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Abstract

Background: Food allergies represent a growing global health concern, yet the current
diagnostic methods often fail to distinguish between true allergies and food sensitivities,
leading to misdiagnoses and inadequate treatment. Epigenetic alterations, such as DNA
methylation (DNAm), may offer novel biomarkers for precise diagnosis. Methods: This
study employed a computational machine learning framework integrated with DNAm data
to identify potential biomarkers and enhance diagnostic accuracy. Differential methylation
analysis was performed using the limma package to identify informative CpG features,
which were then analyzed with advanced algorithms, including SVM (polynomial and
RBF kernels), k-NN, Random Forest, and artificial neural networks (ANN). Deep learning
via a stacked autoencoder (SAE) further enriched the analysis by uncovering epigenetic
patterns and reducing feature dimensionality. To ensure robustness, the identified biomark-
ers were independently validated using the external dataset GSE114135. Results: The
hybrid machine learning models revealed LDHC and SLC35G2 methylation as promising
biomarkers for food allergy prediction. Notably, the methylation pattern of the LDHC
gene showed significant potential in distinguishing individuals with food allergies from
those with food sensitivity. Additionally, the integration of machine learning and deep
learning provided a robust platform for analyzing complex epigenetic data. Importantly,
validation on GSE114135 confirmed the reproducibility and reliability of these findings
across independent cohorts. Conclusions: This study demonstrates the potential of com-
bining machine learning with DNAm data to advance precision medicine in food allergy
diagnosis. The results highlight LDHC and SLC35G2 as robust epigenetic biomarkers,
validated across two independent datasets (GSE114134 and GSE114135). These findings
underscore the importance of developing clinical tests that incorporate these biomarkers
to reduce misdiagnosis and lay the groundwork for exploring epigenetic regulation in
allergic diseases.

Keywords: food allergy; DNA methylation; LDHC; SLC35G2; machine learning;
epigenetics; biomarker
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1. Introduction
Food allergic reactions represent Th2-driven immune responses directed against be-

nign dietary protein components. These conditions manifest through diverse clinical
presentations affecting cutaneous, gastrointestinal, and respiratory systems as a conse-
quence of oral tolerance breakdown [1]. Clinical presentations span from typical urticarial
reactions to life-threatening anaphylactic episodes [1,2]. Over 20% of pediatric and adult
populations implement dietary restrictions due to food allergic conditions, significantly
affecting life quality [3].

Food allergic disorders demonstrate particular prevalence during childhood and may
pose life-threatening risks; distinct from food intolerances, these conditions frequently per-
sist throughout life. Although many instances originate in early development, individuals
across all age groups and genders may experience initial episodes during adulthood [3].
Enhanced understanding of genetic, epigenetic, and environmental contributing factors
continues to advance, resulting in improved preventive and therapeutic strategies for
at-risk populations [4].

Expedited diagnosis depends upon early, definitive allergy identification, particu-
larly through establishing screening methodologies that operate independently of specific
allergen testing approaches such as IgE classification.

DNA methylation (DNAm) represents a fundamental epigenetic process that serves
crucial functions in developmental biology, transcriptional control, and genomic integrity,
with dysregulation potentially contributing to disease development [5,6]. In food allergic
conditions, growing evidence demonstrates that epigenome-wide investigations on perti-
nent immune cell populations have identified distinctly methylated positions (DMPs) and
regions (DMRs) that distinguish disease conditions and correlate with tolerance develop-
ment, supporting the biomarker utility of DNAm patterns.

DNA methylation regulates the activation of immune cells, and these dysregulations
contribute to food allergies [7,8]. Furthermore, DNA methylation levels in immune cell
types distinguish between disease states and evaluate tolerance [9]. Alterations in DNAm
at candidate gene level have been documented in Th1/Th2 cytokine genes (IL4, IL5, IL10,
FNG), regulatory T-cell pathways (e.g., FOXP3), and innate signaling pathways (e.g., TLR2,
CD14) [10].

When evaluated in the context of perinatal and maternal relationships, DNAm levels
at the TNFRSF17 locus in cord blood have been associated with early allergic pheno-
types [11], and maternal/child leukocyte DNAm levels have been linked to early-life IgE
sensitization [12]. In addition, DNA methylation profiles have shown higher discriminative
performance than serum IgE in specific settings in the diagnosis of food allergies [13].

DNA methylation microarray technology facilitates genome-wide evaluation of CpG
methylation signatures, providing valuable insights regarding disease-related modifica-
tions [14–16]. Genome-wide multiple locations (e.g., RPS6KA2, CAMTA1, CTBP2) have
been associated with allergic characteristics, and focused DNAm analysis reveals distinctive
signatures in peanut allergic conditions [13]. These datasets present high dimensional-
ity and limited size, therefore representation learning (e.g., stacked autoencoders, SAEs)
and feature selection (e.g., limma-based differential methylation) are utilized to generate
compact, informative DNAm characteristics for modeling [17–19].

This investigation seeks to identify biomolecular networks associated with food al-
lergic conditions and central genes at the genomic level utilizing DNA methylation data
related to food allergies. Through deep learning-based feature learning on DNAm data, we
examined differentially methylated positions (DMPs) and regions (DMRs) and consolidated
gene-level results as differentially methylated genes (DMGs) to reveal their functions in
food allergy occurrence and development.
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DNA methylation microarrays enable genome-wide assessment of CpG methylation
patterns, which provides important knowledge about disease-associated changes [8–10].
Genome-wide multiple loci (e.g., RPS6KA2, CAMTA1, CTBP2) have been implicated in
allergic phenotypes, and targeted DNAm profiling reveals distinct signature in peanut
allergy [13]. These datasets are high dimensional and modest in size, so representation
learning (e.g., stacked autoencoders, SAEs) and feature selection (e.g., limma-based differ-
ential methylation) are used to derive compact, informative DNAm feature for modeling.

In this investigation, we sought to identify epigenetic biomarkers for food allergic
conditions by implementing ML and DL approaches to methylation data [20]. We examine
DNAm signatures for three-class differentiation between control, allergic, and resolved
groups and for candidate biomarker identification. We extract DNAm characteristics
through deep-learning-based representation learning and, simultaneously, conduct limma-
based differential methylation to acquire DMPs/DMRs, consolidated as DMGs. We subse-
quently perform external validation of models on an independent dataset (GSE114135) to
evaluate reliability and translational applicability.

