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Abstract: The distribution of adipose tissue in the lungs is intricately linked to a variety of lung
diseases, including asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Accu-
rate detection and quantitative analysis of subcutaneous and visceral adipose tissue surrounding
the lungs are essential for effectively diagnosing and managing these diseases. However, there
remains a noticeable scarcity of studies focusing on adipose tissue within the lungs on a global
scale. Thus, this paper introduces a ConvBiGRU model for localizing lung slices and a multi-module
UNet-based model for segmenting subcutaneous adipose tissue (SAT) and visceral adipose tissue
(VAT), contributing to the analysis of lung adipose tissue and the auxiliary diagnosis of lung diseases.
In this study, we propose a bidirectional gated recurrent unit (BiGRU) structure for precise lung slice
localization and a modified multi-module UNet model for accurate SAT and VAT segmentations,
incorporating an additive weight penalty term for model refinement. For segmentation, we integrate
attention, competition, and multi-resolution mechanisms within the UNet architecture to optimize
performance and conduct a comparative analysis of its impact on SAT and VAT. The proposed model
achieves satisfactory results across multiple performance metrics, including the Dice Score (92.0% for
SAT and 82.7% for VAT), F1 Score (82.2% for SAT and 78.8% for VAT), Precision (96.7% for SAT and
78.9% for VAT), and Recall (75.8% for SAT and 79.1% for VAT). Overall, the proposed localization and
segmentation framework exhibits high accuracy and reliability, validating its potential application in
computer-aided diagnosis (CAD) for medical tasks in this domain.

Keywords: deep learning (DL); localization; segmentation; subcutaneous adipose tissue (SAT);
visceral adipose tissue (VAT)

1. Introduction

Human health has always been a widely concerned problem. Excessive body fat is a
worldwide public health problem, and extreme fat content will lead to obesity, metabolic
disorders, and a decrease in life quality [1]. Human metabolism speed is closely related to
adipose tissue content [2–4]. According to [5–9], excessive fat may lead to fatty liver and
liver inflammation and other diseases. Kwon et al. [10] showed that most cardiopulmonary
risk factors are strongly and positively correlated with SAT and VAT. The works in [11–13]
have shown that adipose tissue content affects the success rate of organ transplantation.
Heart and lung transplant recipients are more likely to have a higher risk of cardiovascular
disease due to high breast fat content. Anderson et al. [14] have shown that excess fat is
associated with an increased risk of primary graft dysfunction (PGD) after lung transplan-
tation. Cho et al. [15] explored the contents of muscle and SAT in lung CT images and
probed the relationship between these two contents and the survival rate of patients who
have received lung transplantation. The experiments in the paper have shown that excess
fat also increases mortality in lung transplant patients. The studies showed that excessive
fat content in the body is harsh to human health. Traditional adipose tissue estimation
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methods calculate the fatty tissue by the weight value or CT images and other clinical
parameters such as Body Mass Index (BMI). The literature [16,17] has shown that BMI does
not accurately and precisely reflect the mass of fat tissue in the body. Therefore, we need a
more intelligent and accurate way to estimate human adipose tissue accurately.

Computer-aided diagnosis (CAD) has been extensively studied and applied in the
medical field [18,19]. In medical image research, many researchers conducted analyses
based on X-ray images. Bottigli et al. [20], when studying breast cancer, used the distributed
database to analyze mammography images and classified fat and other tissues through
the obtained texture analysis results. In recent years, the rapid development of artificial
intelligence (AI) has also made significant progress in applying DL in the medical domain.
Deep learning (DL) methods have recently drastically affected medical imaging, revolu-
tionizing this field. Mina et al. [21] proposed a Dense Residual UNet (DRU), which made
an improvement on the Residual Network (ResNet) and the Dense Network (DenseNet)
to complete the medical image segmentation task. This work has superior performance
in labeled datasets with few pixels and few training samples, but its utility in datasets
with more examples needs to be proved. Zhang et al. [22] proposed a weak medical image
segmentation supervision method. They achieved the segmentation results via the scale
constraint method but compared it with the supervised model. Usman et al. [23] conducted
a three-dimensional segmentation of lung CT using an adaptive region of interest (ROI) al-
gorithm to study the exact quantification of pulmonary nodules based on the deep residual
UNet structure. Still, it has yet to be reliably demonstrated for the fat segmentation task,
which is more complex, irregular in shape, and more difficult to distinguish from adjacent
tissues. Peng et al. [24] conducted a texture analysis on CT images. They introduced
a multi-perception model to analyze further the five parameters of the lowest density
value, energy, kurtosis, low-density enhancement value, and hara variance to improve the
accuracy of diagnosis and reduce the misdiagnosis rate.

