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Abstract: Long COVID is a condition that affects a significant proportion of patients who have had
COVID-19. It is characterised by the persistence of associated symptoms after the acute phase of the
illness has subsided. Although several studies have investigated the risk factors associated with long
COVID, identifying which patients will experience long-term symptoms remains a complex task.
Among the various symptoms, dyspnea is one of the most prominent due to its close association
with the respiratory nature of COVID-19 and its disabling consequences. This work proposes a new
intelligent clinical decision support system to predict dyspnea 12 months after a severe episode of
COVID-19 based on the SeguiCovid database from the Álvaro Cunqueiro Hospital in Vigo (Galicia,
Spain). The database is initially processed using a CART-type decision tree to identify the variables
with the highest predictive power. Based on these variables, a cascade of expert systems has been
defined with Mamdani-type fuzzy-inference engines. The rules for each system were generated using
the Wang-Mendel automatic rule generation algorithm. At the output of the cascade, a risk indicator
is obtained, which allows for the categorisation of patients into two groups: those with dyspnea and
those without dyspnea at 12 months. This simplifies follow-up and the performance of studies aimed
at those patients at risk. The system has produced satisfactory results in initial tests, supported by an
AUC of 0.75, demonstrating the potential and usefulness of this tool in clinical practice.

Keywords: COVID-19; long COVID; expert systems; fuzzy logic; automatic rule generation;
intelligent system; clinical decision support system; artificial intelligence; decision-making;
Wang-Mendel

1. Introduction

Long COVID [1–4]—also known as the post-acute sequelae of SARS-CoV-2 infection—is
a condition that has become increasingly relevant since the onset of the pandemic due to
its impact on affected individuals. The condition is characterised by persistent symptoms
even after the acute phase of the disease has subsided. The symptomatology is diverse;
in fact, more than 200 symptoms have been identified [2] and may include cognitive
dysfunction, fatigue, headache, anosmia or dyspnea, among others. The identification of
those individuals susceptible to develop long COVID is of great interest; however, it is a
complex task. Several studies in the current literature aim to identify risk factors that may
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predispose individuals to the development of persistent symptoms, including sex [5–13]
and age [8,12–15]. Several comorbidities have also been identified that may increase the
risk of developing long COVID, such as obesity and various pathologies (e.g., respiratory
pathologies, diabetes, hypertension, etc.) [5,6,9,12,15–17]. Some authors have also explored
the impact of vaccination [6,18–20], as well as socio-economic factors [8,21].

In the context of long COVID and its various manifestations, it is crucial to highlight
dyspnea as one of the predominant complications [22–24], given its close association with
the respiratory nature of COVID-19 as well as its significant impact on the daily lives of
affected individuals. Despite numerous studies, the identification of patients likely to
experience dyspnea for a prolonged period after initial recovery (6 to 12 months) remains a
challenge. The pre-identification of these patients is of great interest to clinicians, especially
pulmonologists, as it would allow for closer follow-ups and targeted studies.

In general, the use of tools and mechanisms to facilitate decision making is becom-
ing increasingly common in healthcare. Typically, these tools are based on the use of
techniques from the field of artificial intelligence integrated as clinical decision support
systems [25–44]. Regarding the prediction of long COVID, there have been some singu-
lar proposals supported by the use of machine learning models [45]. In particular, the
National COVID Cohort Collaborative (N3C), with information on more than 8 million
patients obtained from their electronic health records, has allowed the development of
models and proposals based on artificial intelligence [46]. Based on the N3C, the work
of Plaff et al. [47] proposes the use of the XGBoost model to identify patients suffering
from long COVID. They considered patients over 18 years old who had tested positive
for COVID-19 and for whom at least 90 days had elapsed since the onset of the disease.
They obtained results with area under the curve (AUC) values of 0.92, 0.90 and 0.85 for
the whole population, hospitalised patients and non-hospitalised patients, respectively.
The work of Blessy Antony et al. [48] addresses the use of two learning models (logistic
regression and random forest) to predict which patients might develop long COVID. They
started from the N3C and included data on acute phase symptoms, COVID-19 treatment
interventions, medications prescribed during the acute phase of the illness, comorbidities
and demographic information. The results obtained highlight AUC values of 0.76 and
0.75 for logistic regression and random forest, respectively. Similarly, the work of Reme
et al. [49] explored the use of learning models (LASSO and random forest) to predict long
COVID after three months of positive COVID-19 testing. This study used a Norwegian
database containing information on more than 200,000 patients, including demographics,
socioeconomic aspects, history of previous health care use, as well as the individual’s
viral variant and vaccination status. The results were supported by AUC values close to
0.78 in both cases. These studies highlight the usefulness of artificial intelligence, especially
machine learning, to help identify potential cases of long COVID. On the other hand, in
their work, Gupta et al. [50] address the development of a model for the identification of
patients who, after suffering COVID-19, may present cardiac sequelae. To do so, they start
from a database with 180 patients, on which they deploy a stacking ensemble, supported
by Deep Neural Networks, with accuracy values of 93.23%. In the work of Patel et al. [51],
they use the random forest model, acting as a binary long COVID classifier, on a dataset
of various blood proteins. Of the total 2925 proteins, they identified 119 as relevant to
differentiating a patient with long COVID from one without the condition. In their model,
they had AUC values of 1 in their reported results.

