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Abstract

Background: Uric acid (UA) is linked to gout, renal dysfunction, and cardiovascular disease.
Prior studies often assume linear relationships, potentially oversimplifying physiological
complexity. Methods: We analyzed data from 5200 healthy Taiwanese men. Demographic,
biochemical, lifestyle, and inflammatory variables were assessed using Pearson correlation,
multiple linear regression (MLR), and multivariate adaptive regression splines (MARS),
an interpretable machine learning method for detecting nonlinear, threshold-based effects.
Results: Pearson correlation showed broad linear associations, whereas MARS identified
fewer but more physiologically meaningful predictors. Waist-to-hip ratio (WHR) had a
strong threshold effect, influencing UA only below 0.969. Creatinine showed a nonlinear
impact, becoming substantial above 0.97 mg/dL, suggesting a renal threshold within the
“normal” range. Calcium and high-sensitivity C-reactive protein (hs-CRP) each displayed
inflection points (9.5 mg/dL and 3.38 mg/L, respectively), indicating range-specific ef-
fects. Notably, betel nut exposure, nonsignificant in linear models, emerged in MARS
as a predictor with a complex, non-binary association with UA metabolism. Predictive
performance was comparable (RMSE: 1.6694 for MARS vs. 1.6666 for MLR), but MARS
offered superior interpretability by highlighting localized nonlinear effects. Conclusions:
MARS modeling revealed critical nonlinear, threshold-dependent associations between UA
and WHR, creatinine, calcium, hs-CRP, and betel nut exposure, which were not captured
by conventional methods. These findings underscore the value of interpretable machine
learning in metabolic research and suggest precise thresholds for clinical risk stratification.

Keywords: uric acid; machine learning; multivariate adaptive regression splines; nonlinear
modeling; multiple linear regression

1. Introduction
Uric acid (UA) is the end product of purine metabolism. About 80% of UA is derived

from endogenous metabolism of amino acids and nucleic acids, while the remaining 20%
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originates from dietary sources rich in purine or nucleic acid proteins [1]. UA is primarily
excreted through the kidneys into urine, and excessive intake of purine-rich or nucleic
acid-rich foods may elevate serum UA levels and place an additional burden on renal
function [1]. According to Taiwan’s Health Promotion Administration, Ministry of Health
and Welfare, an average of 750 mg of UA is produced daily, with approximately 500 mg
excreted by the kidneys [2]. The remainder is eliminated via bile secretion into the colon
and ultimately expelled in feces. Hyperuricemia is defined as serum UA ≥7 mg/dL in
men and ≥6 mg/dL in women, respectively, and is associated with increased risks of
gout, renal stones, and arthritis [2]. In recent years, UA has attracted increasing clinical
attention because of its strong association not only with classical outcomes such as gout
and nephrolithiasis, but also with metabolic syndrome and cardiovascular diseases [3–5].
Elevated UA levels have been linked to obesity, insulin resistance, hypertension, and dys-
lipidemia, key components of metabolic syndrome, suggesting that UA plays an integral
role in metabolic homeostasis and systemic inflammation [3,4]. Furthermore, accumulating
evidence indicates that UA contributes to endothelial dysfunction, oxidative stress, and
systemic inflammation, all of which are key mechanisms involved in cardiovascular dis-
eases development [4,5]. One comprehensive review highlighted that elevated UA may
affect the activity of enzymes such as nitric oxide synthase, adenosine monophosphate
kinase, adenosine monophosphate dehydrogenase, and nicotinamide adenine dinucleotide
phosphate, contributing to pathological processes involved in cardiovascular diseases [5].
Therefore, UA is increasingly recognized not only as a biomarker of purine metabolism,
but also as an active participant in cardiometabolic disease pathogenesis, reinforcing its
clinical significance.

An important and unresolved question is which risk factors interact with UA, and how
these relationships may vary across different physiological and biochemical states [6,7].
In particular, understanding whether these associations follow linear or nonlinear pat-
terns can offer critical insights into the underlying mechanisms regulating UA metabolism.
Such knowledge can deepen our understanding of physiological phenomena and their
implications for disease risk and progression. However, most prior studies have relied on
traditional statistical methods, which may fail to capture complex and nonlinear interac-
tions among variables [6,7]. In recent years, the rise of artificial intelligence has brought
new analytical tools to biomedical research. Machine learning, in particular, excels in
modeling the complexity and nonlinearity of large datasets, outperforming traditional
statistical approaches like multiple linear regression (MLR) [8]. To our knowledge, there
are few studies that have employed machine learning to explore hyperuricemia risk factors,
yet the studies treated UA as a binary variable (presence or absence of hyperuricemia),
thus limiting their clinical interpretability and failing to elucidate the full spectrum of
UA variation [8,9]. Among various machine learning approaches, multivariate adaptive
regression splines (MARS) offers some unique advantages. MARS not only accommodates
nonlinear associations but also generates interpretable equations, bridging the gap between
black-box models and conventional regression techniques. This makes MARS particularly
suitable for clinical applications where transparency and interpretability are essential.

In the present study, we employed MARS to analyze data from healthy Taiwanese men,
incorporating demographic, biochemical, lifestyle, and inflammatory markers. Our aim
was not simply to build a predictive model, but to leverage an interpretable mathematical
formula to understand the underlying relationships between UA and its associated factors,
especially their nonlinear patterns and biological implications.
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2. Materials and Methods
2.1. Participant and Study Design

Participant data collection has been previously reported by our group [10]. The
present analysis utilized data from the Taiwan MJ Cohort, an ongoing prospective health
screening program managed by the MJ Health Screening Centers in Taiwan [11]. The
health examinations capture more than 100 biological indicators, including anthropometric
parameters, blood biomarkers, and imaging assessments. Participants also complete a
self-administered questionnaire covering personal and family medical history, current
health conditions, lifestyle habits, physical activity, sleep, and dietary patterns [12].

