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Abstract: Therapy-related myeloid neoplasms (t-MN) arise after a documented history of chemo/
radiotherapy as treatment for an unrelated condition and account for 10–20% of myelodysplastic
syndromes and acute myeloid leukemia. T-MN are characterized by a specific genetic signature,
aggressive features and dismal prognosis. The nomenclature and the subsets of these conditions
have changed frequently over time, and despite the fact that, in the last classification, they lost their
autonomous entity status and became disease qualifiers, the recognition of this feature remains of
major importance. Furthermore, in recent years, extensive studies focusing on clonal hematopoiesis
and germline variants shed light on the mechanisms of positive pressure underpinning the rise of
driver gene mutations in t-MN. In this manuscript, we aim to review the evolution of defining criteria
and characteristics of t-MN from a clinical and biological perspective, the advances in mechanistic
aspects of malignant progression and the challenges in prevention and management.

Keywords: Therapy-related Myeloid Neoplasm; t-MN; Myeloid Neoplasm post cytotoxic therapy;
MN-pCT

1. Introduction

Therapy-related myeloid neoplasms (t-MN) are a subgroup of myeloid malignan-
cies, including myelodysplastic syndromes (MDS), MDS/myeloproliferative neoplasms
(MDS/MPN) and acute myeloid leukemia (AML) arising from non-correlated conditions
treated with cytotoxic therapies. Advances over the years led to an increase in diagnoses
and better response rates in solid tumors and autoimmune conditions, making long-term
complications, such as t-MN, an increasing issue [1,2].

t-MN accounts for 10–20% of all MDS/AML, and the risk of onset in patients un-
dergoing cytotoxic therapy ranges from 1 to 10%, depending on the type of cancer and
treatment, representing one of the worst long-term side effects [3–5]. Particularly, primary
tumors, lymphoid malignancies and gynecologic cancers are the most common types of
tumors, with a 4.7-fold increased risk compared to the general population, as reported by
Morton et al. [4].

t-MN, in fact, arises more commonly in older patients, carrying multiple comorbidities
and with lower fitness, and unlikely to undergo intensive treatments [6].

Furthermore, the inherent features of the disease, characterized by high-risk cyto-
genetics and molecular alterations, make the management of t-MN a challenge for the
physician [7–9].

Thus, both disease-related and patient-related features explain the lower response rate
of t-MN, when compared to de novo MN, and the poor prognosis, standing at <10% at
5 years [6].

In recent years, a better understanding of the processes of leukemogenesis and ad-
vances in molecular biology allowed us to identify new potential factors predisposing to
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the development of t-MN while increasing the knowledge of the genomic landscape of
these malignancies. Consequently, the classification of these neoplasms evolved over time,
as well as the treatment, with a perspective of management tailored to molecular features
of disease and patient characteristics.

2. Pathophysiology

Accumulating evidence indicates that the development of t-MN is the consequence of a
complex interplay of factors, including aging, inflammation, inherited genetic susceptibility
and clonal selection of a pre-existing clone that exhibits resistance to treatment and allows
for genetic instability (Figure 1).
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Figure 1. Pathophysiology of therapy-related myeloid neoplasm. The onset of t-MN is a complex,
multi-step process in which, also due to germline or acquired predisposing factors, a malignant
clone acquires a proliferative advantage in a microenvironment where bone marrow changes and/or
genetic lesions occur.

These groundbreaking advances not only shed light on the pathophysiology of therapy-
related malignancies but are also paving the way for new disease classifications and clinical
management of both primary malignancies and t-MN [10,11].

2.1. Germline Predisposition

The recognition of a germline predisposition to the development of MN was prompted
by the observation of a prior history of cancer in the majority of t-MN patients [12–14], as
well as the occurrence of MN in patients who had previously experienced an independent
neoplasm and had not undergone chemotherapy or radiotherapy treatment [15,16].

Over the past decade, the development of cutting-edge technologies, including Next
Generation Sequencing (NGS), has allowed to pinpoint genetic germline variants in
16–21% of t-MN patients, including inherited mutations in certain cancer-related genes,
such as BARD1, BRCA1, BRCA2, CHEK2, TP53, as well as variants in the Fanconi Anemia
pathway (FANCA, FANCD2, FANCJ and PALB2) [17–20]. Despite the fact that the clinical
and biological significance of these variants has not been fully elucidated, many of these
mutations affect genes involved in DNA repair pathways, cell cycle and apoptosis regula-
tion, metabolism of genotoxic agents and various mechanisms related to cancer [5,21,22].
However, the lack of extensive and independent study cohorts, along with the absence
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of appropriate controls, warrants further investigations into the association between the
development of secondary neoplasia and the presence of these polymorphisms [23–26].