From a clinical perspective, and in line with the above, most current research on long
COVID takes a general approach without focusing on specific symptoms or conditions,
with the notable exception of the study by Gupta et al. [50], which focuses on post-COVID
cardiac sequelae. Although these general approaches may be beneficial, it is important
to note that long COVID is a condition that encompasses more than 200 symptoms that
do not affect all patients in the same way, nor are they equally relevant to specialists in
different medical areas. In addition, most approaches address short-term predictions, 3 or
6 months, which may be limited for specialists. On the other hand, as noted, all the detailed
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works, as well as those considered in the reviews on artificial intelligence models in the
context of long COVID [45], employ statistical learning approaches. Most learning-based
approaches (such as random forest, neural networks, etc.) can be understood as black
box models, and even after applying techniques and strategies to improve interpretability
(such as SHAP), it is difficult to understand the reasoning behind the predictions beyond
identifying the variables with the highest predictive power in the available dataset. In
general, no proposal based on symbolic approaches has been observed in the current
literature featuring all the advantages and benefits that could be derived from a knowledge
base. The incorporation of a knowledge base is a differential issue; this is because it not
only facilitates the structuring and transmission of knowledge between experts, but it is
also essential to promoting explainability, understood as the ability to trace and understand
the rules or logical processes that underlie the predictions or decisions of a system. This
ensures that healthcare professionals can understand exactly how a particular conclusion
has been reached, which goes far beyond identifying the most important variables in a
prediction, thus ensuring transparency in the associated decision-making processes.

In this article, we present the proposal of a novel intelligent clinical decision support
system applied to the prediction of dyspnea 12 months after an acute episode of COVID-19.

The contributions of this paper are:

• To introduce at a conceptual level the architecture of a new intelligent clinical decision
support system applied to the prediction of dyspnea after 12 months of an acute
episode of COVID-19.

• Starting from the SeguiCovid database, select a reduced set of variables that can be
used for the prediction of dyspnea after 12 months of a COVID-19 episode.

• Develop a new architecture, supported by a cascade of expert systems, whose knowl-
edge bases are automatically generated using the Wang-Mendel automatic rule gener-
ation algorithm [52].

• Implement the intelligent clinical decision support system through a software artefact
and demonstrate its utility through a case study.

The paper is divided into five sections. Section 2 presents the conceptual design of the
intelligent clinical decision support system, explaining and detailing the different stages
involved. This is followed by its implementation through a software artefact. Section 3
presents a practical application case, while Section 4 discusses the presented system. Finally,
Section 5 presents the conclusions and future lines of work.

2. Materials and Methods
2.1. System Definition
2.1.1. Database Usage

The SeguiCovid database is used to define the intelligent system [53–55]. This database
was created between 2020 and 2022 in the Pneumology Department of the Álvaro Cunqueiro
Hospital in Vigo and includes 194 patients. It is important to clarify that this is not the
general population, but patients with severe COVID-19 who required hospitalisation due
to the development of pneumonia.

All patients in the database were followed up to assess their outcome at 3 and
12 months after the COVID-19 episode.

The database is extensive and includes a large number of variables, but it is important
to note that many of these may not be relevant for predicting dyspnea 12 months after the
COVID-19 episode. For this reason, the pulmonologists on the team selected the variables
they considered most important based on clinical criteria. After this selection, general
and anthropometric data (sex, age and body mass index), toxic habits (smoking), previous
comorbidities (lung diseases, heart diseases, diabetes, arterial hypertension), severity of
the disease (need for admission to the Intensive Care Unit-ICU-or Intermediate Respiratory
Care Unit-IRCU), the situation at three months (presence of dyspnea, X-ray results, and
change in pulmonary diffusion capacity) and the situation at 12 months (presence of
dyspnea) were considered. Table 1 shows a summary of the variables selected by the
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pulmonologists, indicating their type (numerical or categorical). The categorical variables
in the database have been treated as numbers due to their binary nature, i.e., they can
only take on two values: 0 or 1. In the comment column of Table 1, an explanation of
the meaning for each value is given; for example, for the variable “Smoking”, a value of
1 indicates that the patient smokes, while a value of 0 indicates that the patient does not
smoke. In the case of “Severity of pneumonia”, a value of 1 is related to the admission
in ICU as opposed to a value of 0, which is related to IRCU admission. The rest of the
categorical variables have been recoded in a similar way, as shown in Table 1.