This study represents a secondary analysis of de-identified data obtained from the
MJ Health Clinics. At the time of their health evaluations, all participants provided broad
informed consent permitting the use of anonymized data for future research. The dataset
is curated and maintained by the MJ Health Research Foundation, and the analyses were
conducted under authorization (Authorization Code: MJHRF2023015A). The interpreta-
tions and conclusions of this work are solely those of the authors and do not necessarily
reflect the views of the Foundation. Additional methodological details are available in the
Foundation’s annual technical report [12].

The study protocol was approved by the Institutional Review Board of Tri-Service
General Hospital (IRB No. C202305049). Since no new biological specimens were collected,
the study qualified for expedited review and did not require additional informed consent.
The study population comprised men aged 20 to 80 years. Participants with a history
of cancer or those taking medications for hyperglycemia, hypertension, hyperlipidemia,
hyperuricemia, or corticosteroids were excluded. The participant selection process is
illustrated in Figure 1.

 
Figure 1. Flowchart of sample selection in the current study.

2.2. Laboratory Tests

On the day of the health examination, experienced nursing staff documented each
participant’s medical history, including current medication use, and performed a standard-
ized physical examination. Waist circumference was measured horizontally at the natural
waist, and body mass index (BMI) was calculated as weight in kilograms divided by height
in meters squared. Blood pressure was assessed on the right arm in a seated position
using a standard mercury sphygmomanometer to record both systolic and diastolic values.
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Physical examinations and blood pressure measurements were conducted in accordance
with ISO 9001 standards [13] and CAP-accredited laboratory procedures. Abnormal values
were re-assessed, and all instruments were regularly calibrated.

Following a 10-h overnight fast, venous blood samples were obtained for biochemical
testing. Plasma was separated within one hour of collection and stored at −30 ◦C until
analysis. Fasting plasma glucose (FPG) was measured with the glucose oxidase method
(YSI 203 glucose analyzer, Yellow Springs Instruments, Yellow Springs, OH, USA). Total
cholesterol and triglycerides were determined using the dry multilayer analytical slide
method on the Fuji Dri-Chem 3000 analyzer (Fuji Photo Film, Tokyo, Japan). Serum
high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-
C) were quantified by enzymatic assay following dextran sulfate precipitation. Urinary
microalbumin concentrations were measured using turbidimetry on a Beckman Coulter
AU5800 biochemical analyzer (Beckman Coulter Inc., Brea, CA, USA).

Demographic data included information on marital status and whether participants had
a spouse. Drinking was calculated as the product of total duration of alcohol consumption,
drinking frequency, and alcohol concentration. Similarly, the smoking quantity and betel nut
exposure were calculated by multiplying the duration, frequency, and quantity (number of
cigarettes or betel nuts consumed). Sports was derived from the product of the duration,
frequency, and intensity (by type of physical activity. All these parameters were treated as
independent variables in the analysis, with serum UA serving as the dependent variable.

2.3. Traditional Statistics

An independent t-test was used to compare UA levels between different marital
status groups. Since sleep duration and education level are ordinal variables, analysis of
variance (ANOVA) was employed to compare UA across their respective categories. Simple
correlation was conducted to evaluate the relationships between UA and other continuous
variables. All statistical analyses were performed using SPSS software version 19.0 (IBM
Inc., Armonk, New York, NY, USA).

2.4. Machine Learning Method

In the present study, the MARS technique was employed to analyze the dataset.
MARS is a flexible and powerful method for modeling high-dimensional data, utilizing an
expansion framework based on product spline basis functions. Importantly, the number of
basis functions and their associated characteristics are automatically determined through
data-driven processes [14]. Conceptually, MARS is aligned with recursive partitioning
methods and is similarly capable of capturing complex, higher-order interactions.

For model construction, the dataset was randomly partitioned into training (80%)
and testing (20%) subsets. To optimize the MARS model, hyperparameter tuning was
performed within the training subset. Specifically, the training data were further stratified
into an internal training set and a validation set. A grid search procedure was implemented
across predefined ranges of key hyperparameters, including the maximum number of
basis functions and the degree of allowed interactions. Model performance was evaluated
using the root mean square error (RMSE) on the validation set, and the configuration
yielding the lowest RMSE was retained as the optimal MARS specification. This optimized
model was subsequently benchmarked against a conventional MLR model for comparative
performance assessment.

Prior to performing the machine learning analysis, all data preprocessing and quality
checks were completed. In this study, continuous variables were normalized using Z-score
standardization, while skewed biochemical parameters (e.g., triglycerides, uric acid) were log-
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transformed. Robust scaling was considered for variables with extreme values. Given the very
low proportion of missing data, cases with missing values were excluded from the analysis.

During model evaluation, predictive performance was quantified using the indepen-
dent testing subset that had been withheld from the training process. Given that serum
UA was modeled as a continuous outcome, multiple complementary error metrics were
computed to provide a robust assessment of model accuracy. Specifically, symmetric mean
absolute percentage error (SMAPE), relative absolute error (RAE), root relative squared er-
ror (RRSE), and root mean square error (RMSE) were calculated. These metrics collectively
capture both absolute and relative deviations between observed and predicted values, as
well as sensitivity to large errors. A detailed summary of the evaluation results is presented
in Table 1.

Table 1. Equations for calculating performance metrics.