Specifically, we (i) implement ML/DL to DNAm for three-class categorization,
(ii) establish an SAE framework compared against limma-based DMP/DMR selection,
and (iii) demonstrate external validation emphasizing the translational value of DNAm
biomarker candidates.

This dual-dataset methodology not only strengthens the reliability of the findings but
also emphasizes the translational potential of epigenetic biomarkers including LDHC and
SLC35G2 in clinical implementations for food allergy diagnosis and treatment.

2. Materials and Methods
2.1. Dataset

The DNA methylation dataset GSE114134, available in the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/), was utilized in this study, accessed
on 13 November 2023. The dataset, generated by Martino et al. [21] is based on the
GPL23976 platform (Illumina Infinium HumanMethylation850 BeadChip, EPIC array), a
high-density DNA methylation array capable of analyzing over 850,000 CpG sites across
the human genome. A patient cohort with a gender distribution of 46.8% males and 53.2%
females was utilized for this study. It contains 205 naïve CD4+ T cell samples divided into
three categories:

• 102 samples from individuals diagnosed with food allergies (“allergic” group),
• 62 samples from individuals whose food allergies had resolved over time (“resolved”

group), and
• 41 control samples from individuals without food allergies (“control” group).

The companion dataset GSE114135 includes both RNA-Seq (GPL20301) and DNA
methylation (GPL23976) data, with a total of 342 samples. This dataset provides an op-
portunity for cross-validation of both transcriptomic and epigenetic analyses. All samples
consist of naïve CD4+ T cells, which are directly relevant for immunological and epigenetic
studies of food allergy. Using these datasets, we explored differentially methylated regions
(DMRs) that may contribute to the development or resolution of food allergy and assessed
their potential as diagnostic biomarkers or therapeutic targets. The dataset used in this
study consisted of a patient cohort with a gender ratio of 45.3% males and 54.7% females.
All samples in both datasets were derived from infants aged 11–15 months.

2.2. Differentially Methylated Regions (DMRs)

The GSE114134 dataset was retrieved from the Gene Expression Omnibus (GEO)
database and processed using Bioconductor R packages (version 3.21). Preprocessing and

https://www.ncbi.nlm.nih.gov/geo/
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normalization steps were applied according to standard pipelines for methylation data.
Differential methylation analysis was then conducted with the limma package to identify
differentially methylated positions (DMPs) and regions (DMRs) between groups. Results
were summarized in tabular form, with CpG sites ranked according to adjusted p-values
(Benjamini–Hochberg, threshold 0.05) [22]. Significant DMRs were subsequently annotated
to nearby genes, which provided the basis for downstream functional enrichment and
pathway analyses.

2.3. Machine Learning and Deep Learning Analytical Framework for Food Allergy Classification
2.3.1. Input Data Preparation and Target Variable Definition

The GSE114134 dataset containing ~850,000 CpG sites from 205 samples (Illumina
Infinium HumanMethylation850 BeadChip, EPIC array) was processed using standard
methylation array preprocessing protocols as described in the original study [23]. The
dataset was accessed from the GEO database using the GEOquery package in R (v4.2.1), and
preprocessing was performed with minfi (v1.40.0), limma (v3.48.3), and impute (v1.72.3).
In addition, the GSE114135 dataset, comprising both RNA-Seq and DNA methylation data
from 342 samples, was used as an independent validation cohort. For the methylation
component (Illumina Infinium HumanMethylation850 BeadChip), similar preprocessing
procedures, including quality control (detection p-values < 0.01, removal of probes with
> 1% failed calls, and inspection with minfi::getQC()), outlier detection (genefilter with
pOverA(0.25, log2(100)) and IQR > 0.5), imputation of missing values (impute.knn, k = 10),
functional normalization (preprocessFunnorm()), and cross-reactive probe filtering based
on the EPIC-specific probe lists described by Zhou et al. (2017) [24], were performed
as reported in the original study. ComBat correction was not applied, as batch effect
evaluation revealed no systematic differences between the datasets. Applying ComBat in
the absence of detectable batch effects could have introduced artificial variability; thus,
its omission ensured methodological consistency between the training (GSE114134) and
validation (GSE114135) datasets. For both datasets, preprocessing included removal of
low-quality probes and samples, background correction, and normalization according to
standard methylation array pipelines as described in the original studies. Preprocessed
data were obtained directly from the GEO database, ensuring that initial quality control
and normalization had already been applied by the data contributors.

2.3.2. Feature Engineering and Selection Strategy

Two complementary feature selection approaches were implemented to identify the
most informative methylation patterns:

Approach 1: Differential Methylation Analysis

• Statistical analysis performed using limma R package (version 3.48.3)
• Linear modeling applied to identify differentially methylated positions (DMPs)

between allergic and control groups
• Multiple testing correction using Benjamini–Hochberg method (FDR < 0.05)
• Result: 1140 significantly associated CpG sites mapped to annotated genes
• These M-values served as direct input features for machine learning models

Approach 2: Stacked Autoencoder Feature Extraction

• Deep learning-based dimensionality reduction applied to the top-ranked DMPs
• Architecture: Three-layer encoder (100→150→200 neurons) with

corresponding decoder
• Activation function: ReLU with L2 regularization (λ = 0.001)
• Sparse regularization parameter set to 1.0 to encourage feature selectivity
• Training objective: Minimize reconstruction error between input and output M-values
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• Output: 200 compressed latent features representing non-linear methylation patterns

2.3.3. Machine Learning Algorithm Implementation

In this study, machine learning and deep learning models were applied to classify
food allergy status using DNA methylation features derived from the GSE114134 dataset.
After preprocessing and normalization, differentially methylated positions (DMPs) were
identified with the limma package and used as the primary feature set. To reduce dimen-
sionality and avoid overfitting, these CpG features were further processed with a stacked
autoencoder (SAE), which generated a compact set of informative latent representations.
The SAE-derived representations, together with the prioritized DMP features, served as
the input for machine learning classifiers including support vector machine (SVM), ran-
dom forest (RF), artificial neural networks (ANN), and k-nearest neighbors (k-NN). This
combined strategy ensured that the models were trained on biologically meaningful and
non-redundant features, improving their ability to distinguish ability to discriminate three
classes (control, allergic, resolved) [25–29].

To evaluate the discriminative power of the identified methylation features, five
distinct classification algorithms were implemented and compared on both feature sets
derived from limma-selected DMPs and SAE-extracted representations. Each algorithm
was selected to capture different aspects of the underlying methylation patterns and provide
complementary perspectives on the classification task.