Adipose tissue is characterized by a complex structure, significant individual dif-
ferences, and random shape [25]; image-based fat quantification, therefore, remains a
considerable challenge. Cao et al. [26] proposed an unsupervised clustering segmentation
method of fat based on MRI images of the human abdomen. However, due to the limita-
tions of the unsupervised method, the distinction between SAT and VAT becomes more
difficult without the guidance of labels during the training process, and there is still room
for improvement in the segmentation accuracy. Hussein et al. [27] used gradient points to
provide the initial boundary of SAT and VAT and then refined the edge based on appear-
ance and geometric calculation. They finally obtained the final boundary and segmentation
results through the context label fusion based on the conditional random field (CRF), which
replaced the function of supervised methods with unsupervised methods. Irmak et al. [28]
proposed an affinity propagation clustering method based on fuzzy connectivity (FC) image
segmentation for automatic segmentation. This is considering the heterogeneity of adipose
tissue but might be a bit subjective as the automated selection approach evades the need
for filtering systems. Amer et al. [29] proposed a patch integration algorithm that fuses
the contextual information of adjacent pixels for the irregular problem of adipose tissue
and applied the UNet structure and K-Means algorithm of embedded parts to achieve the
segmentation task. It has not been demonstrated whether the results obtained by this work
in leg muscle and adipose tissue segmentation are equally applicable to the structurally
complex task of adipose tissue segmentation in lung slices.

Estrada et al. [25] implemented image segmentation through a two-dimensional, com-
plete convolutional network based on UNet. They competed for the output of each pooling
layer and the input of its peer layer in the upsampling process after a fusion via a con-
volutional layer, retained the optimal one, and transmitted it to the next layer to obtain
more accurate segmentation results. This network structure has yet to be demonstrated
in adipose tissue segmentation in lung slices. A Squeeze-and-Excitation (SE) block is pro-
posed for zonal prostate segmentation [30]. Koitka et al. [31] added multi-resolution blocks
combined with the convolution results of adjacent layers. They obtained segmentation
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predictions with more comprehensive features. Langner et al. [32] compared two complete
convolutional neural network structures, UNet and VNet, in a study of abdominal adipose
tissue segmentation and verified the advantages of UNet. Our paper adopts the UNet
structure as the baseline model and explores its performance in adipose tissue 2D segmen-
tation. Masoudi et al. [33] used the conditional generated network (c-GAN) to generate the
synthesized CT images (s-CT) of adipose tissue in the study on abdominal adipose tissue
and then used the UNet structure to refine SAT and VAT s-CT. The effect of the model
varies with the data, but the advantages of UNet are clear.

The fusion of spatial and learning information with contextual information can help
to localize pulmonary tissues. The gated recurrent units (GRUs) [34] model works based
on the recursive updating of the features in the system. Bidirectional GRU (BiGRU) is a
modified GRU. It can not only preserve the learned information but also provide feed-
back on the future learned information and is implemented in a two-way information
fusion mechanism.

In this paper, we propose a model inspired by BiGRU and a multi-module com-
bined approach for lung slice localization and adipose tissue segmentation using the UNet
structure. Compared to conventional methods in terms of accuracy and specificity, our
proposed methods demonstrate superiority. The model utilizes multi-modules and atten-
tion mechanisms [35] to segment VAT and SAT in CT slices, showing a significantly better
performance than feature fusion across multiple components. We explore different segmen-
tation results of various modules (the competitive module, multi-resolution module, and
attention mechanism) and the segmentation outcomes of combined modules. The results
indicate more accurate segmentation of fat content values and reduced measurement errors,
demonstrating a more comprehensive characterization of adipose tissue.

2. Materials and Methods

In this section, we introduce the overall framework and detailed design of this work,
which is primarily divided into three parts: the preprocessing module, the lung slice
localization model, and the adipose tissue segmentation model.

2.1. Overall Framework of the Proposed Methodology

The overall workflow and the connection to each module are shown in Figure 1. We
set the continuous lung CT slice sequences as the input in this paper.

In our approach, every five slices (this sequence size is discussed in the comparison
experiment) are grouped, taking into account their positional relevance and order in
the body. For each sample, the continuous CT image sequences’ information is fused
to automatically position the lung in CT images based on BiGRU. The localization task
essentially involves a triple-classification process. The resulting three categories (the first
slice of the lung, the last portion of the lung, and other pieces, i.e., FL, LL, and OS) are used
to locate the entire lung, thereby determining the spatial location of the CT sequence of the
lung. Lung slice localization serves as a selection step to exclude unnecessary slices in the
whole chest CT for the subsequent segmentation process.