Metric Description Calculation

SMAPE Symmetric Mean Absolute
Percentage Error SMAPE = 1

n ∑n
i=1

|yi−ŷi |
(|yi |+|ŷi |)/2

RAE Relative absolute error RAE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi)

2

RRSE Root relative squared error RRSE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1

(
yi−y.

i

)2

RMSE Root mean squared error RMSE =
√

1
n ∑n

i=1(yi − ŷi)
2

ŷi and yi represent predicted and actual values, respectively; n stands for the number of instances.

To provide a comparative context, the averaged performance metrics of the MARS
model were used to benchmark its performance against the MLR model. It is noteworthy
that both models, MARS and MLR, were trained and tested on the same dataset, ensuring
consistency in evaluation.

For 95% confidence interval, we quantified uncertainty in threshold locations by
resampling. When MARS produced hinge terms, thresholds were estimated by bootstrap
of the MARS model (B = N; median and 2.5–97.5th percentiles). When MARS did not yield
hinges, we estimated per-variable breakpoints using univariate segmented regression with
multiple starting values; if that failed, we applied a two-piece linear (hinge) grid search
with bootstrap. The method used for each variable is indicated in the table.

All statistical analyses and modeling procedures were conducted using R software
version 4.0.5 and RStudio version 1.1.453, with all necessary packages installed. The
MARS models were implemented using the “earth” package (version 5.3.3) [15], and
hyperparameter tuning was conducted via the “caret” package (version 6.0–94) [16]. The
MLR models were developed using the base “stats” package in R (version 4.0.5) with
default settings.

3. Results
A total of 5200 healthy male participants were included in the final analysis. Their

demographic and baseline characteristics are described in detail (Table 2). To explore the
relationship between serum UA levels and various demographic, biochemical, and lifestyle
variables, Pearson correlation analysis was first conducted. Most variables demonstrated
statistically significant associations with UA levels, with the direction of correlation varying
across parameters. Notably, LDL-C, plasma phosphorus concentration, alkaline phos-
phatase, alpha-fetoprotein, carcinoembryonic antigen, homocysteine, fibrinogen, smoking,
betel nut exposure, and sports were non-significantly correlated with UA (Table 3). This
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wide range of significant associations underscores the complexity of the physiological
interactions contributing to UA regulation.

Table 2. Demographic data of participants.

Variables Unit Mean ± SD

Age year 42.05 ± 11.48
Waist–hip ratio waist/hip circumference 0.86 ± 0.06
Leukocyte ×103/µL 6.16 ± 1.61
Hemoglobin ×106/µL 15.29 ± 1.07
Platelets ×103/µL 227.05 ± 47.99
Fasting plasma glucose mg/dL 103.40 ± 18.70
Systolic blood pressure mmHg 119.54 ± 15.24
Diastolic blood pressure mmHg 76.86 ± 10.46
Total bilirubin mg/dL 1.06 ± 0.41
Albumin mg/dL 4.47 ± 0.20
Globulin g/dL 3.02 ± 0.32
Alkaline Phosphatase IU/L 62.41 ± 20.85
Glutamic oxaloacetic
transaminase IU/L 25.81 ± 12.23

Glutamic pyruvic transaminase IU/L 34.87 ± 25.73
γ-glutamyl transpeptidase IU/L 38.38 ± 50.17
Lactate dehydrogenase mg/dL 162.52 ± 34.13
Creatinine mg/dL 1.08 ± 0.18
Triglycerides mg/dL 133.31 ± 131.20
High density lipoprotein
cholesterol mg/dL 52.63 ± 11.74

Low density lipoprotein
cholesterol mg/dL 123.38 ± 33.32

Plasma calcium concentration mg/dL 9.49 ± 0.36
Plasma phosphate concentration mg/dL 3.55 ± 0.48
Alpha-fetoprotein ng/mL 2.93 ± 1.96
Carcinoembryonic antigen ng/mL 3.47 ± 96.08
Thyroid stimulating hormone µIU/mL 1.64 ± 1.38
C reactive protein mg/dL 0.23 ± 0.45
Bone mass density T-score 0.51 ± 1.22
Alcohol consumption - 7.39 ± 18.96
Smoking - 9.59 ± 20.65
Betel nut exposure - 0.97 ± 7.41
Sports - 7.62 ± 8.97
Homocysteine µmol/L 10.46 ± 4.36
High sensitivity C-Reactive
Protein mg/L 2.08 ± 4.55

Ferritin ng/mL 252.82 ± 166.95
Fibrinogen mg/dL 274.86 ± 58.48
Uric acid mg/dL 6.58 ± 1.32

Marriage status n (%)
Single 1600 (30.77%)
With spouse 3600 (69.23%)

Education level n (%)
Illiterate 7 (0.13%)
Elementary school 97 (1.87%)
Junior high school (vocational) 210 (4.04%)
High school 1049 (20.17%)
Junior college 993 (19.10%)
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Table 2. Cont.

Variables Unit Mean ± SD

University 1900 (36.54%)
Graduate school or above 944 (18.15%)

Sleep hours n (%)
<4 h/day 82 (1.58%)
4–6 h/day 1276 (24.54%)
6–7 h/day 2528 (48.62%)
7–8 h/day 1114 (21.42%)
8–9 h/day 166 (3.19%)

>9 h/day 34 (0.65%)

Table 3. Pearson’s r between uric acid and demographic, biochemistry and lifestyle parameters.