Support Vector Machine (SVM) was employed as the primary non-linear classifier due
to its effectiveness in high-dimensional biological data analysis. Two kernel configurations
were implemented to optimize performance: a polynomial kernel (degree = 3) for capturing
feature interactions and a radial basis function (RBF) kernel for modeling complex non-
linear decision boundaries. The regularization parameter C was set to 1.0 to balance model
complexity and generalization ability, while the gamma parameter was configured as ‘scale’
to automatically adjust for the feature dimensionality. Class weights were balanced to
address the inherent sample size disparity between allergic and control groups [25].

Random Forest was selected as the ensemble learning approach to leverage multiple
decision trees for robust classification while mitigating overfitting risks commonly associ-
ated with high-dimensional methylation data. The implementation comprised 100 decision
trees, each trained on bootstrap samples of the dataset using the Gini impurity criterion for
optimal split selection. To capture the full complexity of methylation patterns, maximum
tree depth was left unrestricted, while minimum samples per split and leaf were set to
2 and 1, respectively. Feature subsampling was configured to automatically select the
square root of total features at each split, promoting diversity among trees and reducing
correlation in the ensemble [30].

An Artificial Neural Network architecture was implemented to model non-linear
relationships within the methylation feature space through gradient-based learning. The
network comprised a single hidden layer containing 64 neurons with ReLU activation
functions to address vanishing gradient problems while maintaining computational effi-
ciency. The output layer utilized sigmoid activation for binary classification probability
estimation. Training was conducted using the Adam optimizer with a learning rate of
0.001 and mini-batch size of 32 to balance convergence speed and stability. Early stopping
mechanisms were implemented based on validation loss monitoring to prevent overfitting
and ensure optimal generalization performance [15,31].

The k-Nearest Neighbors algorithm was incorporated as a non-parametric baseline
classifier to evaluate local similarity patterns within the methylation feature space. The
implementation utilized k = 5 neighbors with uniform weighting to balance sensitivity to
local patterns while maintaining robustness to outliers. Euclidean distance (Minkowski
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metric with p = 2) was employed as the similarity measure, which is appropriate for
continuous methylation values. The algorithm’s instance-based nature provided valuable
insights into the local structure of the feature space and served as a reference point for more
complex model performance.

The Stacked AutoEncoder (SAE) is a deep learning algorithm that employs multiple
layers of autoencoders [32]. For the stacked autoencoder approach, the trained encoder
network was extended with additional classification layers to serve as both feature extractor
and classifier. Following the feature extraction phase, a dense classification layer was
appended to the 200-dimensional encoded representation, with sigmoid activation for
binary output. The training process alternated between reconstruction objectives for
feature learning and classification objectives for discriminative training. This dual-purpose
architecture enabled direct comparison between compressed feature representations and
traditional statistical feature selection methods while maintaining end-to-end differentiable
learning [33,34]. The SAE architecture (100–150–200 neurons) was designed to progressively
compress the high-dimensional CpG feature space, and this configuration was selected
after testing multiple layer sizes, yielding the most stable performance. ReLU activation
was chosen due to its effectiveness in modeling non-linear biological relationships while
avoiding vanishing gradient issues.

Hyperparameters, including the L2 regularization value (0.001) and SparseReg (1),
were optimized via grid search within biologically meaningful ranges to minimize overfit-
ting and improve generalizability. In this study, however, the SAE was employed solely for
feature extraction, and the low-dimensional encoded representations were subsequently
used as input for the machine learning classifiers (SVM, Random Forest, ANN, kNN).

The detailed hyperparameters and implementation settings for all machine learning
and deep learning algorithms, including SVM (polynomial and RBF), Random Forest, ANN,
k-NN, and Stacked Autoencoder (SAE), are summarized in Table 1 [35–37].

Table 1. Optimized hyperparameters of machine learning and deep learning methods (determined
via grid search).

Algorithm Hyperparameter Value

SVM—Polynomial C (Regularization) 1.0
Kernel Polynomial
Degree 3
Gamma ‘scale’

SVM—RBF C (Regularization) 1.0
Kernel RBF

Gamma ‘scale’
Random Forest n_estimators 100

max_depth None
min_samples_split 2
min_samples_leaf 1

max_features ‘sqrt’
Neural Network Hidden layers 1 (64 neurons)

Activation (hidden) ReLU
Activation (output) Sigmoid

Optimizer Adam
Learning rate 0.001

Batch size 32
k-NN n_neighbors 5

Weights Uniform
Metric Euclidean (Minkowski, p = 2)

Stacked Autoencoder (SAE) Layers 3 (100–150–200 neurons)
Activation ReLU

Regularization L2 = 0.001
Sparsity parameter 1

2.4. Data Preprocessing and Model Optimization

Machine learning and deep learning analyses were conducted in Python (version 3.10).
scikit-learn (1.3) was used for SVM (polynomial and RBF), Random Forest, and k-NN
models, while TensorFlow/Keras (2.12) was used for artificial neural networks and the
stacked autoencoder (SAE). A fixed random seed of 42 was applied for reproducibility.
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Models were evaluated using a 10-fold stratified cross-validation strategy on the GSE114134
dataset, where in each iteration nine folds were used for training and one fold for validation.
This process was repeated until every sample had served once as a validation fold, and
overall performance was averaged across folds. The GSE114135 dataset was not included
in model training or cross-validation but was used exclusively as an independent external
validation set to assess generalizability.

Data preprocessing is crucial for ensuring the consistency and quality of the dataset.
In this study, the GSE114134 and GSE114135 datasets (Illumina Infinium HumanMethyla-
tion850 BeadChip, EPIC array) were obtained from the GEO database using the GEOquery
package in R (v4.2.1). Preprocessing was performed with minfi (v1.40.0), limma (v3.48.3),
genefilter, and impute (v1.72.3). Quality control included calculation of detection p-values
(<0.01), removal of probes with >1% failed calls, and assessment of signal intensities with
minfi::getQC(). Outlier probes were identified with genefilter using combined criteria of
pOverA(0.25, log2(100)) and IQR > 0.5. Missing values were imputed by k-nearest neigh-
bors (kNN) imputation (impute.knn, k = 10), ensuring complete data matrices across sam-
ples. To reduce technical variation, data were normalized using functional normalization
(preprocessFunnorm()), which applies background and dye-bias correction. These steps are
critical as they ensure that our findings are based on biologically meaningful differences.