Table 1. Summary of the variables.

Group Variable Type Comment

In
de

pe
nd

en
tv

ar
ia

bl
es

General and
anthropometric data

Sex Categorical Man (1)/woman (0)

Age Numerical -

Body mass index (BMI) Numerical -

Toxic habits Smoking Categorical Yes(1)/no(0)

Previous comorbidities

Lung diseases Categorical Yes(1)/no(0)

Heart diseases Categorical Yes(1)/no(0)

Diabetes Categorical Yes(1)/no(0)

Arterial hypertension Categorical Yes(1)/no(0)

Severity of the disease Severity of pneumonia Categorical

Refers to the unit to which the patient was
admitted during hospitalisation for
COVID-19-associated pneumonia:

ICU(1)/IRCU(0).

Situation after
three months

Dyspnea after
three months Categorical

The Modified British Medical Research
Council (mMRC) scale is used to assess

dyspnea. If the score is zero, the patient has
no dyspnea; if the score is greater than zero,

the patient has symptoms of dyspnea.
Yes(1)/No(0)

Chest X-ray Categorical Affected X-ray (1)/No affect X-ray (0)

Alteration of pulmonary
diffusion: DLNO Numerical Reference percentage of the diffusion capacity

in relation to the theoretical value

D
ep

en
de

nt
va

ri
ab

le

Situation after
12 months

Dyspnea after
twelve months Categorical

The Modified British Medical Research
Council (mMRC) scale is used to assess

dyspnea. If the score is zero, the patient has
no dyspnea; if the score is greater than zero,

the patient has symptoms of dyspnea.
Yes (1)/No (0)

2.1.2. Conceptual Design

A flow chart that illustrates the different stages of the intelligent system that is pro-
posed in this paper is shown in Figure 1. A detailed description of each of these stages is
given below.
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Figure 1. Flowchart of the Intelligent Clinical Decision Support System. In Stage 1, the collection
of patient data is carried out. Stage 2 is subdivided into Stage 2.1, which focuses on the selection
of the variables with the highest predictive power; Stage 2.2, which deals with the generation of
the knowledge bases of the expert systems; and Stage 2.3, which deals with the symbolic inference
process. Finally, Stage 3 deals with the generation of alerts and decision making.

Stage 1: Data Collection

The first stage involves the collection of the patient data previously introduced in
Section 2.1.1. As will be explained later in Stage 2, not all the variables originally considered
in Table 1 are used. Only sex, age, lung diseases, smoking and the presence of dyspnea in
the third month after the COVID-19 episode and DLNO are collected.

Stage 2: Data Processing

After the collection and structuring of the patient data, the second stage is the process-
ing of this data by the intelligent system. For this purpose, a set of cascaded expert systems
is used. Below is a description of the different stages involved in the definition of the expert
systems, from the selection of the input variables to the definition of the knowledge bases
and the subsequent inference process.

• Stage 2.1—Selection of variables: Before building the knowledge bases of the expert
systems, it is essential to determine the input variables for each of them. To identify
the variables with a higher predictive power, it is proposed to use a CART-type
classification tree [56,57]. The use of decision trees as a feature selection tool is a
common practice and is supported by the scientific literature [58–60]. After this
process, it is observed that, among the variables present in Table 1, those with the
greatest predictive power are sex, age, lung diseases, smoking, presence of dyspnea in
the third month and DLNO.
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• Stage 2.2—Definition of the expert system cascade: Once the variables with the highest
predictive power have been identified, their treatment by the system is addressed. For
this purpose, a cascade of expert systems is used, all of them using fuzzy inference
engines of the Mamdani type [61–64]. The cascade has two levels, as shown in Figure 1.
In the first level of the cascade, Expert System 1 is fed with sex, age and dyspnea
at month 3, while Expert System 2 is fed with lung diseases, smoking and DLNO,
obtaining at its output the risks R1 and R2, respectively. Then, at the second level of
the cascade, these risks are fed to Expert System 3, which obtains the Dyspnea Risk
at 12 months. In this way, the use of the cascade reduces uncertainty and facilitates
the creation of more accurate knowledge bases [38,65], with simpler rules due to
the smaller number of antecedents. In general, one of the most complex tasks in the
development of an expert system is the creation of the knowledge base. Although there
have been various studies and proposals aimed at identifying the risk factors associated
with the development of long COVID, there is currently no explicit knowledge or
experience of how a patient might develop 12 months after the episode and whether
he or she might present with dyspnea. Statistical approaches could be used to solve
this problem, with the associated loss of explanatory power; however, in this work
we opt to use the Wang-Mendel automatic rule generation algorithm [52]. In this way,
starting from the dataset, it is possible to generate a knowledge base based on fuzzy
rules for each of the expert systems.

• Stage 2.3—Inference: Once the expert systems are defined and given a new patient’s
data, their treatment is approached and the Dyspnea Risk at 12 months is obtained.