The identification of germline variants in patients with t-MNs, coupled with the pres-
ence of a prior history of cancer in a significant proportion of cases, led to the establishment
of a novel entity of myeloid neoplasms with germline predisposition in the 2016 World
Health Organization (WHO) classification of hematopoietic tumors [27,28]. This category
encompasses GATA2 (GATA-binding protein 2), CEBPA (CCAAT enhancer binding pro-
tein alpha), DDX41 (DEAD-Box Helicase 41), RUNX1 (runt-related transcription factor 1),
ANKRD26 (ankyrin repeat domain containing 26) and ETV6 (ETS Variant Transcription
Factor 6) genes, which broadened the range of genetic factors contributing to inherited
myeloid malignancies. It is noteworthy to highlight that the relevance of these genetic
discoveries becomes even more evident when considering that nearly 60% of patients
diagnosed with t-MNs have close relatives with a history of breast, ovarian or pancreatic
cancer [17]. Particularly, in a retrospective analysis of t-MN patients who had a previous
history of breast cancer, Churpek and colleagues revealed that roughly 20% of these patients
carried mutations in known breast cancer susceptibility genes, suggesting a potential link
between these conditions and a specific gene signature [17]. Similarly, it has also been
observed by Schulz et al. the presence of mutations in genes linked to various familial
cancers, highlighting the important contribution of genetic underpinning and familial
predisposition to the individual susceptibility of t-MN [18].

There is also a higher chance of developing t-MNs in patients harboring hereditary
cancer syndrome, such as Li Fraumeni syndrome, associated with the early onset of multiple
neoplasms, suggesting the crucial role of TP53 germline mutation in the development
of secondary malignancies [29–31]. Accordingly, germline pathogenic variants in TP53
have been documented in t-MN, even in the pediatric setting [32]. These observations
strongly support the potential influence of individual predisposition, further highlighting
the intricate interplay between genetic factors and the development of t-MN [17]. Moreover,
the significant role of germline predisposition and familial recurrence has important clinical
implications, especially when considering the selection of family donors for allogeneic stem
cell transplantation, underscoring the primary importance of germline screening for MN
predisposing mutations [33,34].

2.2. The Role of Clonal Hematopoiesis

In addition to the impact of germline variants, a crucial factor in the development
of t-MN is the emergence and expansion of pre-existing hematopoietic stem cell (HSC)
clones. These small populations of cells are defined by stochastically acquired mutations
that improve their proliferative and survival capabilities compared to their normal counter-
part [35]. Notably, the exposure to cytotoxic stress could act as a positive selective pressure,
facilitating the emergence of driver gene mutations. This occurrence may arise within the
context of clonal hematopoiesis of indeterminate potential (CHIP), which sets the stage for
potential neoplastic transformation [36].

Several studies reported that a broad number of t-MN cases, ranging from 20% to
60%, exhibited somatic mutations in well-known genes associated with CHIP, including
DNMT3A, TET2, ASXL1, TP53 and PPM1D [37–41]. Particularly, the real contribution of
pre-existing clones harboring somatic mutations to the susceptibility of t-MN development
has been thoroughly elucidated in two case-control studies. In the study of Gillis et al.,
the authors explored the prevalence of CHIP in a cohort of elderly patients (≥70) with a
previous history of cancer, specifically comparing patients who subsequently developed
t-MNs to those who did not. Patients with CHIP displayed a higher risk of developing
t-MNs. Additionally, the distribution of CHIP-related mutations varied between the two
groups, with the highest prevalence observed in the group of patients with t-MN (62%)
compared to the control group (27%) (p = 0.024) [38]. Comparable findings were achieved
by Takahashi and colleagues through the examination of 14 cases, encompassing various
types of cancers, and 54 lymphoma cases, serving as controls. CHIP was detected in 71%
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of the 14 cases, whereas only 31% of controls exhibited CH (p = 0.0008). RUNX1, TP53,
SRSF2 and TET2 were the most frequently mutated genes linked to CHIP in patients who
subsequently developed t-MN. Additionally, patients with CHIP had a significantly higher
incidence of t-MN at 5 years follow-up compared to those without, underlying the potential
significance of detecting CH as a mean to identify cancer patients at risk for developing
t-MN [39].

To assess the occurrence and clinical implication of CHIP, Coombs and colleagues
analyzed paired tumor and blood samples from 8810 individuals with non-hematologic
malignancies, using in-depth coverage and targeted NGS data. Their findings displayed
that approximately 25% of patients at diagnosis exhibited CHIP, with a significant positive
correlation with several factors, including older age, prior radiation exposure and cigarette
smoking, and a negative relationship with the overall survival (OS) of these patients.
Strikingly, the occurrence of somatic mutations in DNA damage repair (DDR) genes such
as CHEK2, PPMD1 and TP53 genes has been statistically linked to prior exposure to both
chemotherapy and radiotherapy, increasing the susceptibility to subsequently develop
t-MN [42].