With regard to cross-reactive or low-quality probes, the original GEO datasets were
carefully examined, and no missing or inconsistent values or outlier samples were detected.
Therefore, the analyses were performed without applying additional systematic probe-level
filtering, preserving the integrity of the original datasets.

2.5. Model Configurations and Performance Metrics

A confusion matrix is a tabular representation commonly used to illustrate the per-
formance of a classification model on a dataset with established true values. It provides a
graphical representation of the performance efficiency of an algorithm. The matrix’s rows
represent the actual classes, whereas the columns denote the predicted classes, thereby
elucidating the performance of the classification model. True Negative (TN) refers to the
number of correctly identified negative instances (actual class is 0, predicted class is 0),
False Positive (FP) indicates instances that are genuinely negative but classified as positive
(actual class is 0, predicted class is 1), False Negative (FN) denotes instances that are truly
positive yet classified as negative (actual class is 1, predicted class is 0), and True Positive
(TP) represents the count of accurately identified positive instances (actual class is 1, pre-
dicted class is 1). This matrix is an essential instrument for evaluating and analyzing the
efficacy of a classification model [31,38].

Accuracy—(TN + TP)/(TN + FP + FN + TP): The proportion of correctly classified
instances out of the total instances.

Precision—TP/(TP + FP): The proportion of true positive predictions out of the total
positive predictions.

Recall—(Sensitivity or True Positive Rate): TP/(TP + FN): The proportion of actual
positives that were correctly predicted.

F1 Score—2 × (Precision × Recall)/(Precision + Recall): The harmonic means of pre-
cision and recall. It balances the trade-off between precision and recall.

3. Results
3.1. GEO Dataset Validation

This study utilized a comprehensive DNAm dataset generated via the Illumina In-
finium HumanMethylation850 array to evaluate changes in methylation patterns induced
by food allergens. Differentially methylated genes across control, allergic, and resolved
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samples are shown in Figure 1. These findings, determined with a p-value threshold of
<0.05, highlight key epigenetic differences potentially linked to food allergy pathogenesis.

Figure 1. The UMAP visualization of the GSE114134 dataset with 15 nearest neighbors (nbrs = 15).
Data points are grouped into three categories: control (green), allergic (blue), and resolved (pink)
with a p-value set to <0.05.

In Figure 1 UMAP visualization of DNA methylation profiles from the GSE114134
dataset (n = 205). Each point represents an individual sample: green = control (n = 41),
blue = allergic (n = 102), and pink = resolved (n = 62) cohorts. UMAP1 and UMAP2
axes represent latent dimensions obtained through dimensionality reduction of high-
dimensional methylation data and do not directly correspond to specific biological variables.
The clustering pattern has been statistically evaluated. Silhouette score = 0.42, permutation
test p < 0.05, confirming that the observed grouping is statistically significant.

3.2. Analysis of Differentially Methylated Positions and Regions (DMPs/DMRs)

DNA methylation datasets pose analytical challenges due to limited sample sizes
relative to numerous CpG features (~700,000), creating overfitting risks. To address this,
differential methylation analysis using the limma R package identified significantly altered
CpG sites between allergy and control groups. Feature selection was integrated within
cross-validation (repeated across eight training folds) to prevent information leakage. Using
Benjamini–Hochberg FDR < 0.05 criteria, 1140 genes with significant differential methy-
lation positions were identified from the GSE114134 dataset. These prioritized features
served as input for machine learning classification models to detect disease-associated
epigenetic signatures.

3.3. Machine Learning and Experimental Evaluations

To identify food allergy-related genes through DNA methylation, hybrid models com-
bining dimensionality reduction and machine learning were developed. Differential methy-
lation analysis using the limma package identified 1140 significant CpG-associated genes,
which served as input features for various classifiers including SVM (polynomial/RBF
kernels), k-NN, Random Forest, and ANN. Additionally, a Stacked Autoencoder was
employed for feature extraction from high-dimensional CpG data.

Results are presented in Tables 2 and 3 and Figure 2, which details the analytical
workflow from feature selection to classification. 10-fold cross-validation was applied to
ensure robust model evaluation and minimize overfitting. In this study, dimensionality
reduction was performed on the entire dataset rather than separately within each fold.
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Table 2. Mean results of the accuracy obtained by the classification algorithms from the original
dataset with DMPs feature selection.

Method Accuracy Precision Recall F-Score

SVM-Poly 0.7630 0.7806 0.7706 0.7770
SVM-RBF 0.8035 0.8064 0.8064 0.8064

KNN 0.6205 0.6153 0.6236 0.6214
Random Forest 0.8356 0.8403 0.8403 0.8403

ANN 0.8374 0.8396 0.8445 0.8405

Table 3. Mean results of the accuracy obtained by the classification algorithms from the original
dataset with SAE feature selection.

Method Accuracy Precision Recall F-Score

SVM-Poly 0.8402 0.8601 0.8010 0.8380
SVM-RBF 0.8192 0.8381 0.8245 0.8336

Decision tree 0.8713 0.8710 0.8710 0.8710
Random Forest 0.8914 0.9010 0.8610 0.8700

ANN 0.8780 0.8515 0.9008 0.8698

To mitigate the class imbalance in the dataset, stratified sampling was employed
during the cross-validation process. This method ensured that the proportional distribution
of classes was preserved in both the training and test folds, thereby reducing systematic
bias and enabling a fairer comparison across classifiers. Alternative resampling strategies
such as oversampling and undersampling were also evaluated; however, these methods
did not improve performance and, in some cases, further reduced classification accuracy.
In contrast, stratified sampling consistently produced the most balanced and stable results
across all models. Therefore, to maintain methodological consistency, only stratified sam-
pling was adopted in the final analyses, and this decision has been explicitly highlighted in
the revised manuscript.

Table 2 presents classification performance using DMP-based feature selection. SVM-
Poly achieved 76.30% accuracy (precision: 0.7806, recall: 0.7706, F1: 0.7770), while SVM-
RBF performed better at 80.35% accuracy with consistent metrics of 0.8064. KNN showed
lower performance at 62.05% accuracy (precision: 0.6153, recall: 0.6236, F1: 0.6214). ANN
demonstrated optimal performance with 83.74% accuracy and balanced precision (0.8396),
recall (0.8445), and F1-score (0.8405).

