(OH)D. For TG genetic variants, the MR-PRESSO approach
was recommended according to assumptions of IVs but identified no outliers; the TG traits
showed no causal effect on 25(OH)D levels across any MR method (all p > 0.05, Figure 4).

By contrast, the results for dataset 2 revealed significant associations between several
exposures and 25(OH)D levels (Figure 5). For MetS, the MR–Egger (SIMEX) method in-
dicated a significant negative association (β = −0.11; 95% CI −0.19 to −0.03; p = 0.005),
consistent with other methods. For WC, MR–Egger (SIMEX) yielded non-significant results
(β = −0.01; 95% CI −0.14–0.11; p = 0.847), whereas the IVW, weighted median, and MR-
PRESSO methods showed significant negative associations. For BMI, glucose, and TG, all
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methods, including MR-PRESSO, consistently showed significant negative associations
with 25(OH)D (BMI: β = −0.06; 95% CI −0.09 to −0.04, p < 0.001; glucose: β = −0.08;
95% CI −0.12 to −0.05, p < 0.001; TG: β = −0.12; 95% CI −0.14 to −0.10, p < 0.001). For
HDL, the weighted median method showed a significant negative association (β = −0.03;
95% CI −0.05 to −0.01; p = 0.012), whereas other methods, including MR-PRESSO, yielded
non-significant results. For hypertension, no significant associations were observed across
all methods.
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Figure 4. Forest plots of reverse MR study from dataset 1 displaying the effect of MetS and MetS risk
factors on 25(OH)D and risk factors. 25(OH)D, 25-hydroxyvitamin D; MetS, metabolic syndrome
(IVW, β = −0.001; weighted median, β = −0.002; MR Egger, β = 0.003); Waist, waist circumfer-
ence (MR–Egger, β = −0.0053); TG, triglyceride (IVW, β = 0.001; weighted median, β = 0.004);
HDL, high-density lipoprotein cholesterol (weighed median, β = 0.002; MR Egger, β = −0.004;
MR Egger (SIMEX), β = −0.004); SBP, systolic blood pressure; DBP, diastolic blood pressure (IVW,
β = 0.004); glucose (IVW, β = 0.001; weighed median, β = 0.004; MR PRESSO, β = −0.001); SNPs,
single-nucleotide polymorphisms; IVW, inverse-variance weighted; MR, Mendelian randomization;
PRESSO, pleiotropy residual sum and outlier; SIMEX, simulation extrapolation; Beta, beta coefficient;
CI, confidence interval; *, p < 0.05 significance.
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Figure 5. Forest plots of reverse MR study from dataset 2 displaying the effect of MetS and MetS risk
factors on 25(OH)D and risk factors. 25(OH)D, 25-hydroxyvitamin D; MetS, metabolic syndrome;
Waist, waist circumference; BMI, body mass index; Hypertension (IVW, β = 0.001; MR PRESSO,
β = 0.004); TG, triglyceride; HDL, high-density lipoprotein cholesterol; SNPs, single-nucleotide poly-
morphisms; IVW, inverse-variance weighted; MR, Mendelian randomization; PRESSO, pleiotropy
residual sum and outlier; SIMEX, simulation extrapolation; Beta, beta coefficient; CI, confidence
interval; *, p < 0.05.

A scatter plot illustrating the genetic associations between MetS and its risk traits
against genetic associations with 25(OH)D for dataset 1 is shown in Figure 6, whereas
Figure 7 presents the corresponding results for dataset 2.
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Figure 6. Scatter plots of reverse MR study (dataset 1) showing the effect of MetS and MetS risk
traits on 25(OH)D. Light blue, dark blue, light green, and dark green regression lines represent the
estimates from the IVW, MR–Egger, MR–Egger (SIMEX), and weighted median methods, respec-
tively. Black dots were shown on SNPs as IVs. Red dots highlight the outliers identified in the
MR-PRESSO analysis. 25(OH)D, 25-hydroxyvitamin D; MetS, metabolic syndrome; Waist, waist
circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglyceride; HDL,
high-density lipoprotein cholesterol; SNPs, single-nucleotide polymorphisms; IVW, inverse-variance
weighted; MR, Mendelian randomization; PRESSO, pleiotropy residual sum and outlier; SIMEX,
simulation extrapolation.
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Figure 7. Scatter plots of reverse MR study (dataset 2) showing the effect of MetS and MetS risk
traits on 25(OH)D. Black dots were shown on SNPs as IVs. Light blue, dark blue, light green, and
dark green regression lines represent the estimates from the IVW, MR–Egger, MR–Egger (SIMEX),
and weighted median methods, respectively. Red dots highlight the outliers identified in the MR-
PRESSO analysis. 25(OH)D, 25-hydroxyvitamin D; MetS, metabolic syndrome; BMI, body mass
index; Waist, waist circumference; TG, triglyceride; HDL, high-density lipoprotein cholesterol; SNPs,
single-nucleotide polymorphisms; IVW, inverse-variance weighted; MR, Mendelian randomization;
PRESSO, pleiotropy residual sum and outlier; SIMEX, simulation extrapolation.
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3.5. Multivariable MR