Stage 3: Alert Generation and Decision-Making

Once the patient data has been processed, the Dyspnea Risk at 12 months is obtained
at the output of the cascade. The final step is to interpret the risk indicator to obtain the
final label associated with the patient (no dyspnea vs. dyspnea). Based on this infor-
mation, the pulmonologist will be able to follow up with at-risk patients and conduct
personalised studies.

2.2. System Implementation

This section deals with the implementation of the intelligent system presented in the
previous section through a software artifact. For this purpose, MATLAB© software (version
R2023b, Natick, MA, USA) is used together with Statistics and Machine Learning Tool-
box [66] for training the CART model, the Fuzzy Logic Toolbox [67] for implementing the
expert systems, and the App Designer Toolbox [68] for developing the graphical interface.

The equipment used to implement the system consists of an AMD Ryzen 9 7940HS
processor with an NVIDIA GeForce RTX 4070 GPU graphics card and 32 GB of RAM.

Figure 2 shows a screen shot of the graphical user interface of the tool that was
developed. It shows three zones that correspond to the main stages of the intelligent
system, as previously presented in Section 2.1.2.

2.2.1. Data Collection

Patient data is entered using the form shown in Figure 2 in Panel (1), Data Collection.
The medical team must check that the information entered is correct to avoid reducing the
accuracy of the system and potentially increasing the associated uncertainty.

2.2.2. Data Processing

Once the data has been entered, it is processed by the intelligent system. This process
takes place in the (2) Data Processing panel, as shown in Figure 2.
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Variable Selection

As mentioned above, prior to defining the expert systems, an analysis of the initial
dataset was carried out to select the variables, also known as features in the context of
machine learning, with the greatest predictive power.

In the area of feature selection, the objective is to identify an optimal subset of features
that, during the model development phase, will help to simplify the model structure,
enhance its interpretability, and reduce any redundancy between variables. There are
various methods in this area, and they can be divided into filter methods, which dispense
with the use of models and are based on statistical properties inherent to the data; wrap-
per methods, which incorporate predictive models to evaluate the relevance of different
subsets of variables, selecting those that contribute to a significant improvement in the
model’s performance (although this implies a higher computational cost); and embedded
methods, which integrate the selection of variables as an essential component of the model
development process, a characteristic that distinguishes them by their lower computational
demands, given that the construction of the model is carried out only once.

Because of their computational efficiency and simplicity, in this paper we opt for the
embedded methods through a CART-type decision tree.

It is important to note that no specific pre-processing of the data, such as rescaling, was
carried out, as the model used, a CART-type decision tree, does not require it. Furthermore,
in this initial phase, the complete data set was used.

For the construction of the tree, the Statistics and Machine Learning Toolbox was
used, relying on the Gini measure as an impurity criterion and setting a maximum value
of 9 splits to control the complexity of the tree. In a sense, this strategy aims to reduce the
number of predictors, thereby simplifying the subsequent cascade structure and facilitating
the creation of simpler knowledge bases.
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After constructing the tree, the model drops some of the initial variables, retaining the
presence of dyspnea at month 3, as well as age, sex, lung diseases, smoking and DLNO to
address the prediction of dyspnea at 12 months after the COVID-19 episode.

When selecting these variables in the dataset, it is noted that some patients have
missing fields in some of the variables, which is not a serious problem in the case of the
decision tree. However, before constructing the cascade, these cases are discarded, leaving
a total of 185 patients.

Definition of the Expert System Cascade

Once the variables with greater predictive power have been identified, the next step is
to set up the cascade and determine the knowledge bases of each of the expert systems.

The strategy of using a cascade of expert systems has been introduced previously and
is designed to reduce uncertainty and facilitate the creation of more accurate and simpler
knowledge bases. Using a single expert system with six antecedents in its rules would be
impractical, as it would result in an overly complex knowledge base, as well as no rules
being fired in some cases, potentially.

As there are six antecedents, it was decided to define two expert systems at the first
level of the cascade, with three antecedents per expert system. The outputs of these expert
systems are in turn input to another expert system at the second level of the cascade, which
determines the Dyspnea Risk at 12 months. A summary of the variables associated with
each expert system is shown in Table 2.

Table 2. Summary of input and output variables for each expert system.

Expert System 1

Input Dyspnea at 3 months, Sex and Age

Output R1

Expert System 2

Input Lung diseases, Smoking and DLNO

Output R2

Expert System 3

Input R1 and R2

Output Dyspnea Risk at 12 months

Expert systems with fuzzy inference engines of the Mamdani type [61–63] are used.
Their knowledge bases are determined using the Wang-Mendel automatic rule generation
algorithm [52]. Regarding the datasets for each expert system, the independent variables
are the input variables listed in Table 2, while the label, the dependent variable, is the
presence of dyspnea 12 months after the COVID-19 event (expressed as 0 or 1).