The confusion matrix in Figure 3 demonstrates the ANN algorithm’s performance on
DMP feature selection, showing strong classification accuracy with 95 correctly identified
Allergic cases and 27 correctly classified Resolved instances. The primary misclassification
pattern involves 12 Resolved cases incorrectly predicted as Allergic, while only 1 Allergic
case was misclassified as Resolved. Additional cross-class errors include 9 Control cases
misclassified as Allergic and 2 as Resolved, indicating that the algorithm occasionally
confuses resolved and control states with active allergic conditions, likely reflecting the
complex biological similarities between these transitional states.

Table 3 shows classification results using SAE feature selection. SVM-Poly achieved
84.02% accuracy (precision: 0.8601, recall: 0.8010, F1: 0.8380), while SVM-RBF reached
81.92% accuracy with metrics of 0.8381, 0.8245, and 0.8336. Decision Tree attained 87.13%
accuracy with uniform metrics of 0.8710. Random Forest demonstrated the best perfor-
mance at 89.14% accuracy (precision: 0.9010, recall: 0.8610, F1: 0.8700), followed by ANN
at 87.80% accuracy (precision: 0.8515, recall: 0.9008, F1: 0.8698). These results demonstrate
improved classification effectiveness with SAE feature selection.
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Figure 2. Flowchart of the study.
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Figure 3. Confusion matrix according to mean results of the accuracy obtained by the ANN algorithm
from the original dataset with DMP feature selection.

The confusion matrix in Figure 4 reveals that the Random Forest algorithm with SAE
feature selection achieved perfect classification for the Allergic class (98 correct predictions)
but failed to predict any instances as Resolved or Control classes. This classification
pattern indicates a significant class imbalance bias, where the model predominantly assigns
all samples to the Allergic category, suggesting limitations in the algorithm’s ability to
distinguish between the three classes despite the high overall accuracy. Figure 5 ROC curve
for this top-performing model illustrates the sensitivity-specificity trade-off, providing
additional insight into the model’s diagnostic capabilities.

Figure 4. Confusion matrix according to the average results of the accuracy obtained by Random
Forest algorithm on 200 genes obtained from SAE feature selection.

Figure 5’s ROC analysis demonstrates performance differentiation among classifiers,
with Random Forest achieving optimal discrimination (AUC = 0.94), followed by Decision
Tree (AUC = 0.91) and ANN (AUC = 0.89). SVM variants showed moderate performance
with polynomial and RBF kernels attaining AUC values of 0.87 and 0.85, respectively. Com-
parative evaluation between Tables 2 and 3 reveals significant performance improvements
through feature selection optimization. DMP-based selection produced accuracies spanning
76.30% (SVM-Poly) to 83.74% (ANN), while SAE implementation enhanced performance



Biomedicines 2025, 13, 2489 12 of 24

substantially: SVM-Poly increased to 84.02%, Random Forest to 89.14%, and Decision
Tree to 87.13%. This systematic improvement across algorithms indicates SAE’s superior
capacity for extracting biologically relevant methylation patterns while mitigating high-
dimensional noise, establishing feature selection methodology as a critical determinant of
classification efficacy in epigenetic biomarker research.

Figure 5. ROC Curves and Performance.

Table 4 provides a detailed list of genes identified through the experimental evalua-
tions, highlighting their relevance to the study. Notably, these genes show diverse levels
of correlation, as determined by Pearson correlation coefficients and their corresponding
p-values. Especially, the correlations observed in the LDHC (r = −0.578) and SLC35G2
(r = 0.598) genes exhibit a relatively strong effect size compared to other genes, and the
p-values < 0.05 indicate that these relationships are statistically significant. These findings
may provide valuable insights into the genetic and epigenetic mechanisms underlying
food allergies.

Among the identified genes, TNF and RGS12, located in the body region, were posi-
tively correlated, while FRA10AC1, located in the promoter region, exhibited a negative
correlation. Genes such as MAD1L1, RP4-735C1.4, CTD-2535L24.2, CSRP1, HCG4B, CBR1,
GSTM3, AP000688.14, ZNF267, RP4-583P15.15, LIME1, HLA-K, LDHC, CLECL1, AXIN2,
SLC35G2, SETD4, and RP11-134G8.7, each located in distinct genomic regions, demon-
strated different levels of correlation. Additionally, specifying the total number of genes
(21) offers a concise summary of the gene set under consideration. The findings under-
score the potential relevance of these genes in the context of food allergies, highlighting
their correlation patterns and suggesting their involvement in the underlying molecular
mechanisms of the condition.

Identifying genes associated with the immune system represents a challenging task,
as numerous genes contribute to various aspects of immune function. However, based on
the information provided in Table 4, several genes listed appear to be potentially associated
with the immune system.
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Table 4. The list of genes obtained as a result of the experimental evaluations.

Gene
Symbol Location Pearson

Correlation p Value

TNF body 0.13 9.49 × 10−3

RGS12 body 0.132 8.76 × 10−3

FRA10AC1 promoter −0.137 6.27 × 10−3

MAD1L1 body −0.123 3.32 × 10−3

RP4-735C1.4 body −0.255 2.85 × 10−3

CTD-2535L24.2 body −0.169 2.13 × 10−3

CSRP1 body −0.22 1.86 × 10−3

HCG4B promoter −0.176 1.41 × 10−3

CBR1 body −0.277 1.16 × 10−3

GSTM3 body −0.278 1.10 × 10−3

AP000688.14 body −0.197 3.40 × 10−4

ZNF267 body −0.235 3.40 × 10−4

RP4-583P15.15 body −0.147 1.72 × 10−4

LIME1 body −0.208 1.50 × 10−4

HLA-K body −0.221 5.58 × 10−5

LDHC promoter −0.578 7.60 × 10−22

CLECL1 body −0.411 7.17 × 10−7

AXIN2 body −0.305 1.78 × 10−7

SLC35G2 promoter 0.598 1.81 × 10−14

SETD4 body 0.316 1.28 × 10−14

RP11-134G8.7 body −0.442 4.74 × 10−17

These genes are mentioned in the context of correlation analysis related to food
allergies, and some of them have known associations with the immune system. It is
important to note that further investigation and validation are needed to confirm their
specific roles in immune function and their relevance to food allergies.

3.4. Gene Ontology and Disease Enrichment Analyses

Gene ontology, disease enrichment and pathway analyses were performed to map the
common CpG sites between the allergic, resolved and control groups to 1140 genes.

Functional enrichment analysis of genes with significant differentially methylated
regions revealed overrepresentation in biological processes including calcidiol monooxyge-
nase regulation, I-kappaB phosphorylation, cellular nicotine response, vitamin D biosyn-
thesis, and necroptosis. Gene clustering was observed in TNF signaling pathways, though
no significant molecular function enrichment was detected.