The MVMR analyses revealed no significant associations in the forward direction but
demonstrated significant associations in the reverse direction, with Model 2 results being
considered more reliable due to fewer but more relevant confounder adjustments (Table 3).
Specifically, in forward direction analyses (dataset 2), Model 1 included adjustments for
physical activity (strenuous sports), alcohol consumption, and smoking, whereas Model 2
only accounted for smoking. Physical activity (strenuous sports) and alcohol consumption
were excluded in Model 2 owing to their conditional F-statistics being <5. Similarly, in
reverse direction analyses, Model 1 incorporated adjustments for physical activity (walking)
and skin color, whereas Model 2 included only skin color. Although the methods used
in this study are robust for weak instruments, they cannot produce reliable estimates
when the instruments become very weak [50]; therefore, Model 2 was considered more
appropriate for interpretation. In dataset 1 (reverse direction), only WC showed a significant
negative association with 25(OH)D in Model 2 (β = −0.036; 95% CI −0.065 to −0.006),
whereas other metabolic factors, including TG, HDL, SBP, DBP, and glucose, did not exhibit
significant associations. By contrast, dataset 2 (reverse direction) demonstrated significant
negative associations for MetS (Model 2: β = −0.141; 95% CI −0.175 to −0.107), WC
(β = −0.097; 95% CI −0.143 to −0.051), BMI (β = −0.059; 95% CI −0.095 to −0.024), and
TG (β = −0.120; 95% CI −0.164 to −0.077), supporting a causal effect of these metabolic
factors on lowering 25(OH)D levels, whereas HDL, hypertension, and glucose showed
no significant associations. Conditional F-statistics for exposures in each model and the
heterogeneity statistics are presented in Supplementary Table S2.

Table 3. Multivariable MR IVW results.

Datasets Exposure Outcome Model 1 β (95% CI) Model 2 β (95% CI)

Dataset 1
(reverse direction)

Metabolic syndrome 25(OH)D level −0.002 (−0.018, 0.013) −0.006 (−0.020, 0.008)

Waist circumference −0.032 (−0.070, 0.006) −0.036 (−0.065, −0.006) *

TG −0.009 (−0.068, 0.050) −0.010 (−0.068, 0.047)

HDL 0.013 (−0.017, 0.042) 0.014 (−0.011, 0.040)

SBP −0.024 (−0.089, 0.041) 0.0001 (−0.026, 0.026)

DBP 0.047 (−0.107, 0.201) −0.015 (−0.040, 0.011)

Glucose −0.017 (−0.05, 0.015) −0.022 (−0.057, 0.014)

Dataset 2
(forward direction)

25(OH)D level Metabolic syndrome −0.030 (−0.145, 0.085) −0.060 (−0.159, 0.040)

Waist circumference 0.145 (−0.0004, 0.291) 0.106 (−0.028, 0.239)

BMI 0.095 (−0.062, 0.251) 0.034 (−0.094, 0.163)

TG −0.118 (−0.388, 0.151) −0.121 (−0.362, 0.120)

HDL −0.134 (−1.342, 1.074) −0.111 (−0.329, 0.107)

Hypertension −0.107 (−0.286, 0.072) −0.115 (−0.241, 0.011)

Glucose −0.010 (−0.034, 0.014) −0.012 (−0.048, 0.024)
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Table 3. Cont.