Variable r Variable r Variable r Variable r

Age −0.1057 *** Leukocyte 0.1311 *** GOT 0.1694 *** Creatinine 0.1708 ***
Alcohol 0.0764 *** Hemoglobin 0.1095 *** GPT 0.2222 *** CRP 0.027 *
Smoking 0.0151 Platelets 0.1064 *** Albumin 0.146 *** Hs-CRP 0.0445 **
Betel nut −0.0164 TG 0.1924 *** Globulin 0.1126 *** CEA 0.0061

Sports −0.0029 HDL-C −0.1461 *** TBIL −0.0497 *** TSH 0.0438 **
WHR 0.2256 *** LDL-C 0.1649 γ-GT 0.1781 *** Hcys 0.0766
BMD 0.1412 *** FPG −0.0309 * LDH 0.1366 *** Ferritin 0.1288 ***
SBP 0.1458 *** Ca 0.1666 *** ALP 0.0309 * Fibrinogen 0.0593
DBP 0.1383 *** P 0.0695 AFP 0.0055

Note: WHR: waist–hip ratio; BMD: bone mass density; SBP: systolic blood pressure; DBP: diastolic blood pressure;
TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; FPG:
fasting plasma glucose; Ca: plasma calcium concentration; P: plasma phosphate concentration; GOT: serum
glutamic oxaloacetic transaminase; GPT: serum glutamic pyruvic transaminase; TBIL: total bilirubin; γ-GT: serum
γ-glutamyl transpeptidase; LDH: lactate dehydrogenase; ALP: alkaline Phosphatase; AFP: alpha-fetoprotein; CRP:
C-reactive protein; Hs-CRP: high sensitivity C-reactive protein; CEA: carcinoembryonic antigen; TSH: thyroid
stimulating hormone; Hcys: homocysteine.*: p < 0.05; **: p < 0.01; ***: p < 0.001.

To further investigate how social and lifestyle factors influence UA levels, we per-
formed a series of group comparisons. However, only education level showed a significant
difference in UA levels, while marital status and sleep duration did not, as determined by
t-tests and ANOVA (Table 4). These findings suggest that while metabolic and biochemical
markers have measurable correlations with UA, certain social determinants may have
limited impact in this healthy male population.

We then compared the performance of two modeling approaches, MLR and MARS,
for predicting UA levels. While MARS and MLR showed comparable predictive accuracy,
MARS offered substantially greater physiological interpretability by revealing localized,
nonlinear effects. (Table 5). This suggests that MARS may offer advantages in handling
complex, nonlinear relationships. However, both models explained only a small proportion
of the variance (r2 ≈ 0.044 for MLR and r2 ≈ 0.042 for MARS), underscoring that predictive
accuracy was limited despite comparable RMSE values.

We then compared the performance of two modeling approaches, MLR and MARS,
for predicting UA levels. Both models performed comparably, with MARS showing a
marginally higher RMSE (1.6694 vs. 1.6666) and negligible differences across other metrics
(Table 5). This indicates that predictive gains were minimal, and that the principal value of
MARS lies in uncovering complex, nonlinear relationships. The MLR equation is expressed
as below. Given the standard deviation of UA (1.32), the implied R2 was approximately
0.044 for MLR and 0.042 for MARS, indicating that both models explained only about 4% of
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the variance. Accordingly, we emphasize pattern discovery and physiological interpretation
over prediction, and we avoid overstating clinical utility.

UA = −2.047 − 0.016 × Age + 5.159 × WHR − 0.005 × FPG + 0.002 × γ-GT + 0.003 × LDH
+ 1.195 × creatinine + 0.001 × TG + 0.367 × Ca − 0.011 × betel nut exposure + 0.0005 ×

Hs-CRP.

Table 4. T-test between uric acid and marital status, analysis of variance between uric acid and
education level, and sleep hours.

Variables Uric Acid (mg/dL) p Value

Marriage status
Single 6.62 ± 1.33

0.075With spouse 6.56 ± 1.31
Education level

Illiterate 7.53 ± 1.61

0.005

Elementary school 6.21 ± 1.11
Junior high school (vocational) 6.60 ± 1.41
High school 6.62 ± 1.40
Junior college 6.59 ± 1.33
University 6.58 ± 1.27
Graduate school or above 6.53 ± 1.28

Sleep hours
<4 h/day 6.62 ± 1.44

0.936
4–6 h/day 6.59 ± 1.32
6–7 h/day 6.56 ± 1.31
7–8 h/day 6.59 ± 1.32
8–9 h/day 6.61 ± 1.35

Table 5. The average performance of multiple linear regression and multivariate adaptive regression
splines.

Methods SMAPE RAE RRSE RMSE

MLR 0.1797 1.1250 1.2542 1.6666
MARS 0.1789 1.1199 1.2563 1.6694

Note: MLR: multiple linear regression, MARS: multivariate adaptive regression splines.

In-depth analysis of the final MARS model revealed that only a limited subset of vari-
ables contributed substantially to UA prediction. These included waist-to-hip ratio (WHR),
creatinine, plasma calcium concentration, high-sensitivity C-reactive protein (Hs-CRP),
betel nut exposure (BN), age, γ-glutamyl transferase (γ-GT), FPG, lactate dehydrogenase
(LDH), and triglycerides (Table 6). Based on the basis functions in Table 6, the MARS-
generated equation for estimating UA is as follows:

UA = 7.187 + 0.0259Max(0, 48 – Age) − 0.012Max(0, Age – 48) − 3.28Max(0, 0.969 −
WHR) − 0.009Max(0, 115 – FPG) − 0.01Max(0, FPG – 115) − 0.014Max(0, 49 – γ-GT)
−0.005Max(0, 211 – LDH) + 2.882Max(0, creatinine – 0.97) − 0.004Max(0, 207 –TG)

+ 0.001Max(0, TG – 207) − 0.525Max(0, 9.5 – Ca) + 0.106Max(0, 5 – betel nut exposure)
− 0.118Max(0, 3.38 – Hs-CRP) − 0.016Max(0, Hs-CRP – 3.38).

A screenshot is provided in the Supplementary Materials Table S1. By coping and past-
ing the content in the Word file into Excel and type the related factors into the corresponding
Excel cells, the result of the equation will be available at A11.
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Table 6. List of basis function Bi of the MARS model and their coefficients, ai.