Of the 185 available patient records, obtained after excluding patients with missing
values, 30% were set aside for testing and evaluating the predictive ability of the system
once it was built. The remaining 130 were used to build the knowledge bases of the
expert systems.

The use of the Wang-Mendel automatic rule generation algorithm can be systematised
in a series of steps [42,52], as described below, and adapted to each expert system:

• Step prior to applying the method: First, the shape of the membership functions
is defined. Triangular membership functions are chosen for both antecedents and
consequents, as in the original Wang-Mendel paper [52]. In addition, the value of a
parameter N is defined, which is related to the number of sections that the membership
function of each variable will have (the number of sections of the membership function
is equal to 2N + 1, to ensure that there is a central section). In this case, a value of
N = 1 is set for both the antecedents and the consequents, giving a total of 3 sections
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per variable. In the case of the categorical input variables (dyspnea at 3 months, sex,
lung diseases and smoking) and the output variable (the label), although there are
three sections, only the extreme ones are used (this is because there are two unique
values: 0 and 1).

• Step 1—Division of the input and output spaces into fuzzy regions: After setting the
algorithm configuration, the division of the initial spaces, both antecedent and conse-
quent, is addressed using the parameters set in the previous stage. Figure 3 shows a
generic case for N = 1 with three sections of the membership function (Low, Medium
and High). In line with the proposal of the original Wang-Mendel paper, the overlap-
ping of the triangles is considered so that, if the top vertex of the central triangle has a
maximum membership degree, the vertices of the neighbouring triangles at the same
point have minimum membership degrees. For each of the expert systems, Figure 4
shows the different associated membership functions. For categorical variables, given
their binary nature, the membership functions are simplified by eliminating the inter-
mediate section. This decision is based on the observation that, since these variables
can only assume two states (e.g., “yes” or “no”), an intermediate section would not
contribute to the automatic rule generation process, nor to the subsequent inference.
On the other hand, for the antecedents of Expert System 3, which are obtained after the
inference and defuzzification of Expert Systems 1 and 2, we have kept three sections
in the membership functions. This is because the values of R1 and R2 are continuous
values obtained after the defuzzification process in Expert System 1 and 2, respectively,
reflecting the risk of dyspnea.
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• Step 2—Generation of fuzzy rules: After the division of the starting spaces, we move
on to the generation of fuzzy rules. For this purpose, the degree of membership
associated with each of the sections of the membership functions for each line of the
dataset is determined. After that, in each of the lines of the dataset, each variable is
assigned to the section with the maximum degree of membership, determining a rule
for each line. In this case, as there are 130 patients reserved for the construction of
the model, 130 rules are initially obtained in each knowledge base. It is important to
clarify that the knowledge base of Expert System 3 is constructed once those of Expert
Systems 1 and 2 have been determined, as it is necessary to construct a derived dataset
with the values of R1, R2 and the label from the initial data.
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• Step 3—Assigning a degree to each rule to resolve conflicts: After generating rules
in Step 2, it may happen that there are rules with the same antecedents but different
consequents. To solve this problem, in the original proposal by Wang-Mendel [52], a
coefficient is determined for each rule, which is the product of the degrees of member-
ship of the observation that gave rise to it, and the rule that maximises this value in
the case of conflict is selected while the rest are discarded. In this way, the initial set of
rules is greatly reduced. In this particular case, the knowledge base of Expert System
1 goes from 130 to 12 rules, that of Expert System 2 from 130 to 10 rules and that of
Expert System 3 from 130 to 8 rules.
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• Step 4—Construction of the combined fuzzy knowledge base: after the automatic
generation of the knowledge base, the need to integrate linguistic rules proposed by
experts could be identified. The experts should propose the rule together with its
degree of importance, so that, in conflict situations, as observed in the previous stage,
the rule with the higher coefficient is given priority. In this case, no rules other than
those generated in Step 3 were added.

• Step 5—Inference: Once the knowledge bases have been established, it is possible to
analyze data from new patients and obtain the risk indicators at the output of each
of the expert systems. These risk indicators initially vary between 0 and 1; however,
to facilitate interpretation of the risk at the output of the cascade, the Dyspnea Risk at
12 months is scaled between 0 and 100.
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Prof Test Results and Determination of Optimum Threshold Value

After the definition of the knowledge bases, this section deals with the analysis of the
predictive and generalisation capacity of the system on the dataset reserved for testing.
This dataset contains 55 patients that were not used in the knowledge base construction.

Figure 5 below shows the ROC curve obtained, supported by an AUC value of 0.75.
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classification values obtained after the process of optimising the Matthews correlation coefficient.