Furthermore, Bolton et al. analyzed a large repository of specimens before and after
receiving chemo-radiotherapy and detected, in most pre-therapy samples, the presence of
CH. In particular, among all the somatic mutations, the ones in DDR genes showed not
only higher clonal growth after treatment, but CH clones with DDR mutations grew faster
compared with clones with other CH mutations in the same patient, demonstrating, thus,
that cancer therapy selects the clones harboring these mutations [10].

In this perspective, Sperling et al., prompted by the observation of the association
between thalidomide analogs exposure and TP53-mutated t-MN onset, showed, in mouse
models, a survival advantage in TP53-mutated HSC clones when exposed to Lenalidomide,
although without conferring resistance to Pomalidomide. Further analyses showed that
this mechanism was mediated by differential degradation of CK1α, less targeted by Po-
malidomide. Thus, upon exposure to Lenalidomide, the enhanced degradation of CK1α,
which physiologically binds MDM2, mediating ubiquitination and degradation of p53,
would bring about survival advantage in TP53-mutated clones [43,44].

Recent research has also revealed a concerning association between CHIP and the
emergence of t-MN in patients with Chronic Lymphocytic Leukemia (CLL) following
chemo-(immuno)therapy treatment. In one study, 30 pathogenic or likely pathogenic
variants were identified in 77% of patients who later developed t-MN, compared to 12%
of patients in the control group who received the same treatment. Remarkably, upon
retrospective analysis, the same variants were identified in 62.5% of patients at the time of
CLL diagnosis, suggesting their pre-existing and clonal nature [45].

Furthermore, a study by Awada et al. suggests that patients with CHIP-derived post-
autologous stem cell transplantation (ASCT) t-MN could follow a more aggressive course
with adverse-risk genetic features and significantly shorter latency duration following the
procedure [46].

Taken together, these observations, along with the evidence indicating the presence
of age-related CHIP in healthy subjects [47,48], imply the ongoing emergence of selected
mutant clones exhibiting enhanced fitness within HSCs throughout life. While evidence
suggests that CHIP alone might not be sufficient to trigger cancer development, a broad
spectrum of additional factors, such as external and environmental exposures, therapeutic
history, and immune function, warrant further investigation and may play a crucial role
in the selection and expansion of specific clones. This investigation holds particular im-
portance, given the substantial clinical implications for devising less toxic and targeted
therapies in CHIP patients, especially in elderly patients, highlighting the crucial need for
screening CH before initiating cytotoxic regimens. Furthermore, the evidence of a differ-
ential progression pattern of CHIP clones in healthy individuals [e.g., DNMT3A-driven
CHIP does not show an increase in variant allele frequency (VAF) over time, contrary
to the increase observed for ASXL1, TET2, JAK2 and TP53 mutations] [49] and the dif-
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ferent propensity to acquisition new somatic mutations (higher in TET2 and lower in
DNMT3A) [49,50], alongside with different frequency of these mutations in t-MN patients
(see chapter 3), suggest the need for a tailored management of the primary malignancy
not only based on the presence of CHIP but also tailored on the specific somatic mutation
driving CH.

Of note is that the above-mentioned seminal paper by Bolton et al. showed that by
analyzing samples from patients receiving cytotoxic therapy and non-treated ones, a higher
incidence of de novo mutations occurred in the treatment arm. This indicates that therapy
can also have a mutagenic effect on HSCs and, thus, reconciles the CHIP progression
t-MN pathophysiology with the classical theory dwelling on the direct DNA damage by
chemo-radiotherapy [10,51,52].

2.3. Bone Marrow Microenvironment Changes

The bone marrow (BM) microenvironment, meant as the complex interactions between
cells and soluble factors supporting hematopoiesis [53], has been recognized as one of
the main characters in the process of leukemogenesis [54]. Leukemic stem cells not only
modify the structure of BM by secreting vascular endothelial growth factor, which causes
the sprouting of blood vessels, but they also stimulate granulocyte and monocyte colony-
stimulating factor (GM-CSF) by endothelial cells. Furthermore, they are protected from
chemotherapy in osteoblast-rich areas of the BM [54,55]. In this environment, leukemic
cells undergo senescence, a complex process characterized by cell cycle arrest, which is
triggered by several heterogeneous stimuli such as telomere shortening after a certain
number of cell divisions, oncogene upregulation and exposure to cytotoxic treatments,
reactive oxygen species (ROS) and ionizing radiations [56–58]. This process, physiologically,
plays an important role in the protection from replication of pre-cancerous cells [53].