Definition a1

Intercept 7.187

B1 Max(0, 48–Age) 0.025
B2 Max(0, Age–48) −0.012
B3 Max(0, 0.969–WHR) −3.280
B4 Max(0, 115–FPG) −0.009
B5 Max(0, FPG–115) −0.010
B6 Max(0, 49–γ-GT) −0.014
B7 Max(0, 211–LDH) −0.005
B8 Max(0, Cr–0.97) 2.882
B9 Max(0, 207–TG) −0.004

B10 Max(0, TG–207) 0.001
B11 Max(0, 9.5–Ca) −0.525
B12 Max(0, 5–BN) 0.106
B13 Max(0, 3.38–Hs-CRP) −0.118
B14 Max(0, Hs-CRP–3.38) −0.016

Note: WHR: Waist–hip ratio; FPG: Fasting plasma glucose; γ-GT: Serum γ-glutamyl transpeptidase; LDH: Lactate
dehydrogenase; Cr: Creatinine; TG: Triglycerides; Ca: Plasma calcium concentration; BN: betel nut exposure;
Hs-CRP: High sensitivity C-Reactive Protein.

To enhance clinical interpretability, we compared the MARS-derived thresholds against
established clinical cut-offs for metabolic syndrome, diabetes, obesity, and kidney dysfunc-
tion (Table 7). These thresholds represent inflection points in the UA–predictor relationship
within a healthy cohort, indicating changes in slope rather than disease states. They are
not diagnostic cut-offs; their role is hypothesis-generating and requires validation in case–
control or longitudinal cohorts, since clinical cut-offs are typically defined by comparing
healthy and diseased populations.

For example, the creatinine breakpoint at 0.97 mg/dL reflects the point where UA
excretion begins to rise disproportionately, despite lying below the conventional abnormal
range for renal impairment. Similarly, the WHR threshold (0.969) highlights an inflec-
tion point that may mark a subclinical physiological transition rather than a disease state.
However, the 95% confidence interval for this WHR threshold was wide (e.g., 0.92–1.01),
overlapping with conventional clinical cutoffs, and the apparent “protective” association be-
low this value should not be interpreted as definitive. This pattern may reflect unmeasured
confounding—for example, individuals with lower central adiposity may have different
dietary patterns (e.g., lower rice or seafood intake) that influence UA exposure. Moreover,
the threshold is data-driven and specific to our cohort; it should not be generalized with-
out external validation. Rather than indicating a clinical intervention point, this finding
primarily highlights a potential nonlinearity in the relationship between adiposity and UA
metabolism that merits further investigation.

Likewise, the fasting glucose threshold (115 mg/dL) suggests a sensitivity zone within
a continuous relationship. These values should therefore be interpreted as physiologi-
cal markers of sensitivity zones within continuous relationships, not as substitutes for
established clinical definitions. Nonetheless, their alignment or divergence from guideline
cut-offs suggests that such exploratory thresholds may provide mechanistic insights and
inform hypotheses for future longitudinal and case–control investigations.

Notably, the influence of these variables was not uniformly linear; rather, each variable
demonstrated impact on UA only within specific value ranges, as visualized in Figure 2.
For example, the effect of WHR on UA was more pronounced below a certain threshold,
while creatinine had a sharply positive effect above a specific cutoff. These localized
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effects highlight the strength of MARS in identifying biologically meaningful, nonlinear
associations that would be overlooked by linear models or traditional correlation analysis.

Table 7. Comparison of MARS-Identified Thresholds for Uric Acid Predictors with Established
Clinical Cut-offs for Metabolic and Renal Disorders.

Variable MARS Threshold
(Present Study)

Clinical Threshold for Metabolic
Syndrome/Obesity/Diabetes/Kidney

Disease
Source/Guideline Interpretation/Clinical Relevance

WHR <0.969
(impact zone)

≥0.90
(abdominal obesity, men)

IDF 2006;
WHO 2008

MARS identifies a protective”
effect below 0.969—still above the
obesity threshold (0.90)

Creatinine >0.97 mg/dL >1.1–1.3 mg/dL
(mild renal impairment, men)

KDIGO 2012; Lab
reference ranges

MARS detects UA elevation before
creatinine
reaches clinical “abnormal”
range—supports early renal stress
even within “normal” labs.

hs-CRP >3.38 mg/L >3.0 mg/L
(high cardiovascular risk) AHA/CDC 2003

MARS threshold aligns closely
with established
CV risk stratification—reinforces
inflammation as key UA driver.

Fasting
Glu-
cose

>115 mg/dL ≥100 mg/dL
(prediabetes); ≥126 mg/dL (diabetes) ADA 2023

MARS identifies nonlinear effect
starting at 115 mg/dL
—between prediabetes and diabetes
thresholds, suggesting glucose
dysregulation impacts UA before
frank diabetes.

Calcium <9.5 mg/dL Normal range: 8.5–10.5 mg/dL;
no direct MetS threshold Lab reference ranges

MARS suggests low–normal
calcium (still within “normal”)
is associated with higher
UA—possibly reflecting
subclinical inflammation or bone
turnover.

Triglycerides >207 mg/dL ≥150 mg/dL (MetS criterion) NCEP ATP III 2001

MARS effect activates well above
MetS threshold—
suggests UA is more sensitive to
severe hypertriglyceridemia than
mild elevations.

γ-GT <49 IU/L Normal: <55–65 IU/L (lab-dependent);
no direct MetS threshold Lab reference ranges

MARS identifies effect in
low–normal range—
may reflect hepatic oxidative stress
before enzyme elevation becomes
clinically apparent.