The input of the segmentation model is chosen from FL to LL (including the pieces
in between) and ultimately detects the SAT and VAT areas using the multi-module UNet
model. Additionally, in this paper, we test the combination of multi-module mechanisms
(i.e., multi-resolution, the competitive module, and the attention module) used to modify
the original UNet, which leads to improvements in the segmentation accuracy in the
localized lung CT slices.
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Figure 1. Workflow of the proposed methodology. The upper part of the diagram represents the local-
ization model, while the lower part depicts the segmentation model. The localization model identifies
the first and last slices of the lung in the CT sequence through multi-class classification, establishing
the spatial location of the lung region within the CT sequence. In the results of the upper part, ‘00’,
‘01’, and ‘10’ correspond to the top slice, the bottom slice, and other slices between these boundaries,
respectively. Subsequently, SAT and VAT are segmented and identified by integrating multi-modules
into the layers of the UNet network. This enhancement results in improved segmentation accuracy
compared to traditional UNet methods.

2.2. Lung Slices Localization Model in Chest CT Imaging

Observing the CT slice sequence, the lung is consistently surrounded by intricate
tissues, with variations observed from case to case. Distinguishing the targeted slice from
its neighboring pieces presents a challenge, even for seasoned experts, due to the overall
variability among organs and imaging conditions. This challenge is further compounded
in cases where differentiating nodules from tumors is necessary. This study underscores
the enhancement of pulmonary localization results through the amalgamation of structure
and texture information from lung CT slices. The localization task is tackled through the
fusion of contextual information within the CT slice sequence. To accomplish this, the
ConvBiGRU model, depicted in Figure 2, performs the fusion of information from multiple
slices along with their spatial correlation.

Figure 2. ConvBiGRU structure. The input is the CT slice sequence with five slices in each group,
and the output is the specific class of the slices. There are overall three class results of the output in
localization. The

−−→
ht−1 and

←−−
ht−1 represent the forward and backward information, respectively, and x̃t

is the obtained results at time t.

In this model, the original linear layers are replaced by convolution layers to extract the
spatial image information. The input of ConvBiGRU requires over three CT slices due to the
space contextual information need, which will be discussed in the comparison experiment
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part. The model extracts characteristic information of these slices through forwarding
and backpropagation. The presented model is inspired by the ConvLSTM network [36],
combining forward and backward spatial information with temporal information. The
convolution part reduces the spatial redundancy while the BiGRU function extracts more
comprehensive information than LSTM and finally precisely identifies the slices with the
lung. The update gate, zt, at the time t in a GRU block is as follows:

zt = σ(Wz · [ht−1, xt]) (1)

where ht−1 and σ are the information at t− 1 and activation functions, respectively. The
update gate determines the amount of information retained from t− 1. The reset gates at
time t in the model, rt, are as follows:

rt = σ(Wr · [ht−1, xt]) (2)

The reset gate is considered to be a linear transform of the combined information at
the time t− 1 for the new input with a sigmoid activation function.

h̃t = tanh σ (W · [rt · ht−1, xt]) (3)

Let h̃t be the updating value of the gate, where h̃t represents the newly generated
information from the reset gate, rt, while activated by a hyperbolic tangent function.
Adding the results from two entrances, the output of the model obtained by the following
recursive function at time t is as follows:

ht = (1− zt) · ht−1 + zt · h̃t (4)

Like the GRU model, the BiGRU operates using the same logic but multiple times in
two different directions, as presented in Figure 3.

Figure 3. Schematic diagram of BiGRU. It mainly contains two different directions of GRU with
the same input sequence and a concatenation of the two outputs in the end. The input circles with
different colors in the middle belong to one group of the input sequence.

The model fuses forward information and receives information from the back. To
perform a lung localization, we measure the interval distance between the classification
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predictions and the ground truth, as well as the evaluation index of the model. As the
model takes information fusion from multiple CT slices, the feature learning in the model
can be affected by the length of the input sequences. To alleviate that, we performed a
cross-comparative analysis of the model with different sizes of input sequences and other
normalization methods. Different lengths of lines (three slices, five slices, and seven slices)
were tested to compare the results to determine the optimal one.