Datasets Exposure Outcome Model 1 β (95% CI) Model 2 β (95% CI)

Dataset 2
(reverse direction)

Metabolic syndrome 25(OH)D level −0.135 (−0.175, −0.095) * −0.141 (−0.175, −0.107) *

Waist circumference −0.087 (−0.135, −0.039) * −0.097 (−0.143, −0.051) *

BMI −0.055 (−0.096, −0.015) * −0.059 (−0.095, −0.024) *

TG −0.120 (−0.164, −0.076) * −0.120 (−0.164, −0.077) *

HDL −0.024 (−0.084, 0.035) −0.024 (−0.083, 0.035)

Hypertension 0.006 (−0.015, 0.027) 0.007 (−0.014, 0.028)

Glucose −0.058 (−0.116, 0.001) −0.058 (−0.118, 0.002)

Model 1 includes adjustments for all confounders: physical activity (strenuous sports), alcohol consumption, and
smoking in the forward direction, and physical activity (walking) and skin color in the reverse direction. Model 2
includes only confounders with conditional F-statistics >5: smoking (forward direction) and skin color (reverse
direction). * The 95% confidence interval does not include 0, signifying a statistically significant association. MR,
Mendelian randomization; IVW, inverse-variance weighted; 25(OH)D, 25-hydroxyvitamin D; TG, triglyceride;
HDL, high-density lipoprotein; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index.

4. Discussion
In this study, we explored the causal relationship between 25(OH)D levels and either

the risk of MetS or each MetS risk trait using instrumental SNPs related to 25(OH)D
levels or MetS and its risk traits (BMI, WC, hypertension (SBP/DBP), TG, HDL cholesterol,
and glucose levels). Numerous studies have addressed a plausible relationship between
low 25(OH)D levels and metabolic disorders, including MetS, in various populations.
Vitamin D deficiency appears to be associated with hypertriglyceridemia and low HDL
cholesterol levels in postmenopausal women, which increases the risk of MetS [60]. A study
of individuals aged >65 years with low 25(OH)D levels showed a higher risk of MetS [61].
Huang et al. reported that nondiabetic young adults with vitamin D deficiency have a high
risk of MetS, including hypertriglyceridemia, low HDL cholesterol levels, and high LDL
cholesterol concentrations [62]. Similarly, Zhu et al. reported that a study population aged
17–70 years showed a linear relationship between 25(OH)D levels and serum glucose and
lipid levels, concluding that higher 25(OH)D levels were related to better metabolic traits
in urban Shanghai residents in China [63].

Although various studies have shown an association between 25(OH)D levels and
MetS and its risk traits, our MR study could not confirm their causal relationship. Instead,
it provided evidence of inverse causality with MetS and several of its components, such as
BMI, WC, and TG, on 25(OH)D levels. These findings are supported by reports from several
other studies. The levels of 25(OH)D vary depending on age, sex, season, diet, residential
area, clothing, sunscreen use, and habits (exercise, tobacco, and alcohol), causing multiple
confounders in epidemiologic studies [64–67]. Mehri et al. pointed out that the absence
of long-term follow-up data could not define a causal relationship between exposure and
outcomes in observational studies, thus requiring further research beyond observational
studies [68]. Therefore, some studies have explored the causality between 25(OH)D levels
and MetS or its metabolic risk traits. Skaaby et al. reported no statistically significant causal
relationship between 25(OH)D levels and MetS in a study of specific genetic variants in
their study population [69]. Similarly, Chen et al. found no evidence that a genetically
determined reduction in 25(OH)D levels may increase the risk of MetS or its metabolic
traits in a community-dwelling population of 10,655 individuals [70], thus supporting our
findings. However, we additionally found that several components of MetS had an inverse
and significant causal relationship with 25(OH)D, suggesting that the level of 25(OH)D is
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a secondary consequence of metabolic disorders such as obesity, non-alcoholic fatty liver
disease, and insulin resistance [71–74].

Genetic variants of body mass index (kg/m2) were negatively associated with
25(OH)D variants in a multiple-cohort MR study [75]. Additionally, some studies have
reported that homeostatic model assessment for insulin resistance was negatively corre-
lated with 25(OH)D in adults with obesity and that impaired hepatic 25-hydroxylation in
patients with non-alcoholic fatty liver disease resulted in lower levels of 25(OH)D, which
also supports our findings. Xiao et al. showed the inverse causality of 25(OH)D on DBP,
one of the risk factors for MetS, based on their one-sample MR analysis to assess the causal
role of 25(OH)D on MetS [74]. The underlying mechanisms of 25(OH)D and MetS or its
risk traits are very complex, even in a particular population, given the heterogeneity in
demographic characteristics and genetic diversity in traits. It is also important to consider
the biological mechanisms that are associated with MetS components, such as obesity,
insulin resistance, and inflammation, that contribute to lower 25(OH)D levels to strengthen
our findings. Obesity has been known to lead to 25(OH)D sequestration in adipose tissue
to lower circulating levels of 25(OH)D [76]. Additionally, Manoppo et al. reported that the
interplay among 25(OH)D, lipid metabolism, and inflammation may create a loop wherein
metabolic dysfunction worsens 25(OH)D deficiency, suggesting that the relationship be-
tween 25(OH)D and MetS is more complex than a linear one [26]. This complexity may
explain the different results reported across studies [65,67]. Therefore, further research,
such as RCTs, is required to fully understand the role of 25(OH)D in metabolic traits, in-
cluding reverse causality. MR analysis, such as that used in the present study, has potential
strengths, including in RCT methods, for assessing the causality between exposures and
outcomes in cohort studies [32,38]. Large-scale prospective studies based on larger GWAS
datasets are required to expand the IVs to determine their causal relationships.