Ontology analysis identified twelve differentially methylated genes in immune pro-
cesses (seven positive regulators), ten in cellular activation (eight in leukocyte activation),
eight in developmental processes, and seven in cell differentiation. Pathway enrichment is
visualized in Figures 6 and 7.

The most enriched biological process terms (FDR < 0.05) involved immune system
processes, with key genes including TNF, RGS12, HCG4B, CSRP1, LIME1, HLA-K, CLECL1,
AXIN2, and SETD4.

As shown in Figure 6, gene ontology enrichment analysis demonstrates that genes
with differential methylation patterns are predominantly enriched in immune response and
inflammatory processes. The analysis reveals significant functional clustering in membrane
organization, transcriptional regulation, and metabolic pathways relevant to food allergy
pathogenesis. Cellular component categories show highest enrichment in membrane raft
(GO:0045121) and microtubule cytoskeleton (GO:0015630), indicating epigenetic targeting
of critical immune cell signaling platforms. Molecular function analysis highlights RNA
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polymerase II transcription regulatory region sequence-specific DNA binding (GO:0000977)
and histone methyltransferase activities, suggesting coordinated DNA methylation and
histone modifications in allergic responses. Notably, pathways such as TNF signaling,
vitamin D biosynthesis, lactate dehydrogenase activity, and necroptotic signaling were
enriched, indicating that both immune regulation and metabolic mechanisms play crucial
epigenetic roles in food allergy pathogenesis. The enrichment of extracellular vesicle
categories and oxidoreductase activities further suggests that intercellular communication
and oxidative stress responses are subject to epigenetic control, providing a molecular
framework for understanding how differential methylation coordinates immune activation
and metabolic adaptation in allergic responses to food antigens.

Figure 6. Gene ontology enrichment analyses of the genes which are near the input probes in the
GO entry.
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Figure 7. KEGG analyses of the genes which are near the input probes in the KEGG Pathway.

Figure 7 illustrates the KEGG pathway enrichment of differentially methylated genes
identified in food allergy. The analysis highlights several immune-related pathways,
including the NF-κB signaling pathway, TNF signaling pathway, and RIG-I-like receptor
signaling pathway, which are central to inflammatory and allergic responses. Additionally,
metabolic and pharmacological pathways, such as the adipocytokine signaling pathway
and antifolate resistance, were enriched. These findings suggest that DNA methylation
changes not only influence immune regulation but may also affect metabolic and signaling
processes relevant to food allergy pathogenesis.

In detailed analyses of trait enrichment analyses shown that DNA methylation probes
and trait-related DNA methylation specifically occurs in corticosteroid response. Table 5
demonstrates that methylation profiles of LDHC and SLC35G2 effectively discriminate food
allergy, resolved cases, and healthy controls. Among the models tested, Random Forest and
SVM-RBF achieved the highest accuracy, while other approaches also provided consistent
results. These findings indicate that the proposed epigenetic markers are robust across
datasets and highlight their potential clinical utility as diagnostic biomarkers. Figure 8
shows the PPI analysis graph.
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Table 5. Functional enrichments analyses of DNA methylated genes in food allergy.

Biological
Process

(Gene Ontology)
Strength False

Discovery Rate

Regulation of
calcidiol 1- monooxygenase activity 2.54 0.0337

Positive regulation of I-kappaB phosphorylation 2.47 0.0381
Cellular response to nicotine 2.47 0.0381

Regulation of vitamin D biosynthetic process 2.47 0.0381
Necroptotic signaling pathway 2.47 0.0381

Cellular Component
(Gene Ontology) Strength False

Discovery Rate

Tumor necrosis factor receptor superfamily complex 2.71 0.0269

Local Network Cluster
(STRING) Strength False

Discovery Rate

Beta-catenin destruction complex 2.54 0.0112
Defective RIPK1-mediated regulated necrosis and TRAF-type zinc finger 2.54 0.0112

TNFR1-induced signaling pathway 2.35 0.00026

KEGG Pathways Strength False
Discovery Rate

Antifolate resistance 1.83 0.0049
Adipocytokine signaling pathway 1.79 4.08 × 10−5

RIG-I-like receptor signaling pathway 1.78 4.08 × 10−5

NF-kappa B signaling pathway 1.71 1.50 × 10−5

TNF signaling pathway 1.67 1.50 × 10−5

Reactome Pathways Strength False
Discovery Rate

TNFR1-mediated ceramide production 2.54 0.0093
Defective RIPK1-mediated regulated necrosis 2.47 0.01

Dimerization of procaspase-8 2.28 0.02
CASP8 activity is inhibited 2.28 0.02

Regulation by c-FLIP 2.28 0.02

Figure 8. Protein–protein interaction network.
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As shown in Figure 8, protein–protein interaction (PPI) network analysis of genes
associated with differentially methylated regions reveals a network comprising 19 nodes
and 11 edges, with relatively low overall connectivity but several potential hub genes,
including LDHC, SLC35G2, TNF, and FRA10AC1. LDHC promoter hypermethylation
was linked to reduced expression, consistent with epigenetic silencing that may affect
metabolic reprogramming during allergic inflammation. TNF appears as a central immune-
related node, while SLC35G2 connects through glycosylation pathways influencing TNF
and adipocytokine receptor function. The sparse connectivity pattern observed in this
network suggests selective but functionally relevant interactions between epigenetically
regulated genes, despite the relatively low edge density. LDHC emerges as a metabolically
significant hub gene, with its downregulation indicating a fundamental shift in cellular
energy metabolism that potentially redirects lactate metabolism to support sustained in-
flammatory responses and immune cell activation. TNF occupies a central position within
the network architecture, functioning as a critical immune-regulatory hub that bridges
multiple signaling pathways and reflects its established role as a master regulator of inflam-
matory cascades. SLC35G2 represents a unique connectivity node linking glycosylation
pathways to both TNF signaling networks and adipocytokine receptor processing mecha-
nisms, suggesting that post-translational modifications through glycosylation constitute an
additional regulatory layer in allergic responses. These findings suggest that epigenetic
changes in food allergy converge on inflammatory signaling, metabolic regulation, and
receptor processing pathways, illuminating food allergy as a multi-dimensional disorder
involving coordinated epigenetic regulation that provides potential therapeutic targets
addressing both immediate inflammatory responses and underlying metabolic adaptations
contributing to disease persistence.