At the same time, to minimize the loss and increase the learning effect of the model
through feature intensity, we performed two different normalizations. For the first normal-
ization, called MaxIntensity, we rescale the image’s pixels by the maximum power of the
image, fn(x, y) = fn(x, y)/4095, where fn(x, y) means the pixel intensity of the image at
(x, y) coordinate and 4095 represents the maximum intensity of the pixels in the image. For
the second normalization way, called MaxMinNorm, we rescale the pixels’ intensity in the
range of [0, 1], as shown below:

fn(X, Y)=
f (X, Y)−min( f (X, Y))

max( f (X, Y))−min( f (X, Y))
(5)

where min(·) and max(·) denote the same slice’s minimum and maximum pixel inten-
sity, respectively.

Because the original dataset has massive medical images of coarse types of the lesion
including bone, abdomen, lung, and five more classes, the localization part of this paper
was trained on 1483 images containing the target lung region selected from 2184 CT images
of 100 patients, and 252 images were randomly chosen as the test set. The validation set was
separated individually from the training set with a ratio of 2:8 in the localization process to
improve the model.

2.3. Adipose Tissue Segmentation Using Multi-Module UNet

A UNet-based multi-module model is used to segment SAT and VAT. We conduct the
cross-comparison among the attention, multi-module, and multi-resolution blocks. The best
combination improves the accuracy and robustness of the model to perform segmentation.
The segmentation structure is shown in Figure 4.

Figure 4. Segmentation model structure. Adding the blocks and converting the original model to the
multi-module structure through the cross-test. It should be noted that attention modules only set the
upsampling at the peer layer as the input.

Three modules, including a multi-resolution module, competitive module, and atten-
tion mechanism module, are added to the original UNet structure and compared to their
performance. The output of the multi-resolution module is combined with the production
of different convolutional layers and then transferred to the next layer as the input. The
competitive module maxes out the result by comparing the outputs of the multi-resolution
module and the peer layer. The attention mechanism reduces the influence of noise and
low-intensity contrast between VAT and SAT. Through the different combinations of these
modules, we conduct a comparative analysis of the segmentation. Figure 5 presents the
variety of the multi-resolution module and the competitive module.
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Figure 5. Combination structure of competitive mechanism block and multi-resolution block. The
steps before the ‘Add’ operation represent the multi-resolution block, and the operations below are
the competitive mechanism part. All different modules will eventually go through Maxout, using its
strong fitting ability to obtain more accurate results.

In addition to obtaining the optimal outcome between each upsampling layer and their
corresponding pooling layer, the multi-resolution results are also added to the competition
to construct a two-step selection mechanism. Applying the sigmoid function in the model,
we achieved a binary classification for predictions, which maps the data into (0, 1). The
sigmoid function is defined as follows:

S(p(x, y)) = 1/(exp(−p(x, y))) (6)

where p(x, y) represents the probability value of the corresponding (x, y) coordinates. The
optimizer is Stochastic gradient descent (SGD) used in the model. This algorithm makes a
more effective outcome while having some level of redundancy. To maintain the training
speed while the number of samples increases, each weight update in SGD updates once
during its iteration. The updating process is shown as follows:

θj=θj +
(

yi − hθ

(
xi
))

xi
j (7)

where hθ is the prediction to xi, yi as input samples and the output of the layer, respectively,
and xi

j is the jth variable in the ith sample. To accelerate SGD in the relevant direction, we
use the momentum parameter beta β set to 0.9 to calculate the exponentially weighted
averages as follows:

vdW=βvdW+(1− β)dW (8)

vdb=βvdb+(1− β)db (9)

where dW and db is the weight and bias, respectively. Having noise in the results is
seemingly inevitable due to the local randomness during the descent. The loss is measured
by the Dice coefficient distance/loss (DCL) and measured as follows:

DC
(

yture, ypred

)
=

κ + 2 ∑ yture · ypred

κ + ∑ yture · ytrue + ∑ ypred · ypred
(10)

DCL
(

yture, ypred

)
= 1− DC

(
yture, ypred

)
(11)
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where the coefficient of κ is set as 1 in the model. ytrue and ypred represent the ground truth
and the predicted value of a CT image, respectively.

We use the weight penalty in our analysis to tackle the imbalance input sample
problem for the localization model, which improves the learning convergence speed. In
other words, we calculated the ratio of each sample through a logarithmic function to
proportionally and effectively control the growth rate. The formula to calculate the sample
weight is as follows:

weight = weighti/ ∑i=n
i=1 weighti (12)

W = 1/ log(α + weight) (13)

where weighti is the times of occurrences of each category and n and α are the number
of sample categories and the factor controlling the sample proportion, respectively. The
constant α is set to 1.1 based on experience in the experiment to avoid negative numbers
and zeros. Thus, W ∈ ( 1

log 2.1 , 1
log 1.1 ).