Leukemic cells exhibit a prolonged senescent phenotype, which results in both higher
expression of p53 and p21 and secretion of several mediators, such as chemokines, cytokines,
grow factors and proteases, which cause inflammation and shape a leukemic permitting
environment [59,60].

Intriguingly, not only these senescent features are more pronounced in t-MN when
compared to de novo MN, but, as shown by Kutyna et al., they also modify the BM niche
long before the onset of the malignancy [61].

Studies on mouse models by Stoddart et al. showed that the exposure of HSCs and
BM alone to alkylating agents promotes the expansion of TP53 silenced cells, whereas t-MN
development is driven by the synergistic effects of chemotherapy exposure of premalignant
hematopoietic cells, together with deleterious effects of cytotoxic therapy on the supporting
microenvironment [62].

Furthermore, Özdemir et al. documented an increased expression of genes involved
in xenobiotic metabolism, DNA double-strand break response, heat shock response, and
cell cycle regulation in healthy BM exposed to Etoposide [63].

This evidence highlights the major role of BM niche changes in post-cytotoxic therapy
leukemogenesis. In this perspective, promising data have been reported on the efficacy of
senolytic agents, such as Dasatinib, Quercetin and JAK inhibitors, in selectively eliminating
senescent cells, inhibiting the senescent secretome and restoring the differentiating potential
of mesenchymal cells [61,64,65].

3. Classification of t-MN: Evolution and Novelties

The classification of secondary AML (sAML), and in particular t-AML, initially based
on anamnestic and clinical criteria, has undergone profound changes over the years
(Figure 2) and is currently based on the genetic-molecular characteristics of the disease.

The first distinction between de novo AML and sAML appeared in the 2001 WHO clas-
sification [66], which distinguished, in the latter leukemic subgroup, AML with multilinear
dysplasia [AML-MD, whose diagnosis was established in the presence of dysplasia in at
least 50% of the cells belonging to at least two myeloid cell lines on morphological examina-
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tion of the bone marrow and/or a documented history of MDS or MDS/myeloproliferative
syndrome (MDS/MPN), dated at least six months prior to the diagnosis of AML], and
AML secondary to chemo/radiotherapy (therapy-related, in patients who had under-
gone prior chemo/radiotherapy for an unrelated tumor). This latter entity was further
divided according to the neoplastic agent to which the patient had been previously exposed
into AML arising after therapy with alkylating agents/radiotherapy, commonly arising
4–7 years after treatment, and with morphologic features suggestive of prior MDS, and
AML arising after therapy with Topoisomerase II inhibitors, characterized by a shorter
latency and the absence of an antecedent phase of myelodysplasia [67,68].
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Figure 2. Evolution of classification of therapy-related myeloid neoplasm. Classification systems
over time privileged genomic features of the disease over anamnestic information. This led to the re-
scaling of the t-MN entity until reaching the status of disease qualifier. ICC: International Consensus
Classification; t-MN: therapy-related myeloid neoplasia; WHO: world health organization.

The 2008 classification revision [69] eliminated the latter subclassification of t-AML,
which was included, along with MDS with the same features, in the group of t-MN. In
addition, advances in the biology of leukemogenesis brought the recognition of a list of
dysplasia-related abnormalities as a diagnostic criterion in the newborn group of AML with
myelodysplasia-related changes (morphological or genetic) (AML-MRC), which replaced
AML-MD [69].

In 2016, a new revision of the classification made minimal changes to the pre-existing
categories (the exclusion from dysplasia-related cytogenetic abnormalities of chromosome
9 deletion, as it is often associated with NPM1 mutations, and the biallelic CEBPA muta-
tion) [27,70,71]. However, for the first time, a category of MN characterized by specific
germline mutations responsible for an increased risk of developing a neoplastic clone was
recognized [AML with germline predisposition (AML-GP)] [27].

Finally, two additional classifications have been recently published: the WHO 5th
edition (2022) [72] and the ICC (International Consensus Classification) [73] classification
system of MN, by a group of experts in the study of clinical, pathological and genetic
aspects of AML.

The WHO 2022 classification excluded from secondary MN the AML secondary to
a previous MPN (now included in the classification of MPN) or MDS, now defined as
myelodysplasia-related AML (MR-AML). In contrast, the group of AML-GP, whose list has
been significantly expanded, and AML secondary to cytotoxic therapy (AML-pCT, replacing
the previous designation of therapy-related) have been confirmed and now also include
patients exposed to poly(ADP-ribose) polymerase inhibitors (PARPi), while excluding
those previously treated with methotrexate [72]. In contrast, all subcategories of sAML
identified by previous classification systems are retained in the ICC 2022 classification: AML
progressed from previous MDS, progressed from previous MDS/MPN, therapy-related,
and with germline predisposition (Table 1) [73].
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Table 1. t-MN definition: similarities and differences in WHO and ICC classifications. AML: acute
myeloid leukemia. CCUS: clonal cytopenia of undetermined significance. MDS: myelodysplastic
syndrome. MPN: myeloproliferative neoplasm. PARPi: poly(ADP-ribose) polymerase inhibitors;
t-MN: therapy-related myeloid neoplasms.