The main advantage of this study is that it reinforces the presence of inverse causality
of metabolic traits on 25(OH)D levels, providing some plausible evidence of MVMR results
from two different datasets (dataset 1 and dataset 2 for reverse direction). Additionally, to
reduce the impact of population stratification, we selected large-scale genomic datasets
from individuals of European ancestry in a two-sample MR study. Furthermore, our
study aimed to account for confounding factors by employing MVMR, which provides a
framework to adjust for some pleiotropic pathways and confounders, thus contributing to
a more reliable causal interference.

One potential limitation was the presence of a certain overlap in dataset sources (e.g.,
UKB) between confounders and exposure or outcome datasets, which caused bias in our
analysis. However, we believe that this does not pose a significant risk of challenging
the presence of reverse causality on 25(OH)D. To strengthen the genetic instruments, we
implemented conditional F statistics for each instrument in our MVMR approach, reducing
the risk of bias from weak IV issues [77]. Additionally, the individual risk traits comprising
MetS and 25(OH)D were independent in our analysis, further minimizing the risk of
weak IV bias. Another limitation was that our MVMR analysis did not incorporate a
comprehensive range of confounders, particularly those related to environmental and
socioeconomic factors, owing to the use of summary-level data rather than individual-level
data. While the method accounted for some confounding through genetic instruments,
the limited scope of confounders could influence the robustness of causal interferences.
Additionally, the heritability and genetic variability in 25(OH)D levels remain important
considerations. Twin and family studies have reported the heritability of 25(OH)D levels to
be 43–80% [78]. Despite this, dataset 1, which exhibited a low variance of genetic instruments
for 25(OH)D from the SUNLIGHT Consortium, was insufficient to demonstrate robust MR
results for the causality on MetS. Hiraki et al. suggested that multiple genes for 25(OH)D
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with small effects contribute to its variability [79]. Additionally, Manousaki et al. reported
that some socioeconomic traits partially share heritability with 25(OH)D levels [41]. Thus,
when genetic variants for 25(OH)D levels are used as the exposure, even with large-scale
GWAS for 25(OH)D levels, these potential risks of confounding and pleiotropy might not
be totally excluded to derive a forward causality of 25(OH)D levels in metabolic traits. In
this large-scale MR analysis, our results are restricted to a European population in order to
minimize bias from a diverse, mixed population, which may limit the generalizability of our
findings to other ethnic populations. Genetic variations in 25(OH)D metabolism, dietary
patterns, and differences in sun exposure can significantly influence 25(OH)D status across
populations [80–84]. For instance, in the northern Chinese population, 25(OH)D levels were
inversely related to the metabolic risk profiles, while in Asian Indians, who have a high
prevalence of 25(OH)D deficiency, no significant association with metabolic syndrome or
insulin resistance was observed. Studies in East Africans address the complex interaction
between 25(OH)D levels and metabolic health [85–87]. Future studies should aim to explore
the relationship between 25(OH)D and MetS in more diverse populations. Some studies
suggest that clinical intervention with 25(OH)D may improve insulin sensitivity and reduce
inflammation in individuals with obesity or type 2 diabetes [85,88]. This also emphasizes
the need for further research to assess potential benefits in specific groups.

MR studies have the advantage of elucidating causal relationships between exposure
and outcome. However, SNPs as genetic variants account for only a portion of the overall
variance in exposure. The GWAS SNP data for 25(OH)D, MetS, and metabolic risk traits
that we employed were not representative. Therefore, further studies involving a broader
range of populations are needed to strengthen the present study.

5. Conclusions
This study used two-sample MR analysis to explore the causality between 25(OH)D

and MetS. We found that the 25(OH)D level is a secondary consequence of metabolic traits
rather than a causal factor. Large-scale prospective studies based on larger GWAS datasets
are required to expand instrumental variables and assess causal relationships, with a focus
on integrating more comprehensive datasets that include both genetic and environmental
factors, improving the validity of genetic instruments.
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Analysis—instrument strength and heterogeneity test.
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