3.5. Validation on Independent Dataset (GSE114135)

To validate biomarker reproducibility, findings were tested on an independent ex-
ternal cohort (GSE114135 SuperSeries dataset, n = 342) containing RNA-Seq and DNA
methylation profiles from naïve CD4+ T-cells of infants and children with/without food
allergies using the same Illumina HumanMethylation850 BeadChip platform. External
validation was performed in a three-class setting (allergic, resolved, and control groups).
Results confirmed that LDHC and SLC35G2 methylation patterns significantly discrimi-
nated among the groups, demonstrating consistent directionality and statistical significance
across datasets. Classification models maintained comparable performance, with Random
Forest and SVM-RBF achieving 83% and 82% accuracy (AUC: 0.86, 0.85; F1-scores: 80.5%,
79%), while ANN (80%), SVM-poly (78.5%), and k-NN (75%) also showed sustained per-
formance, confirming generalizability across independent cohorts. Instead of a summary
table, per-class validation results are presented using ROC curves (Figure 9), which clearly
illustrate the discriminatory performance of the models across all three groups. As shown in
Table 6, model performance was evaluated using 10-fold cross-validation, further support-
ing the robustness of the results. This validation analysis establishes LDHC and SLC35G2
methylation signatures as reproducible biomarker candidates for food allergy diagnosis.

As shown in Figure 9, the ROC curves of the classification models in the validation
dataset (GSE114135) demonstrated consistent performance with the discovery cohort.
Random Forest and SVM-rbf achieved the highest AUC values, while ANN, SVM-poly,
and k-NN also maintained reproducibility. These results reinforce the robustness of LDHC
and SLC35G2 as potential epigenetic biomarkers for food allergy.

After applying stratified sampling, the systematic bias of the Random Forest model
toward the majority class was reduced, and the classification performance for the minor-
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ity classes improved. Similarly, SVM, ANN, and k-NN achieved more balanced class-
specific performance.

Figure 9. Validation Dataset ROC Curves and Performance.

Table 6. Classification performance of machine learning models evaluated with 10-fold cross-
validation on the external validation cohort (GSE114135).

Method Accuracy Precision Recall F-Score

Random Forest 0.830 0.85 0.82 0.805
SVM-RBF 0.820 0.83 0.81 0.790
ANN 0.800 0.81 0.79 0.800
SVM-Poly 0.785 0.80 0.77 0.785
k-NN 0.750 0.74 0.72 0.735

4. Discussion
Food allergy pathogenesis may be influenced by epigenetic processes that regulate im-

mune system function via gene-environment interactions. Our investigation demonstrated
that DNA methylation signatures of LDHC and SLC35G2 correlate with food allergic condi-
tions. Examination of the relationship between DNA methylation (DNAm) and transcript
expression within CpG-dense promoter areas showed that LDHC demonstrated an inverse
relationship, while SLC35G2 presented a direct correlation [39,40].

4.1. Clinical Significance and Translational Applications of LDHC and SLC35G2

Lactate dehydrogenase (LDH or LD) is a multi-isoform enzyme family that catalyzes
the conversion of pyruvate to lactate during anaerobic glycolysis [41]. LDHC operates
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at the interface of immune metabolism and cellular function [37,39]. This isoform mod-
ulates T-cell activation thresholds [42,43] regulates antigen-presenting cell activity, and
influences mast-cell degranulation [44] via changes in lactate transport and redox bal-
ance [41]. Metabolic intermediates such as lactate, acetyl-CoA, and succinate are recognized
as immune-regulatory signaling molecules. Accordingly, dysregulation of LDH-related
pathways could shift the Th1/Th2 balance toward Th2 dominance, a feature of food-allergic
responses [44].

Solute carrier transport proteins, such as SLC35G2, regulate lymphocyte communi-
cation and maturation, mechanisms essential for immune balance homeostasis and may
influence allergic reactions [45]. SLC35G2 encodes a UDP-galactose transporter required for
N-glycan modification [40] potentially modifying FcεRI/IgE signaling efficiency [46] and
the influence cytokine receptor surface residency [40]. Thereby plausibly altering possibly
affecting mast cell and basophil responsiveness [44].

Although LDHC and SLC gene families have been studied in asthma [42,47], their asso-
ciation with food allergy appears to be a novel observation that extends existing knowledge
of allergy-related pathways. In this context, methylation modifications on genes participat-
ing in carbohydrate transport, metabolic processes, and glycan formation [37,39,40] may
influence antigen processing, receptor movement, and cytokine communication, potentially
contributing to allergic sensitization [40,48]. These methylation signatures demonstrate con-
siderable potential for clinical application, facilitating non-invasive diagnostic approaches
using accessible biological materials, including blood or saliva, to identify individuals
prone to severe food allergic reactions. Particularly, LDHC and SLC35G2 methylation
signatures could be incorporated into diagnostic systems to identify early sensitization or
predict treatment responses to interventions such as oral immunotherapy. Additionally,
these biomarkers may inform individualized treatment approaches by connecting methyla-
tion profiles with clinical characteristics, including allergen-specific IgE concentrations or
symptom intensity. These methylation signatures may facilitate non-invasive diagnosis
or treatment response prediction, however validation using approaches such as targeted
bisulfite sequencing remains necessary. Clinical translation of these discoveries requires
standardized testing methods for detecting LDHC and SLC35G2 methylation in clinical
environments, including quantitative PCR-based methylation analyses, and prospective
clinical studies to confirm diagnostic and predictive precision across varied patient groups.
From this perspective, methylation changes at LDHC and SLC35G2 may function as essen-
tial regulatory points in pathways where allergic sensitization and effector mechanisms
can be modified, providing actionable therapeutic targets.

4.2. Cellular Communication Pathways and Immune System Control

Our results indicate that epigenetic regulation may interact with immune commu-
nication pathways, including TNF/NF-κB, in food allergy development [49,50]. TNF-α
is a central driver of allergic inflammation, including bronchial hyperresponsiveness in
IgE-mediated reactions [47]. Our pathway analyses identified TNF/NF-κB components
among differentially methylated genes supporting a potential association with LDHC
and SLC35G2 methylation [50,51]. For example, SLC35G2-dependent glycosylation could
modulate FcεRI signaling, thereby plausibly influencing TNF/NF-κB activity [44,48]. Simi-
larly, LDHC’s role in lactate metabolism may modulate immune cell activation thresholds,
aligning with inflammatory processes [44]. Yao demonstrated that PPAR-γ activation
suppresses TNF/NF-κB, decreasing mast cell degranulation [50]. Nevertheless, the specific
connection between LDHC/SLC35G2 methylation and TNF/NF-κB signaling remains
a testable hypothesis and requires functional validation. Genes responding to systemic
corticosteroids exhibited methylation modifications nearly three times greater than those
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associated with food allergy (p = 4.42 × 10−14), indicating overlap with allergy-related
epigenetic modifications [42]. However, the cross-sectional nature of methylation data
limits definitive causal interpretation [42].