WHO5th ICC

Denomination Post cytotoxic therapy Therapy-related
Entity Disease qualifier Disease qualifier
Condition characterized AML, MDS, MDS/MPN (no CCUS) AML, MDS, MDS/MPN (no CCUS)
Previous treatments Chemotherapy (no methotrexate), radiotherapy, PARPi Chemotherapy, radiotherapy, immune interventions

Examples AML, myelodysplasia-related, post cytotoxic therapy AML with myelodysplasia-related cytogenetic
abnormality, therapy-related

PARP Inhibitors

As mentioned above, exposure to PARPi has been recently recognized as a risk for
t-MN development. PARPi has been increasingly utilized in the past years as a salvage
therapy for various solid cancers, including but not limited to gynecological cancers such as
ovarian and breast cancer [74]. One of the earliest studies in this regard was carried out by
Todisco et al. in 2020, where the recorded incidence of secondary hematologic cancers in a
pool of 130 patients who have epithelial ovarian cancer (EOC) was 6.9% [75]. In a successive
study from the same team, with an increased population of 182 patients, the cumulative
incidence of t-MN turned out to be 8.7% [76]. Although other studies, such as the one by
Almanza-Huante et al., presented a lower incidence rate of t-MN amongst EOC patients,
with approximately 1% of patients exposed to PARPi developing a hematological disease,
the same conclusion was reached in terms of the increased relative risk [77]. Furthermore,
studies such as those from Marmouset et al. and Martin et al. highlighted how most of
these patients developed t-MN characterized by an adverse risk cytogenetic and molecular
profile, with over 60% of them bearing complex karyotypes and/or TP53 mutations [78,79].
As expected, the OS of these patients is quite poor, as supported by Chiusolo et al., who
reported a median OS of 5 months for their population of post-PARPi t-MN patients [80].
Finally, Morice et al. carried out a meta-analysis in 2021 across approximately 6000 patients
treated with PARPi, as well as across multiple solid tumors, which confirmed the scenario:
PARPi exposure after chemotherapy increases the risk of developing hematological disease
(Table 2) [81].

Table 2. Table including the major studies of t-MN arising after PARPi treatment. AML: acute
myeloid leukemia. CCUS: clonal cytopenia of undetermined significance; CK: complex karyotype;
LAL: lymphoblastic acute leukemia; m: months; MDS: myelodysplastic syndromes; t-MN (therapy-
related myeloid neoplasia).

Authors Population t-MN MN Phenotype Genetic Features Primary Cancer OS
(m)

Time to t-MN
(m)

Almanza-Huante et al.
(2023) [77] 1462 1% 60% MDS, 34% AML,

6% MPAL Ovarian, breast 7.8 20.7

Chiusolo et al.
(2022) [80] 300 4.3% t-AML/MDS 100% TP53 Ovarian cancer 5 12

Marmouset et al.
(2022) [78] 373 3.5% 65% MDS, 35% AML 61% CK, 71% TP53 Ovarian, breast 9.6 19

Martin et al.
(2021) [79]

20 (100%
t-MN) 55% MDS, 45% AML 95% CK Ovarian 4.3 24

Morice et al.
(2021) [81] 5693 0.73% Multiple 17.8

Todisco et al.
(2020) [75] 130 6.9%

11% CCUS, 55% MDS,
22% AML,
11% LAL

55% del5q or del7q,
33% CK,
55% TP53

Ovarian 22.8

Todisco et al.
(2022) [76] 182 8.7% 75% MDS, 25% AML

43% del5q or del7q,
56% CK,
56% TP53

Ovarian 24
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The inclusion of PARPi into the list of potential leukemogenic agents highlights once
again the importance of pharmacovigilance and awareness toward t-MN as a possible
complication of solid and hematologic cancers.

4. Genetic Signature

There are no specific markers or cluster mutations for t-MN. Nonetheless, this class of
malignancies presents a specific signature, responsible for their poor outcome (Figure 3) [82].
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Analysis of karyotype reveals, when compared to de novo malignancies, a lower
percentage of normal cytogenetics. In particular, anomalies frequently observed are
del(5q) (20–45%), del(7)/del(7q) (30–50%), del(17)/del(17p) (5–20%) and complex karyotype
(30–50%, defined as >3 karyotypic anomalies) [82,83].