Finally, the sample weight is added to the loss as follows:

DCLW

(
ytrue, ypred

)
= DCL

(
ytrue, ypred

)
+ W (14)

The segmentation part of this paper was trained on 2351 CT images, and 975 images
were selected as the verification set each time, which was verified by the four-fold cross-
verification method. Besides the images from the localization, we added the remaining
images to the dataset to ensure sufficient training. Then, 572 and 573 images were selected
as the test set for SAT and VAT segmentation, respectively. The validation set was separated
individually from the training set with a ratio of 2:8 in the segmentation process to improve
the model.

3. Results

Here we describe the experiment in detail and analyze the experimental results. This
study selected 100 patients with lung CT images from the DeepLesion dataset by the
National Institutes of Health Clinical Center (NIH CC) [37]. The CT images from the
original dataset were all 16-bit unenhanced grayscale images (512× 512× 1) in png format.
Slice spacing among these input CT images ranged from 0.25 mm, 0.4 mm, 0.6 mm, 1 mm,
1.25 mm, 2 mm, 2.5 mm, and 3 mm to 5 mm.

3.1. Data Preprocessing

For our study, we meticulously selected lung slice images from the DeepLesion dataset
based on specific criteria. We focused on CT scan sequences that comprehensively captured
the entire range of lung anatomy from initial appearance to disappearance. Within these
sequences, we categorized the slices into distinct lung regions: apex, midsection, and
base. From the original DeepLesion dataset, which encompasses diverse medical images
covering various lesion types, we specifically extracted 1483 CT images containing lung
regions out of a total of 2148 images from 100 patients. Our selection process aimed to
ensure the representation of typical lung anatomy and pathology encountered in clinical
practice. The label annotation tool [38] was used to manually label the images. Our group
annotated the labels with the guidance of an expert and verified them by a professional
experienced radiologist. Labels are stored and read following the serial number of the cases.
Segmentation labels are recorded in JSON format, and images and their labels are saved
accordingly in eight-bit png format.

After reading the images and their labels, we translated them into array format
and split them into training and testing sets. The images and labels were augmented
in 16-bit format to improve the contrast between different tissues, organs, and other
components. The augmentation solely enhances contrast without cropping or rotating the
images. This facilitates the manual labeling of the targeted slice and segmentation of their
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labels. Converting the images to eight-bit format resulted in missing information, leading
to greater disparity in prediction outcomes. Therefore, we only convert them for annotation
work, not for the actual training input

We conducted a multi-class classification to localize the lung slices and labeled them
based on their position in the CT image as ‘0’, ‘1’, or ‘2’ (Figure 6). ‘0’ signifies the first
slice of the lung, ‘2’ denotes the last slice of the lung, and any other slices outside of these
boundaries are labeled as ‘1’ (as depicted in Figure 6).

With these three categories, we could distinguish the different locations of the lung in
slices. The label is processed by one-hot encoding into binary format and then input into
the network.

All experiments in this study were conducted in a Python 3.6 environment, running
on a computer equipped with an Intel Core™ i7-9750H CPU, 8GB RAM, and a GTX 1660TI
GPU. Additionally, the computational tasks were also performed on four high-performance
servers in our laboratory. These servers are equipped with NVIDIA Titan Xp series GPUs
and Intel i9 processors, providing robust support for our experiments.

Figure 6. Examples of three classes of localization labels. There are large differences in the size
of body tissues between different cases, which brings difficulties to the training and testing effects
of the model.

3.2. Results of Lung Slice Localization

When using the entire dataset for training and testing subsets, sample imbalance
problems in localization would affect the results, i.e., much more irrelevant slices than lung
slices (the first and the last slices). This will result in an imbalanced classification of the
model as the features learned by the model may be more biased toward negative samples,
which weakens the correct model prediction. To solve this problem, we divided the training
set into three subsets with 700 slices in each subset. The total number of annotated lung
slices in each subgroup was kept at 320(±10) to balance the proportion of positive and
negative samples. Moreover, we add a penalty during the backward propagation according
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to different types of incorrect outputs in the classification model. Every error will add a
weight of−1 to the misclassification in the results. We obtained more balanced results in the
localization model based on this mechanism. We also conducted comparative analyses by
the different number of input sequence slices (three, five, or seven slices) and normalization
methods (MaxIntensity or MaxMinNorm). These experiments were conducted based on
three subdatasets from the segmentation datasets on 2315 CT slices and tested on 975 CT
slices. The results are presented in Table 1.