4.3. Research Design Advantages and Constraints

Our findings were corroborated through analysis of supplementary GEO dataset
GSE114135, originating from the same investigative team, which afforded within-cohort
validation while falling short of complete independent verification. This reliance on datasets
derived from identical research groups and demographic populations constrains the gen-
eralizability of our conclusions, necessitating broader confirmation across diverse inde-
pendent cohorts. Machine learning algorithms demonstrated robust performance metrics
(AUC exceeding 0.85; referenced in Figure 9), with comprehensive ROC/precision-recall
and calibration evaluations detailed in the Section 3. To mitigate overfitting risks inherent in
high-dimensional methylation datasets, we implemented 10-fold cross-validation protocols,
hyperparameter tuning procedures, and stacked autoencoder architecture for feature di-
mensionality reduction. Nevertheless, these methodological safeguards may inadequately
address overfitting concerns given the substantial dimensionality of methylation profiles
relative to our constrained sample populations, with observed inconsistencies in data
partitioning suggesting additional optimization requirements. Additionally, insufficient
documentation of preprocessing methodologies, encompassing normalization strategies
and batch effect mitigation, potentially introduces analytical variability that subsequent
investigations should resolve through comprehensive methodological transparency. Al-
though cell-type deconvolution procedures were executed, residual cellular heterogeneity
may continue to confound methylation signatures, emphasizing the necessity for more
exhaustive analytical approaches. Prospective research endeavors should incorporate
nested cross-validation frameworks, permutation-based statistical testing, expanded in-
dependent cohort recruitment, and thoroughly documented preprocessing protocols to
enhance analytical reliability and experimental reproducibility.

In the initial analyses, class imbalance led to biased results in some algorithms. To
mitigate this issue, stratified sampling was applied within each cross-validation fold to
maintain the proportional representation of the classes. This approach enabled fairer evalu-
ation of the models and reduced performance discrepancies between classes. Nevertheless,
future studies may benefit from exploring oversampling, undersampling, or cost-sensitive
learning methods to further enhance balanced performance. In addressing class imbalance,
we initially tested additional resampling strategies, including oversampling and undersam-
pling techniques. However, these approaches did not yield performance improvements
and, in certain cases, even degraded classification accuracy, as reflected in the confusion
matrix results. By contrast, stratified sampling consistently provided the most balanced and
stable performance across classifiers. Therefore, to avoid introducing artificial variability
or excessive data reduction, stratified sampling was adopted as the final approach in this
study. This methodological choice, supported by supplementary confusion matrix analy-
ses, highlights stratification as the most reliable strategy for mitigating imbalance-related
misclassification in our dataset.

4.4. Clinical Application and Future Research

LDHC and SLC35G2 methylation profiles show promise as biomarkers for food allergy
diagnosis and for predicting treatment response. Their use in early, non-invasive diagnosis
could enhance patient outcomes by identifying at-risk individuals, including those with
atopic histories, before severe allergic reactions develop. For instance, methylation-based
tests could be developed to screen high-risk groups, such as children with suspected food
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allergies, or to monitor disease development in clinical practice. These biomarkers may also
inform personalized treatment approaches, including customizing oral immunotherapy
or evaluating corticosteroid responsiveness, by linking methylation patterns to clinical
outcomes such as symptom severity or allergen-specific IgE concentrations.

Key limitations include reliance on datasets from a single research group and limited
sample sizes. Future research should emphasize: (i) multi-center cohorts with varied
populations, including pediatric and adult patients, to improve generalizability, (ii) trans-
parent documentation of preprocessing methods, including normalization and batch effect
correction, to ensure reproducibility, (iii) robust validation approaches such as nested
cross-validation and permutation testing to address overfitting, (iv) additional molecular
validation, including targeted bisulfite sequencing, to confirm methylation patterns, and
(v) longitudinal studies to evaluate methylation stability and its relationship with disease
progression or recovery. These measures will enhance the clinical value of LDHC and
SLC35G2 as actionable biomarkers for food allergy management.

5. Conclusions
In conclusion, this study highlights the critical need for improved diagnostic accuracy

in distinguishing individuals with food allergies from those with food sensitivity, especially
considering the limitations of current diagnostic methods. The research introduces an
innovative machine learning methodology that incorporates DNA methylation (DNAm)
data, aiming to enable accurate diagnosis of food allergies and potentially uncover asso-
ciated epigenetic targets. The integration of machine learning with epigenetic patterns
holds significant potential for advancing disease prediction and enabling the discovery of
previously unknown features within the epigenome.

To identify influential genes in the context of food allergies, our hybrid models, com-
bining dimensionality reduction with various machine learning techniques, underwent
rigorous experimental validation. The utilization of DMPS methods, combined with ad-
vanced algorithms such as SVM-poly, SVM-rbf, k-NN, Random Forest, and ANN, formed
the basis of our analysis. Additionally, the integration of deep learning via stacked au-
toencoder (SAE) contributed to a robust and comprehensive analytical framework. To
the best of our knowledge, this study is the first to demonstrate the impact of LDHC and
SLC35G2 methylation on food allergy, positioning these genes as novel and promising
epigenetic biomarkers.

This research serves as a cornerstone for advancing precision medicine in food allergy
diagnosis, highlighting the potential of computational approaches to unravel the complex
mechanisms of epigenetic regulation in disease pathways. Notably, the methylation pattern
of the LDHC gene emerged as a potential biomarker for predicting food allergies using
DNA methylation in this extensive analysis. Future work should prioritize the develop-
ment of clinical tests that can accurately distinguish individuals with food allergies from
those who are merely sensitized, thereby reducing the risk of misdiagnosis. A thorough
examination of the identified genes and pathways is crucial for uncovering the complex
mechanisms behind food allergies and exploring potential therapeutic options. Advances
in bioinformatics tools will contribute to a better understanding of food allergies at the
epigenetic level, paving the way for innovative diagnostic and treatment approaches.
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