In order to be able to interpret the risk obtained at the cascade output, it is necessary to
establish a threshold that allows discrimination between cases with ‘dyspnea at 12 months’
and cases with ‘no dyspnea at 12 months’. To achieve this, an optimisation process is per-
formed using the test dataset to select the threshold that maximises the associated Matthews
correlation coefficient (Mcc) [69–71] (Equation (1) shows its equation; the acronyms in the
equation include TN for true negatives, FN for false negatives, TP for true positives and FP
for false positives).

Mcc =
TN·TP − FN·FP√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(1)

Figure 6 shows a graph of Mcc for the different thresholds, highlighting the threshold
associated with the optimum point. At the optimum point, Mcc is 0.53.

Likewise, associated with this point, there is a sensitivity, also known as recall, of 0.78
and a specificity of 0.75, as can be seen in the point highlighted in Figure 5. In addition to
this, an accuracy of 0.76, and a F1-score de 0.73 are presented.
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2.2.3. Alert Generation and Decision-Making

After processing the data, the system will suggest either ‘dyspnea at 12 months’ or
‘no dyspnea at 12 months’. This information is displayed in Panel (3), Alert Generation and
decision-making, in Figure 2.

The medical team can use this recommendation to determine which patients require
follow-up and perform personalised studies to assess their condition and evolution.

3. Case Study

This section presents a practical application case as a proof of concept to exemplify
the operation of the intelligent system and highlight its simplicity in clinical practice. It
is important to note that the case study presented was not used in the construction of
the intelligent system and that this work does not aim to provide an intensive clinical
validation of the system.

3.1. Initial Data Collection

Table 3 presents the data of a patient who was admitted for pneumonia after testing
positive for COVID-19. The patient was interviewed three and twelve months after the
episode and presented dyspnea on both occasions.

Table 3. Data of the patient to study.

Variable Value
Sex Man

Age 45

Dyspnea at third month Yes

Lung diseases No

Smoking No

DLNO 70
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3.2. Data Processing

After collecting the patient’s data, the data is entered into the application for processing
by the intelligent system, as shown in Figure 7.
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Table 4 presents a summary of the rules that have been fired in each of the expert
systems for this case study. For more information on the membership functions and their
various sections, refer to Figure 4.

Table 4. Summary of the rules fired in the case study.

Expert System Rules

Expert System 1

IF (Dyspnea at third month is Yes) AND (Age is Low) AND
(Sex is Man) THEN (R1 is Dyspnea)
IF (Dyspnea at third month is Yes) AND (Age is Medium)
AND (Sex is Man) THEN (R1 is Dyspnea)

Expert System 2

IF (Lung diseases is No) AND (Smoking is No) AND (DLNO
es medium) THEN (R2 is No Dyspnea)
IF (Lung diseases is No) AND (Smoking is No) AND (DLNO
es High) THEN (R2 is No Dyspnea)

Expert System 3 IF (R1 is Medium) AND (R2 is Low) THEN (R3 is Dyspnea)
IF (R1 is High) AND (R2 is Low) THEN (R3 is Dyspnea)
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Considering the input data, at the output of the first expert system we obtain R1, which
has a value of 0.5231; concurrently, at the output of the second expert system, we obtain R2,
which has a value of 0.1664; finally, considering R1 and R2, at the output of Expert System 3,
we obtain the Dyspnea Risk at 12 months, which has a value of 82.53.

3.3. Alert Generation and Decision-Making

After determining the 12-month Dyspnea Risk, we proceed to interpret the results. In
this case, the value exceeds the previously determined threshold, classifying the patient as
a possible case of dyspnea at 12 months. This alert is visible in the third panel of Figure 7,
alongside the luminous indicators.

The system-generated recommendation aligns with the current situation. During
the consultation three months after the COVID-19 episode, professionals may decide to
establish a personalised follow-up process with individualised specific studies.

4. Discussion

From the beginning of the pandemic to the present, it has been observed that a
considerable number of patients have experienced persistence of COVID-19 associated
symptoms for prolonged periods of time after the acute phase of the pathology, which
has led to a notable increase in the demand for medical consultations and studies. This
condition, known as long COVID, has been studied extensively, but determining how
patients will progress or when the symptoms will return, among other possible questions,
is complex. In addition, since it is a relatively recent condition, specialists often face
difficulties in treating patients, as they do not have specific treatments or therapies for the
condition. All of this is a major problem, especially for patients, as in many cases it can
prevent them from performing their previous tasks, leaving them incapacitated.

Recently, tools supported by artificial intelligence techniques have been developed
to assist specialists in identifying patients who are susceptible to developing long COVID.
These tools explore long COVID in a general way, considering many symptoms together,
which, for specialists in specific fields, such as pulmonology, may not be very useful. These
tools are generally based on inferential approaches based on statistical learning and do
not address long-term predictions (e.g., 12 months). Although long COVID encompasses
a wide variety of symptoms, this paper focuses specifically on dyspnea and whether it
will persist 12 months after the COVID-19 episode. Dyspnea is a prominent symptom
that poses significant challenges for patients. To aid in its detection, an intelligent clinical
decision support system is proposed that deploys a cascade of expert systems. We will
first discuss the benefits of the proposed architecture, highlighting its ability to represent
knowledge. We will then consider the clinical utility and potential relevance of the system.