As shown in Table 1, the results of MaxMinNorm are better than those of the Max-
Intensity normalization method. Also, the pulmonary texture information obtained by
MaxMinNorm is preserved better than other normalization techniques. The results of the
different number of slices indicated that five slices of input yielded the best localization
outcome. At the same time, three slices of input reduced the proportionality of positive and
negative samples, negatively affecting localization prediction. Also, the number of negative
examples in the slice sequence increased for the seven-slice input while the proportion of
positive models decreased. Boxplots show the difference between the two normalization
methods and input slices in Figure 7.

Table 1. Results of the localization model for lung slices.

Number of Slices in a Sequence
Mean Distance (mm)

MaxIntensity MaxMinNorm

Three 13.2 ± 6.3 12.7 ± 5.7
Five 12.5 ± 4.6 10.2 ± 6.3

Seven 13.4 ± 4.4 12.5 ± 8.6

J!K% J"K%
%

Figure 7. The localization model visualization results of two scheme combinations. (a) is the boxplot
of scheme 1; (b) is the boxplot of scheme 2. The horizontal lines in each box in the chart represent
maximum, Upper Quartile (Q3), median, Lower Quartile (Q1), and minimum, respectively, which
indicate the stability and distribution of data. The statistical data in the figure come from the test
results of a set of 200 slice images of the test set randomly selected, which do not completely overlap
with the data selected in Table 1, which further supports the stability of the results.

In Figure 7, we plotted the boxplots with the different numbers of slices per sequence
under the two normalization techniques. It shows that the slice spacing obtained in MaxMin-
Norm is generally lower, and the variation range is more extensive than the MaxIntensity
normalization technique. However, the median value of MaxMinNorm is more stable, and
its distribution of Q1 and Q3 is more uniform. To calculate the spacing distance for the
localization analysis, we used the following equation:

dt =
∣∣∣ypred − ytrue

∣∣∣ · spt (15)
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where spt represents the distance between adjacent slices in this case, and dt represents
the slice distance between the predicted result and its targeted position in the ground
truth (in millimeters—mm). In the localization experiment, the average distance between
the ground truth and the predicted target is shown by the Mean Distance (MD) and is
calculated as follows:

MD = ∑N
i=1

(∣∣∣Nopred − Notrue

∣∣∣ · spt

)
/N (16)

where Nopred is the number of the predicted slice with the highest score in the tested
volume. Notrue is the number of the first or last slices (localizing the lung area). N is the
total number of testing samples, and spt is as mentioned before.

3.3. Results of Adipose Tissue Segmentation

Several comparative experiments were carried out to evaluate the performance of the
segmentation model. The segmentation model can consider adipose tissues, VAT, and SAT
as binary classification problems for each task. We conducted four experiments to segment
both types of adipose tissue automatically. The experimental results of UNet and different
modules based on UNet are shown in Table 2.

The results indicated that the overall segmentation of the SAT tissue has higher
accuracy and better performance than VAT tissues using the proposed models. The model
with the multi-resolution (MR) module has the best performance, while it is close to the
results of the model with the attention module (ATTN). Both these two results exhibited
better performance than the competitive module (CP), while the overall difference is
negligible and all better than the baseline UNet model. For the segmentation of VAT, the
segmentation model with MR showed the best performance, followed by the ATTN and
CP models with a small gap.

Table 2. Comparative results of segmentation using single-module modified UNet structures.

Model Adipose Type Dice Score F1 Score Precision Recall

UNet SAT 90.3 ± 0.8 81.2 ± 0.7 95.9 ± 0.9 74.6 ± 0.9
VAT 79.8 ± 1.6 74.1 ± 1.5 77.3 ± 1.4 78.6 ± 1.9

UNet + MR SAT 90.7 ± 0.8 81.6 ± 0.8 96.4 ± 0.4 75.0 ± 0.8
VAT 81.4 ± 1.6 77.1 ± 1.8 78.2 ± 1.8 77.1 ± 2.1

UNet + ATTN SAT 90.5 ± 1.2 81.7 ± 0.9 95.6 ± 0.4 74.3 ± 0.8
VAT 80.8 ± 2.1 76.0 ± 2.0 76.6 ± 1.4 75.2 ± 2.4

UNet + CP SAT 90.3 ± 0.9 81.3 ± 0.8 96.0 ± 0.6 74.5 ± 1.2
VAT 80.5 ± 1.7 75.6 ± 1.7 76.6 ± 1.4 74.8 ± 1.8

We conducted a deep analysis on the comparative experiments of each module with
baseline UNet. We also aggregated every two-module group to compare with the base-
line UNet. Table 3 shows the experimental results of such a segmentation SAT and
VAT combination.

Table 3. Comparative results of segmentation using multi-module modified UNet structure.