Note: IDF = International Diabetes Federation; WHO = World Health Organization; KDIGO = Kidney Disease:
Improving Global Outcomes; AHA = American Heart Association; CDC = Centers for Disease Control; ADA =
American Diabetes Association; NCEP ATP III = National Cholesterol Education Program Adult Treatment Panel III.
All clinical thresholds are for adult males unless otherwise specified. “MARS Threshold” indicates the value at which
the relationship with UA changes significantly per basis functions in Table 6.

This discrepancy between the broad statistical significance observed in Pearson corre-
lation and the focused, range-specific associations revealed by MARS emphasizes a key
methodological insight. While Pearson correlation treats each variable’s effect as constant
across its entire range, MARS accommodates complexity and offers a clearer understanding
of which variables truly drive UA variability and under what conditions. A schematic
overview summarizing the design, analytical workflow, and key findings of the study is
provided in Figure 3.

Figure S1 visualizes the estimated turning points in the association between each
predictor and UA. Points denote the median threshold, and horizontal bars (and violins
when bootstrapped) show the 95% CI for the threshold location; the estimation method
used for each variable is listed in Table S2.
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Figure 2. Influence of important variables on uric acid by multivariate adaptive regression splines.
Note: (A): Waist–hip ratio; (B): Creatinine. (C): Plasma calcium concentration; (D): High-sensitivity
C-Reactive Protein; (E): Chewing betel nut area; (F): Age; (G): Serum γ-glutamyl transpeptidase;
(H): Fasting plasma glucose; (I): Lactate dehydrogenase; (J): Triglycerides.
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Figure 3. The graphic summary of the present study.

Clear, well-localized thresholds (narrow CIs) were observed for γ-GT, TG, LDH, FPG,
and age, indicating distinct inflection points in their relationships with UA. In contrast,
variables such as Cr, WHR, CRP, calcium, and betel-nut exposure exhibited broader CIs
and/or thresholds close to the boundary of their observed ranges, suggesting weaker
evidence for a sharp change in slope. Exact point estimates and 95% CIs for all variables
are provided in Supplementary Table S2. Notably, the prevalence of individuals beyond
each MARS-identified threshold varied widely, offering important context for interpreting
their physiological relevance. For instance, creatinine > 0.97 mg/dL affected only 9.8%
of participants—yet this small subgroup exhibited a sharp rise in uric acid, highlighting
MARS’s sensitivity to detect nonlinear effects even within the conventional “normal”
laboratory range. Similarly, fasting plasma glucose > 115 mg/dL, which lies between the
thresholds for prediabetes (≥100 mg/dL) and diabetes (≥126 mg/dL), was observed in
just 9.2% of the cohort, suggesting that metabolic dysregulation may influence uric acid
metabolism earlier than current clinical definitions imply. In contrast, hs-CRP > 3.38 mg/L
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was present in 36.0% of participants—closely aligning with the established cardiovascular
risk cutoff of 3.0 mg/L—and reinforces systemic inflammation as a key driver of uric acid
elevation. Calcium < 9.5 mg/dL was remarkably common, affecting 89.4% of the cohort,
indicating that even low–normal calcium levels (still within the standard reference range
of 8.5–10.5 mg/dL) are physiologically relevant to uric acid regulation. Finally, **betel
nut exposure > 5 units was rare (4.1%), yet it emerged as a significant nonlinear predictor,
demonstrating MARS’s ability to uncover complex, non-binary associations even in sparse
subgroups. Together, these proportions underscore that MARS identifies both common and
infrequent—but biologically meaningful—inflection points that linear models overlook.

4. Discussion
This study applied a MARS approach to identify and characterize nonlinear associa-

tions between serum UA levels and a comprehensive set of demographics, biochemical,
lifestyle, and inflammatory factors in a large cohort of healthy Taiwanese men. It should be
noted that both MLR and MARS achieved low explanatory power (r2 < 0.05), consistent
with the weak bivariate correlations. Therefore, while the models provide mechanistic and
physiological insight, their utility for individual-level prediction remains limited. While
traditional Pearson correlation revealed numerous statistically significant relationships, the
MARS model uncovered a more refined and physiologically meaningful set of predictors,
including WHR, FPG, creatinine, calcium, Hs-CRP, and betel nut exposure, many of which
exhibited threshold-dependent effects not captured by conventional linear models. Our
findings highlight the importance of using advanced, interpretable machine learning mod-
els to reveal complex, range-specific interactions that may underline metabolic regulation.
In particular, the identification of nonlinear breakpoints in variables such as WHR and cre-
atinine underscores the need for precision thresholds in both clinical screening and public
health strategies. Moreover, the novel associations found for LDH and betel nut exposure
provide new directions for future investigation into metabolic and lifestyle determinants of
UA regulation.

It is important to note that both MLR and MARS achieved low coefficients of determi-
nation (R2 = 0.044 and 0.042, respectively), indicating that the included predictors explain
only a small proportion of the total variance in UA concentrations. While MARS did not
substantially improve predictive accuracy over MLR (Table 5), its principal contribution lies
in uncovering biologically plausible, threshold-dependent relationships that linear models
inherently cannot detect. This underscores that the goal of this analysis was explanatory
insight, not purely predictive performance.

Although statistically significant associations were observed for several predictors, the
overall explanatory power of both models was low (R2 < 0.05), consistent with the weak
bivariate correlations reported in Table 3. This suggests that the majority of variability in UA
levels in this cohort is driven by factors not captured in our dataset—such as unmeasured
dietary exposures (e.g., seafood, rice), genetic differences in UA metabolism, or temporal
variation in exposure. Consequently, the clinical or public health utility of these models for
individual-level prediction is limited, and interpretations should focus on population-level
associations rather than predictive accuracy.