Conversely, recurrent AML cytogenetic abnormalities such as t(15;17) [detected in
95–98% of acute promyelocytic leukemia (APL) [84,85] and core binding factor AML
[defined by t(8;21), t(16;16), inv(16)] are rare (2% in both the entities) and the status of
‘therapy-related’ does not impact the prognosis on APL patients [82,86].

The broader availability of NGS allowed a better comprehension of the somatic muta-
tional landscape displayed by t-MN. Several authors documented an enrichment in DDR
genes, with a frequency of TP53 mutation ranging from 15 to 40% (vs. 2–12% in de novo
MN), whereas the exact incidence of PPM1D and CHEK2 (genes not always included in
clinical practice-NGS myeloid panels) seems to be roughly 10% (vs. 1–3% in de novo MN)
and 3%, respectively [82,83,87,88].

Gene mutations commonly associated with de novo AML, such as NPM1, FLT3, IDH1
and IDH2, are less observed in t-MN (4–16% vs. 27.35%, 8–16% vs. 24–28%, 3–5% vs. 8–10%,
0–5% vs. 9–10%, respectively), whereas, altogether, mutations in RAS pathway genes are
more frequent: NRAS 10–13% vs. 8–10% in de novo MNs, KRAS 11% vs. 2–4%, PTPN11
3–9% vs. 5%, NF1 2–4% vs. 2%, CBL 2–4% vs. 1%. In a similar fashion, mutations in splicing
factor genes are more common: SETBP1 3% in t-MN vs. 0–1% in de novo MN, SF3B1 0–3%
vs. 1–5%, SRSF2 8–11% vs. 1%, U2AF1 5–8% vs. 4%, ZRSR2 1% vs. 0%. Conversely, no
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significant differences are observed in the incidence of DTA gene mutations: DNMT3A
8–27% in t-MN vs. 14–25% in de novo MN, TET2 6–14% vs. 8–27%, ASXL1 3–17% vs.
3–11% [82].

5. Clinical Implications and Future Perspectives

As evident from the above-showed data, t-MN is not only enriched in high-risk
mutations as defined by common classification systems (ICC/WHO 2022 [72,73]: TP53,
U2AF1, SRSF2, STAG2, SF3B1) but also present lower mutation targetable by specific
therapies (e.g., FLT3, IDH1, IDH2).

Nowadays, the only specific drug approved for t-AML is CPX3-5-1 (VYXEOS), a dual-
drug liposomal encapsulation of cytarabine and daunorubicin at a fixed 5:1 synergistic
molar ratio, which showed higher efficacy when compared to standard-of-care cytarabine
plus daunorubicin chemotherapy [median overall survival 12 months vs. 6 months with
cytarabine and an anthracycline (7 + 3 regimen)] [89].

Since most of the patients are old and/or unfit for intensive chemotherapy, the man-
agement of t-MN remains an unmet clinical need.

Several attempts have been made to target TP53, one of the signature mutations of
these malignancies and an independent unfavorable clinical predictor [90]. TP53-mutated
MN presents, in fact, a lower response rate to therapy when compared to its TP53-wild-type
counterpart, with a median OS ranging from 5 to 10 months [91].

Intensive chemotherapy in TP53-mutated AML presents a low rate of complete re-
sponse (CR: 20–40%) with an OS of 4–9 months [92–96]. TP53 mutation has also been
identified as a predictor of inferior response to CPX-351 [97]. Hypomethylating agents
(HMA) showed an overall response rate (ORR) of 30–100% with a CR rate of 10–20% in
AML and 1–30% in MDS bearing TP53 mutation [91,94,98]. Despite these variables’ rate of
response, HMA failed to significantly improve long-term survival (OS 2–7 months in AML,
9–13 months in MDS) [98–101].

The addition of Venetoclax, a BCL-2 inhibitor, to HMA brought a higher rate of
response: the seminal study by DiNardo et al. in TP53-mutated AML patients reported a
CR/CR with incomplete hematologic recovery (CRi) of 47% [102]. These promising results
were confirmed by Aldoss et al. and Kim et al., who observed a 52% and 57% CR/CRi rate,
respectively [103,104]. However, again, these results did not improve the survival: none of
these studies documented a median OS exceeding 7 months [102–104].

Considering the elderly age and low-performance status, allogeneic hematopoietic
stem cell transplantation (HSCT) is rarely an option in patients with t-MN [6]. However,
when feasible, it should be performed, granting better outcomes when compared to more
conservative treatments [90]. Nevertheless, TP53 mutation, especially with additional
high-risk features (such as truncating mutations, high VAF and association with complex
karyotype), is an independent poor prognosis predictor [105–107].

The unsatisfactory results of the available therapies led to the development of
new strategies.