Model Adipose Type Dice Score F1 Score Precision Recall

UNet + MR + ATTN SAT 92.0 ± 1.7 83.5 ± 1.6 96.4 ± 2.5 77.5 ± 1.2
VAT 82.6 ± 1.4 78.6 ± 2.4 78.9 ± 2.9 79.3 ± 3.1

UNet + MR + CP SAT 91.7 ± 1.1 83.9 ± 1.3 95.9 ± 2.3 75.2 ± 2.4
VAT 81.1 ± 1.6 76.4 ± 2.2 77.4 ± 2.3 77.3 ± 2.3

UNet + ATTN + CP SAT 91.9 ± 0.7 83.5 ± 2.6 95.7 ± 1.7 74.8 ± 2.3
VAT 80.6 ± 1.2 76.0 ± 3.0 76.0 ± 2.6 76.9 ± 3.1

MR: multi-resolution module; ATTN: attention module; CP: competitive module.
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The results indicate that the combination of the modified UNet model with MR and
ATTN has the best performance in this segmentation task. Then, the modified UNet with
ATTN and CP showed better accuracy than other additive modules of MR and CP. They are
adding an ATTN block for the segmentation of VAT-inhibited redundancy, which brings
the information of other larger thoracic tissues.

The lung CT slices showed that the adipose tissue had non-uniformity and irregularity,
i.e., heterogeneity, while the adipose tissue has a similar morphological profile to fluid in the
body. Comparing the prediction and ground truth visually in segmentation demonstrates
the significant performance while missing some tiny fat tissues at the edge of the predicted
results. The misclassification in the mentioned regions might be because of the blurred
border between the pixel intensity of the adjacent area. During the experiment, we adjusted
the label of the training set to clean the misclassified parts and screened the CT slices with
big noises. This is aimed to ensure the relative purity of the training dataset and exclude
the negative influence during the learning process that is not supposed to be there.

The model applied a four-fold cross-validation to segment SAT and VAT to ensure
the results’ reliability and robustness. For that, the averaged overall Precision and Recall
rates were computed along with the overall averaged F1 Score and averaged Dice Score for
the segmentation accuracy. Some examples of segmented parts and their corresponding
ground truth for SAT and VAT are visualized in Figure 8.

Figure 8. Visualizations of segmentation results. Both the segmented parts and ground truth for SAT
and VAT are visualized. Green, yellow, and red regions represent the ground truth, true predictions,
and false predictions, respectively.

The proposed segmentation model showed better accuracy in segmenting lung adipose
tissue than other models [21,39–42]. The proposed model outperformed other approaches
in SAT or VAT segmentation tasks (see Table 4). From Table 4, it can be observed that there
are significant differences in the performance of the Dice Score, F1 Score, and Precision,
while the performance of Recall shows little variation. Recall represents the proportion
of samples that are truly positive and are correctly predicted as positive by the model,
calculated as Recall = TP/(TP + FN). The similar Recall values across all methods in Table 4
are due to the balanced nature of our dataset and the design of our experiments. We
carefully balanced the dataset during preprocessing to ensure an equal representation
of positive and negative samples. Additionally, our experiments were conducted under
similar conditions, including the same evaluation metrics and testing procedures. As a
result, the Recall values reflect the ability of each method to correctly identify positive
instances relative to the total number of positive instances in the dataset, leading to a
comparable performance across methods.
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Table 4. Comparison results of segmentation with other methods on the same dataset.

Model Adipose Type Dice Score F1 Score Precision Recall

DRUNet [21] SAT 91.1 ± 1.1 82.0 ± 2.5 95.9 ± 1.7 72.5 ± 4.5
VAT 80.1 ± 2.5 78.0 ± 2.7 77.3 ± 2.7 75.4 ± 3.7

UNet [39] SAT 87.8 ± 2.7 81.5 ± 2.5 91.7 ± 0.9 74.6 ± 1.5
VAT 81.2 ± 1.3 77.3 ± 3.4 76.1 ± 2.2 78.6 ± 2.1

UNetTransformer [40] SAT 88.6 ± 1.5 80.9 ± 1.8 91.5 ± 1.9 76.9 ± 5.5
VAT 81.4 ± 2.0 78.3 ± 4.9 75.7 ± 3.6 78.1 ± 4.2

FedDG [41] SAT 90.7 ± 2.1 83.3 ± 3.5 92.2 ± 2.4 75.0 ± 1.8
VAT 80.1 ± 2.5 73.4 ± 3.3 75.3 ± 6.4 77.1 ± 2.1

Transfuse [42] SAT 91.3 ± 1.6 82.1 ± 2.0 95.2 ± 4.6 76.7 ± 2.7
VAT 80.6 ± 2.9 77.4 ± 4.7 76.4 ± 2.4 77.6 ± 3.3