The proposed system focuses on the determination of the Dyspnea Risk at 12 months
and is based on the use of expert systems. Expert systems are one of the main repre-
sentatives of the symbolic deductive reasoning of artificial intelligence and stand out for
their ability to formalise and diversify knowledge. In this work, expert systems are de-
ployed through a cascade that facilitates the compartmentalisation and management of
information, resulting in the definition of simpler rules. It is important to note that the
initial set of variables was reduced using a decision tree in order to determine the variables
with greater predictive power. This is a practice widely applied in the current literature
and facilitates the subsequent creation of simpler rules. As embedded feature selection
methods, decision trees offer significant advantages over other approaches. Not only do
they select the optimal set of variables during model building, but they also prove to be
computationally more efficient than wrapper methods, which require multiple iterations to
evaluate different subsets of variables. Unlike filter methods, they rely on model-specific
statistical metrics, such as the Gini index in CART-type decision trees. However, it is crucial
to recognise that, in the context of this work, other strategies for feature selection could
be also considered. In this sense, the field of feature selection is a constantly evolving
one, where new techniques and methods are frequently proposed, including the use of
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metaheuristics together with wrapper methods [72], which can offer new perspectives for
feature selection, resulting in more efficient and accurate processes, or even hybrid methods
that combine the advantages of filtering and wrapper approaches [73].

The definition of rules is a fundamental task (as it seeks to encapsulate the knowledge
of events occurring in similar situations) and the reasoning performed by the system will
depend on them. It is obvious that the rules will depend on the experts who define them;
however, in this case, and given the relative novelty of this condition, there is a lack of
explicit knowledge to determine these rules and define the evolution of an acute COVID-19
patient, particularly regarding the possible appearance of dyspnea 12 months later. Con-
sidering the existence of huge amounts of data on COVID-19, and given the absence of
knowledge, the dilemma arises on whether to employ knowledge-based approaches or
learning-based approaches. Unlike learning-based models, knowledge expressed through
deductive rules represents a permanent entity that can be enriched with new knowledge. In
contrast, data are volatile, a mere quantitative representation of a variable, with no greater
meaning or relevance.

In this case, to solve this problem, we opted for the use of the Wang-Mendel automatic
rule generation algorithm [52] so that, starting from a set of data, it is possible to create a
knowledge base, expressing the different variables as symbols and relating them through
rules supported by a logical structure. This is one of the main contributions and novelties
of this work, and it clearly highlights the advantages of this approach, as it enables the
automatic creation of knowledge bases from numerical data. In this way, the difficulty
associated with the construction of knowledge bases is significantly reduced. In any case,
it is also necessary to assume that these knowledge bases need to be reviewed by experts
prior to their consolidation and diversification among other clinicians.

The tests performed indicate satisfactory results, supported by AUC values of 0.75 and
Mcc of 0.53, which are comparable to those obtained by other proposals which are the state
of the art. However, our approach has two distinctive features: the prediction is made
twelve months after the COVID-19 episode, and it is also explainable.

Although our system uses models to automatically generate fuzzy rules from data,
it also has the ability to explain the inference process, similar to traditional knowledge-
based models. This is a fundamental and highly relevant aspect that affects the inherent
explainability of the proposal and encourages the transmission and diversification of
knowledge. However, again, it is important to note that the knowledge base must be
reviewed by experts for further consolidation. This is not too complex in this case, given
the number of rules obtained.

It is also important to assume that knowledge may have been lost during the rule
generation process. This is due to the way in which the Wang-Mendel algorithm prioritises
the rules (it assigns each rule obtained from the data a coefficient, resulting from the product
of the degrees of membership of the antecedents and consequents of each rule). This will
be an issue that will need to be addressed in the future in order to reduce the possible loss
of knowledge associated with the rule generation process.

Beyond the technical aspects, it is crucial to highlight those aspects that are clinically
relevant. Using this system, and with a reduced set of input variables, clinicians have a tool
that allows them to assess the risk that a patient may experience dyspnea 12 months after
an acute COVID-19 episode. This measure is very useful in identifying patients who are
prone to long-term problems. This approach can help pulmonologists identify patients who
require more intensive follow-ups and investigation and those who do not, resulting in
significant savings in resources. Furthermore, the implementation of this system contributes
to the advancement towards the standardisation of the diagnostic process in the context
of long COVID. The introduction of a tool based on expert systems not only facilitates
long-term risk assessment, but also establishes a more consistent and uniform framework
for the diagnosis of this type of patients. Beyond the encouraging results obtained, it is
important to note that this system is still in the early stages of development, so in the
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future it will be necessary to undertake intensive clinical validation to demonstrate its
practical utility.