Magrolimab is a humanized IgG4 monoclonal antibody against CD47, integrin-associated
protein transduction ‘don’t eat me’ signals towards macrophages and inhibiting phagocy-
tosis [108]. CD47 is highly expressed in AML cells, enhancing tumor immune escape [109].
Thus, this surface protein has been targeted with Magrolimab in combination with both
HMA and HMA + Venetoclax in TP53-mutated AML and MDS. The preliminary results of
the combination Magrolimab-HMA showed promising results with CR/CRi rates ranging
from 33 to 64% with median OS from 11 to 16 months [110,111]. The addition of Venetoclax
obtained a stunning 100% CR/CRi rate in an initial evaluation of a phase Ib enrolling
unfit relapsed AML patients [112]. However, despite these findings, recently FDA placed
a full clinical hold on all Magrolimab AML and MDS studies after the combination of
Magrolimab–Venetoclax–Azacitidine demonstrated futility and an increased risk of death
in AML patients in an ENHANCE-3 study [113].
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Flotetuzumab, a bispecific dual affinity re-targeting antibodies (DARTs) binding CD3
and CD123, induces cytotoxic T-cell response against cells expressing CD123, like AML
blasts [114]. A post-hoc analysis of the CP-MGD006-01 clinical trial, testing Flotetuzumab
in relapsed AML patients, showed a 47% CR rate in those bearing TP53 mutation; these
patients had a median OS of 10 months.

Sabatolimab, an inhibitor of TIM3, an immune regulator expressed in myeloid blasts,
was tested, in combination with HMA, in a cohort of high-risk MDS/AML. In the TP53-
mutated MN subgroup, the investigators observed an ORR of 71% with a median duration
of response of 21 months [115].

Eprenetapopt (APR-246) is an agent binding the DNA in TP53 mutant cancer cells,
restoring an active wild-type-like conformation and function of p53 and showing efficacy
in MN in association with HMA [116]. Cluzeau et al. documented a CR rate of 47%
in MDS and 17% in AML [117]. Sallman et al., in a cohort of patients with MDS and
oligoblastic AML (<30% blasts), observed a CR rate of 43% (49% MDS, 36% AML and 0%
MDS/MPN) [118,119]. Of note, concordantly with the mechanism of action of the drug,
isolated TP53 mutation was predictive of higher CR rate; also, higher risk features, such as
biallelic TP53 mutation and complex karyotype, were correlated with higher CR [118,119].
Eprenetapopt-HMA combination was also tested in a post-HSCT setting for TP53-mutated
MDS/AML as maintenance therapy, with an OS of 21 months at a median follow-up of
17 months and a 1-year OS probability was 79% [120]. However, a phase 3 clinical trial of
Eprenetapopt–Azacitidine for frontline treatment of TP53-mutant MDS patients has been
completed and failed to meet the primary statistical endpoint of CR [121]. The addition
of Venetoclax to the Eprenetapopt–HMA combination in TP53-mutated AML showed an
ORR of 64% and a CR rate of 38% (Table 3) [122].

Table 3. Approved and on-study treatments for t-MN and TP53-mutated MN. AML: acute myeloid
leukemia; CHT: chemotherapy; CR: complete response; CRi: complete remission with incomplete
hematologic recovery; HMA: hypomethylating agents; mDOR: median duration of response; MDS:
myelodysplastic syndromes; mOS: median overall survival; MPN: myeloproliferative neoplasms;
ORR: overall response rate; t-AML: therapy-related AML.

Reference Drug Combination Phase Setting Outcome

Rücker et al., 2012 [95]
Hou et al., 2015 [93]
Yanada et al., 2016 [96]
Stengel et al., 2017 [92]

Standard CHT / / TP53-mutated AML CR 20–40%
mOS 4–9 months

Welch et al., 2016 [100]
Short et al., 2018 [101]
Boddu et al., 2018 [98]
Bewersdorf et al., 2020 [99]

HMA / / TP53-mutated MDS/AML

CR 10–20% (AML)
CR 1–30% (MDS)
mOS 2–7 months
(AML)
mOS 9–13 months
(MDS)

Aldoss et al., 2019 [104]
Kim et al., 2021 [103]
DiNardo et al., 2019 [102]

HMA +Venetoclax / TP53-mutated AML ORR 47–57%
mOS 5–7 months

Lancet et al., 2018 [89] CPX3-5-1 / III t-AML
CR/CRi 47.7%
CR 37.3%
mOS 12 months

Daver et al., 2022 [111] Magrolimab
(antiCD47) +Azacitidine Ib TP53-mutated AML

CR/CRi 48.6%
CR 33.3%
mOS 10.8 months

Sallman et al., 2022 [110] Magrolimab +Azacitidine Ib TP53-mutated high-risk MDS CR 40%
mOS 16.3 months