Ours SAT 92.0 ± 1.7 83.5 ± 1.6 96.4 ± 2.5 77.5 ± 1.2
VAT 82.6 ± 1.4 78.6 ± 2.4 78.9 ± 2.9 79.3 ± 3.1

4. Discussion

This study proposes an automated model for lung localization and adipose tissue
segmentation in CT images using deep learning. The ConvBiGRU structure, incorporating
contextual spatial features, is utilized for lung tissue localization. Subsequently, a UNet
structure modified by a multi-resolution module and attention mechanism is employed
for segmenting subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT).
Contextual information, such as forward and backward spatial information, is utilized
for lung slice localization. In this study, the dataset is divided into multiple subsets to
address sample imbalance issues. Furthermore, comparative analyses are conducted on
different image normalization methods, input numbers, and multi-module combinations.
According to Table 4, it can be observed that different network methods exhibit certain
differences in the segmentation performance of SAT and VAT. For example, DRUNet
shows a slightly better performance than other methods in SAT’s Dice Score, F1 Score, and
Precision, while lagging slightly behind in VAT’s Recall. In contrast, FedDG performs the
best in SAT’s Recall but slightly lower in other metrics compared to other methods. Our
method overall outperforms other methods, not only showing the best performance in SAT
and VAT’s Dice Score and F1 Score but also maintaining high levels of Precision and Recall,
indicating the comprehensive advantage of our method in localization and segmentation
accuracy. We employ a ConvBiGRU structure for lung slice localization, combined with
a multi-module UNet structure for SAT and VAT segmentation. This combination not
only helps in accurately localizing lung slices but also accurately identifying SAT and VAT
in segmentation tasks, reflecting the advancedness of our method in model design and
structure optimization. Our method exhibits good stability in performance metrics with
small deviation ranges, indicating its high robustness.

However, we also acknowledge some limitations in this study. Firstly, positive and
negative classifications exist within the boundaries of adipose tissues due to the fuzzy
areas surrounding other tissues. Additionally, although our model achieves satisfactory
results on the current dataset, we must explicitly state that these results cannot be directly
generalized to other datasets. Because different datasets may have different features
and distributions, our model needs to be validated and adjusted on different datasets
to ensure its generalization ability and reliability. Most importantly, our research results
do not imply that our model can replace the diagnosis and judgment of professional
radiologists. Although our model performs well in lung localization and adipose tissue
segmentation, the expertise and experience of doctors are still indispensable in clinical
applications. Our research aims to provide auxiliary diagnostic tools for doctors rather
than replace their decisions.
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5. Conclusions

To address the significant challenges associated with adipose tissue segmentation
in lung CT imaging, this paper introduces an automated lung localization and adipose
tissue segmentation model employing deep learning techniques. The proposed framework
consists of a bidirectional gated recurrent unit (BiGRU) structure for lung slice localization
and a multi-module UNet model for segmenting subcutaneous adipose tissue (SAT) and
visceral adipose tissue (VAT). Furthermore, the BiGRU Net model is enhanced through the
incorporation of an additive weight penalty term. In the segmentation phase, we investi-
gate three combined mechanisms—attention, competition, and multi-resolution—within
the UNet structure to assess their impact on SAT and VAT segmentation, facilitating a
comparative evaluation. Finally, extensive experiments conducted on a publicly available
dataset demonstrate the efficiency and effectiveness of the proposed framework.

In our future research, firstly, we plan to further optimize the model performance,
especially in positive and negative classification. Although our model performs well in
localization and segmentation tasks, there still exists a certain proportion of positive and
negative classifications. Future work will focus on how to improve the model to reduce the
occurrence of this situation, with possible methods including introducing more contextual
information or exploring more complex post-processing techniques. Secondly, we will
attempt to apply the model to more diverse datasets. While we conducted experiments
on one publicly available dataset, we are aware that different datasets may have differ-
ences. Therefore, we plan to apply the model to more datasets from different sources and
with different characteristics, further validating its robustness and universality. Lastly, we
will focus on the application of the model in clinical practice. We will collaborate with
radiologists to compare our model with the results manually segmented by them, further
validating its feasibility and effectiveness in actual clinical settings. Through the afore-
mentioned improvements and explorations, we believe that our research will provide a
deeper understanding of adipose tissue segmentation in lung CT images and offer valuable
references and insights for the development of future related studies.
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