The prevalence of obesity has increased dramatically in recent years. According
to the World Health Organization, global obesity rates have tripled over the past five
decades [17]. Numerous studies have demonstrated a strong association between obesity
and elevated UA levels. For example, Li et al. reported that Chinese individuals with high
UA levels also had significantly higher triglyceride concentrations [18]. Their multivariate
logistic regression model identified a significant association between body mass index
and UA (β = 0.202, p = 0.039), suggesting that chronic inflammation and oxidative stress
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associated with obesity may play a mechanistic role [19]. In our study, we selected WHR
instead of body mass index as a surrogate marker for obesity. This choice was based on
increasing evidence that WHR better reflects central (visceral) adiposity and its metabolic
consequences compared to body mass index, which does not distinguish between fat and
lean mass or account for fat distribution. WHR emerged as one of the most influential
variables in both the Pearson correlation analysis and the MARS model. However, the
nature of its association with UA differed substantially between the two methods. Pearson
correlation suggested a modest linear relationship between WHR and UA (r = 0.226),
implying a uniform increase in UA with increasing WHR. In contrast, the MARS model
revealed a pronounced nonlinear, threshold-dependent relationship: WHR significantly
influenced UA levels only below a threshold of 0.969, with little to no additional effect
observed above this value. Specifically, the basis function Max (0, 0.969–WHR) had the
largest absolute coefficient (–3.280) in the MARS model, indicating a sharp decline in UA
as WHR increased within the lower range. This implies that the protective effect of low
WHR on UA is most prominent below 0.969, and that once WHR exceeds this threshold,
its additional impact on UA becomes minimal or flat. This finding is physiologically
meaningful. WHR < 0.969 typically represents individuals with relatively low visceral
fat accumulation and preserved metabolic homeostasis. In this state, insulin sensitivity
remains intact, systemic inflammation is low, and renal UA excretion is likely more efficient.
However, as WHR increases beyond this threshold, the metabolic stress from visceral fat
accumulation may have already saturated its effect on UA, thereby flattening the curve
observed in the MARS model. This threshold phenomenon could not be captured by
linear correlation analysis alone and highlights the value of MARS in uncovering nuanced,
range-specific relationships.

The second most influential factor associated with serum UA levels in our study was
creatinine. A clear positive association was observed between UA and creatinine levels,
consistent with findings from previous studies. For instance, Joo et al. demonstrated a
dose-dependent relationship between elevated UA and impaired renal function, reporting
an adjusted odds ratio of 5.55 (95% CI: 3.27–9.44) for individuals in the lowest quartile of
estimated glomerular filtration rate [20]. Several other cross-sectional and longitudinal
studies have similarly shown that higher UA levels are associated with progressive decline
in renal function [21–25]. The underlying physiological mechanisms linking UA and
renal impairment are multifaceted. One key contributor is endothelial dysfunction, which
can be induced by elevated serum UA. UA has been shown to inhibit endothelial cell
proliferation and reduce the bioavailability of nitric oxide, a critical vasodilator involved
in maintaining renal microvascular tone and perfusion [26–28]. Reduced NO availability
leads to increased vascular resistance and compromised glomerular filtration, thereby
contributing to nephron damage. Furthermore, UA may promote oxidative stress and
inflammation in renal tissues, exacerbating tubulointerstitial injury and accelerating renal
functional decline. As renal function deteriorates, the kidney’s ability to excrete UA
diminishes, resulting in further accumulation of UA in the blood. This bi-directional
relationship, where UA both contributes to and is affected by renal dysfunction, forms a
pathological feedback loop that may explain the strong positive correlation observed in our
study. Importantly, the MARS model highlighted a threshold effect, wherein the association
between creatinine and UA becomes particularly pronounced above 0.97 mg/dL. This
finding suggests that even mild elevations in creatinine, which may still fall within the
clinically “normal” range, are associated with disproportionate increases in UA. This
reinforces the notion that early renal microvascular changes may already be exerting
measurable effects on systemic UA metabolism. Collectively, our findings support a
pathophysiological model in which elevated UA not only reflects declining renal clearance
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but may also act as a contributing factor in the progression of renal dysfunction through
mechanisms involving endothelial injury, oxidative stress, and altered hemodynamics.

Calcium plays a vital role in a wide range of cellular functions, including muscle contrac-
tion, hormone secretion, nerve conduction, and the activation of numerous enzymes [29]. Both
calcium and UA are well-established contributors to the formation of urinary tract stones [30].
However, the relationship between serum UA and calcium levels remains controversial, with
prior studies reporting inconsistent or conflicting results [31–35]. In our study, we observed a
significant and independent positive correlation between serum UA and calcium levels, as
identified by both Pearson correlation and the MARS model. One plausible explanation for
this association is the involvement of chronic inflammation. Previous studies have shown
that elevated UA is associated with increased levels of pro-inflammatory cytokines such as
interleukin-6 and tumor necrosis factor-alpha [36–38]. Similarly, hypercalcemia has been
linked to heightened inflammatory states, including elevations in C-reactive protein and
interleukin-6 levels [39,40]. These parallel findings support the hypothesis that inflammation
may act as a common underlying mechanism linking elevated serum levels of UA and calcium.
The simultaneous elevation of these markers may thus reflect a shared pathophysiological
response to systemic inflammatory burden. Further supporting this hypothesis is the role of
Hs-CRP, which emerged as the fourth most influential variable in our MARS model. Hs-CRP
is a well-established marker of chronic low-grade inflammation and has been recognized
since the 1990s as an independent predictor of cardiovascular events, confirmed by over 25
large-scale epidemiological studies [41]. In parallel, UA has been increasingly recognized not
only as a marker of cardiovascular risk but also as a potential pro-inflammatory mediator [42].
For instance, Spiga et al. stratified UA levels into quartiles among 2731 non-diabetic individu-
als and reported that Hs-CRP levels were significantly higher in the highest UA quartile [42].
Our results are consistent with this literature, further reinforcing the interconnection between
elevated UA and systemic inflammation, as reflected by Hs-CRP. In addition to metabolic
and inflammatory factors, lifestyle behaviors may also play a role in modulating UA levels.
Betel nut exposure, a culturally prevalent practice in Southeast Asia, has been associated
with a range of adverse health outcomes. For example, Huang et al. reported a significant
association between betel nut exposure and an increased risk of metabolic syndrome [43],
while other studies have suggested a possible role in promoting kidney stone formation [44].
Interestingly, a study by Tai et al. found an inverse association between betel nut use and hy-
peruricemia, with an odds ratio of 0.75 (95% CI: 0.66–0.84) [45]. However, their findings were
based on logistic regression, which treats hyperuricemia as a binary outcome, thus limiting
interpretation to the presence or absence of disease. In contrast, our use of the MARS model
enabled the assessment of continuous, nonlinear associations between betel nut exposure and
serum UA levels. This analytical approach revealed a nuanced dose–response relationship,
suggesting that betel nut exposure may influence UA metabolism in a non-uniform manner.
This novel finding adds depth to the current understanding of lifestyle and UA interactions
and highlights the utility of MARS in uncovering complex, range-specific patterns that are not
easily captured by traditional models.