Daver et al., 2021 [112] Magrolimab +Venetoclax
+Azacitidine Ib TP53-mutated unfit AML and

R/R AML CR/CRi 100%

/ Magrolimab +Venetoclax
+Azacitidine III Unfit ND-AML Stopped for futility

Vadakekolathu et al., 2020 [123] Flotetuzumab
(antiCD123) / I/II TP53-mutated R/R AML CR 47%

Brunner et al., 2021 [115] Sabatolimab
(antiTIM3) +HMA Ib TP53-mutated high-risk MDS ORR 71%

mDOR 21.5 months



Biomedicines 2024, 12, 1054 11 of 18

Table 3. Cont.

Reference Drug Combination Phase Setting Outcome

Cluzeau et al., 2021 [117] Eprenetapopt
(p53 reactivator) +Azacitidine II TP53-mutated high risk

MDS/AML

ORR 62% (MDS)
ORR 33% (AML)
CR 47% (MDS)
CR 27% (AML)

Sallman et al., 2021 [119] Eprenetapopt +Azacitidine II TP53-mutated
MDS/oligoblastic AML

CR 49% (MDS)
CR 36% (AML)
CR 0% (MDS/MPN)

Mishra et al., 2022 [120] Eprenetapopt +Azacitidine II After BMT in TP53-mutated
MDS/AML

mRFS 12.5 months
mOS 20.6 months

Garcia-Manero et al., 2023 [122] Eprenetapopt +Venetoclax
+Azacitidine I TP53-mutated AML CR/CRi 64%

CR 38%
/ Eprenetapopt +Azacitidine III TP53-mutated MDS Stopped for futility

6. Conclusions and Future Perspectives

The definition of t-MN has greatly evolved over time. Despite huge advances in the
molecular bases of its pathogenesis, there are no specific mutations, and the assessment of
t-MN still relies on the presence or absence of a history of cytotoxic therapies for unrelated
disorders. In this perspective, efforts have been made to identify treatments conferring
greater risk for the development of t-MN, whose paradigm is the recent identification of
PARPi as a potential leukemogenic agent.

The management of t-MN and, in particular, TP53-mutated MN is still an unmet
medical need. Nevertheless, the growing number of possible therapeutic targets [124],
alongside the broader accessibility to HSCT, hold the promise of significant improvements
in the near future. In particular, considering the overlapping mutational features between
de novo and t-MN and the profound difference in the leukemic niche and in the staminal
senescent mechanisms, the latter mechanism could be a promising target for senolytic
agents which, alone or combined with chemotherapy, showed high efficacy in preclinical
models [64,125].

In a similar fashion, the advances in the comprehension of the molecular pathogenesis
of t-MN could bring useful strategies in order to prevent the onset of this dangerous
complication. In this perspective, also thanks to the broader implementation of genetic
testing, it is possible to envision the inclusion of CHIP evaluation in the prognostic and
decisional algorithms of solid and hematologic cancers. This will help stratify future risks of
the development of secondary malignancies, thus allowing a therapeutic strategy tailored
to both patient-related risk factors and treatment-related leukemogenic potential.
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Abbreviations

ANKRD26 ankyrin repeat domain containing 26
AML acute myeloid leukemia
APL acute promyelocytic leukemia
ASCT Autologous stem cell transplantation
BM bone marrow
CCUS clonal cytopenia of undetermined significance
CEBPA CCAAT enhancer binding protein alpha
CK complex karyotype
CLL chronic lymphocytic leukemia
CR complete remission
CRi complete remission with incomplete hematologic recover
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CHIP clonal hematopoiesis of indeterminate potential
CHT chemotherapy
DART dual affinity re-targeting antibodies
DDR DNA damage repair
DDX41 DEAD-Box Helicase 41
DOR Duration of response
EOC epithelial ovarian cancer
ETV6 ETS Variant Transcription Factor 6
GATA2 GATA-binding protein 2
GM-CSF granulocyte and monocyte colony-stimulating factor
GP germline predisposition
HMA hypomethylating agents
HSC hematopoietic stem cell
HSCT hematopoietic stem cell transplant
ICC international consensus classification
LAL lymphoblastic acute leukemia
M months
MDS myelodysplastic syndromes
MPN myeloproliferative neoplasms
MRC myelodysplasia-related changes
NGS next generation sequencing
ORR overall response rate
OS overall survival
PARPi poly(ADP-ribose) polymerase inhibitors
pCT post-cytotoxic therapy
ROS reactive oxygen species
RUNX1 runt-related transcription factor 1
t-MN therapy-related Myeloid Neoplasms
VAF variant allele frequency
WHO world health organization
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