Relevance of the Proposal

To facilitate the understanding of the benefits of the proposed system, Table 5 presents
a benchmarking based on the following criteria: reasoning (understood as the system’s
capacity to perform symbolic reasoning); scalability (understood as the capacity to re-
place/modify the system’s engines); efficiency (refers to the reliability of the results, under-
stood through the system’s capacity to manage uncertainty) and data dependence.

Table 5. Benchmarking. Our proposal is compared with other state-of-the-art works according to four
essential criteria (reasoning, scalability, efficiency and data dependence). For each state-of-the-art
work, a symbol is associated with each of the criteria. The symbol “-” indicates that the state-of-the-art
proposal has inferior characteristics compared to our proposal considering the criterion. The symbol
“=” indicates that the state-of-the-art proposal has similar characteristics to our proposal considering
the criterion.

Reasoning Scalability Efficiency Data Dependence

Plaff et al. [47]

The system relies on
statistical inference

approaches.

The system is
not scalable.

The authors employed
XGBoost model for their
analysis. They used an

implicit approach to
manage uncertainty based

on probabilities.

This is a fully
data-dependent

approach, as it employs
supervised learning

approaches.

- - = =

Blessy Antony
et al. [48]

The system relies on
statistical inference

approaches.

The system is
not scalable.

The authors employed
logistic regression and
random forest for their
analysis. They used an

implicit approach to
manage uncertainty based

on probabilities.

This is a fully
data-dependent

approach, as it employs
supervised learning

approaches.

- - = =

Reme
et al. [49]

The system relies on
statistical inference

approaches.

The system is
not scalable.

The authors employed the
LASSO and random forest
models to analyse the data.

They also utilised an
implicit approach to

manage uncertainty based
on probabilities.

This is a fully
data-dependent

approach, as it employs
supervised learning

approaches.

- - = =

Gupta et al. [50]

The system relies on
statistical inference

approaches.

The system is
not scalable.

The authors used a
stacking ensemble model

supported by Deep Neural
Networks to analyse the

data. They also utilised an
implicit approach to

manage uncertainty based
on probabilities.

This is a fully
data-dependent

approach, as it employs
supervised learning

approaches.

- - = =
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Table 5. Cont.

Reasoning Scalability Efficiency Data Dependence

Patel et al. [51]

The system relies on
statistical inference

approaches.

The system is
not scalable.

The authors employ a
Random Forest model to

analyse the data. They also
utilised an implicit

approach to manage
uncertainty based
on probabilities.

This is a fully
data-dependent

approach, as it employs
supervised learning

approaches.

- - = =

Our proposal

The proposed system
relies on the use of
symbolic inference

approaches.

The proposed system is
scalable, since it is

possible to modify the
inference engines.

The system uses fuzzy
inference engines, which

allow uncertainty
management from a

non-probabilistic point
of view.

Data dependence is
present, since they are
necessary to define the
knowledge bases of the

expert systems.

In general, considering the works analyzed in Table 5, the few approaches proposed
in the current literature are based on the use of statistical learning techniques, particularly
machine learning. In contrast, symbolic inference presents important benefits associated
with the formalisation and diversification of knowledge, as well as with the management of
uncertainty. In addition, the inclusion of automatic rule generation techniques facilitates the
use of symbolic approaches. Considering all these issues, the proposed system represents
a clear novelty in the diagnostic field of dyspnea after an episode of severe COVID-19,
facilitating this arduous task for specialists in this area.

5. Conclusions

In this paper we presented the proposal of an intelligent system applied to the predic-
tion of dyspnea 12 months after cases of severe COVID-19. Unlike other common works
in the current literature, a unique approach is addressed based on the use of a cascade
of expert systems whose knowledge bases were generated through the Wang-Mendel
automatic rule generation approach.

The operation of the system was exemplified in the case study section as a proof of
concept with the aim of demonstrating its potential in clinical practice and its ease of use.
In any case, and despite the results obtained (supported by AUC values close to 0.8), it is
important to note that this system is in early stages of development.

Regarding the limitations of this work, it is important to recognise that the size of
the database used is relatively small, which could limit the generalisability of the results
obtained. Furthermore, from an architectural point of view, and with regard to the Wang-
Mendel automatic rule generation algorithm more specifically, the need to review and
improve the rule selection method is identified in order to avoid possible loss of knowledge.
It is also important to point out the need for expert reviews of the knowledge bases
before final consolidation. This process, although tedious, is very beneficial, and its main
objective is to enable the consolidation and subsequent diversification of the knowledge
base, thus ensuring the reliability and trustworthiness of the recommendations provided
by the system.

In the future, it will be essential to carry out an intensive clinical validation of the
system to adapt its use to routine practice and to test its usefulness in real-life settings.
Expanding the database to include new cases will be a priority in improving the robustness
and generalisability of the system.
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