The remaining four variables in the MARS model, age, γ-GT, FPG, and LDH, had com-
paratively smaller coefficients, indicating more modest contributions to serum UA levels.
Nonetheless, their associations offer additional physiological insights. Age demonstrated
a positive, albeit mild, association with UA. This aligns with findings from Kuzuya et al.,
who reported a positive longitudinal relationship between age and UA levels in a large
cohort of 80,506 individuals of both sexes [46]. The age-related increase in UA may reflect
cumulative oxidative stress, decreased renal clearance, or age-associated changes in purine
metabolism. Interestingly, our study revealed a positive association between γ-GT and UA,
contrary to several earlier studies that reported a negative relationship. Those studies were
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often conducted in disease-specific populations, such as individuals with diabetes [47],
alcohol-related liver disease [48], or patients with metabolic syndrome [49,50]. In contrast,
our analysis was performed in a healthy population, suggesting that γ-GT may correlate
with UA even in the absence of overt disease. Given γ-GT’s role in glutathione metabolism
and oxidative stress response, it is plausible that low-grade oxidative processes contribute
to UA elevation even in subclinical states. For fasting plasma glucose, previous research has
largely indicated a positive association with UA. However, our analysis supports a modest
inverse relationship, in line with recent interventional evidence. Notably, a meta-analysis
by Chen et al. involving four clinical trials and 314 patients found that treatment with
allopurinol led to significant reductions in FPG (weighted mean difference: −0.61 mmol/L,
95% CI: −0.93 to −0.28) [51]. This observation suggests a potential bi-directional interac-
tion between glucose metabolism and UA, possibly mediated through insulin resistance
or oxidative stress pathways. Regarding LDH, existing literature linking this enzyme to
UA has been mostly limited to pathological contexts such as preeclampsia [9,52]. LDH, a
key enzyme in anaerobic glycolysis, may reflect underlying subclinical tissue turnover or
low-grade inflammation, both of which could contribute to increased UA production. This
novel finding positions LDH as a potentially underrecognized biomarker in UA regulation,
meriting further investigation. Finally, triglycerides were identified as the least influential
factor in the MARS model. Although a positive correlation between triglycerides and UA
has been widely reported, such as in the small-scale study by Tariq et al. [53], the strength
of this association was relatively weak in our analysis. One plausible explanation is shared
dietary confounding, particularly high fructose intake. Fructose is known to simultaneously
stimulate hepatic UA synthesis and triglyceride-rich lipoprotein production [54,55]. Thus,
while triglycerides remain a relevant biomarker in hyperuricemia, its direct mechanistic
link to UA may be secondary to underlying metabolic drivers such as diet composition,
especially fructose consumption.

This study has several limitations that should be acknowledged. First, it employed a
cross-sectional design, which inherently limits the ability to infer causal relationships between
variables. Unlike longitudinal studies, this design cannot determine temporal sequences or di-
rectionality of associations. Second, the study population consisted exclusively of individuals
from a single ethnic group, which may limit the generalizability of the findings. Caution is
therefore warranted when extrapolating these results to other ethnic or demographic popu-
lations, as genetic, environmental, and cultural factors may influence uric acid metabolism
and its associated risk factors. Lastly, it is noteworthy that while uric acid functions as a
potent antioxidant in plasma under physiological conditions [1], this protective role is likely
negated—or even reversed—in the context of renal dysfunction. As our MARS model high-
lights, even mild creatinine elevations (0.97 mg/dL), below conventional renal impairment
thresholds, are associated with disproportionate UA increases. This suggests that once renal
excretory capacity begins to falter, UA transitions from an antioxidant to a pro-oxidant and
pro-inflammatory mediator within tissues—particularly in the kidney and vasculature [26,28].
Thus, the clinical implications of elevated UA must be interpreted in the context of renal
function: what may be protective in a healthy individual could become pathogenic in early
renal stress—a nuance captured by our threshold-based modeling.

5. Conclusions
This study leveraged the MARS model to uncover nonlinear, range-specific predictors

of serum uric acid in healthy men, an advancement over traditional linear methods. Key
variables such as WHR, creatinine, and hs-CRP showed threshold-dependent effects, offer-
ing novel physiological insights. Our findings highlight the model’s potential to enhance
metabolic risk assessment through interpretable machine learning.
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