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Abstract: RASopathies, a group of neurodevelopmental congenital disorders stemming from mu-
tations in the RAS/MAPK pathway, present a unique opportunity to delve into the intricacies of
complex neurological disorders. Afflicting approximately one in a thousand newborns, RASopathies
manifest as abnormalities across multiple organ systems, with a pronounced impact on the cen-
tral and peripheral nervous system. In the pursuit of understanding RASopathies’ neurobiology
and establishing phenotype–genotype relationships, in vivo non-mammalian models have emerged
as indispensable tools. Species such as Danio rerio, Drosophila melanogaster, Caenorhabditis elegans,
Xenopus species and Gallus gallus embryos have proven to be invaluable in shedding light on the
intricate pathways implicated in RASopathies. Despite some inherent weaknesses, these genetic
models offer distinct advantages over traditional rodent models, providing a holistic perspective on
complex genetics, multi-organ involvement, and the interplay among various pathway components,
offering insights into the pathophysiological aspects of mutations-driven symptoms. This review
underscores the value of investigating the genetic basis of RASopathies for unraveling the underlying
mechanisms contributing to broader neurological complexities. It also emphasizes the pivotal role of
non-mammalian models in serving as a crucial preliminary step for the development of innovative
therapeutic strategies.

Keywords: RASopathies; neurodevelopmental disorders; RAS/MAPK pathway; non-mammalian
models; neurobiology; phenotype–genotype relationships

1. Introduction

RASopathies are a group of syndromic disorders primarily caused by germline mu-
tations in genes that encode any of the proteins along the rat sarcoma/mitogen-activated
protein kinase (RAS/MAPK) signaling network. The core of this cascade comprises the
membrane-bound RAS-GTPase, the protein kinases RAF and MEK, and the transcription
factor ERK (extracellular signal-related kinase), which control numerous cellular and phys-
iological processes, including organism development, cell cycle control, cell proliferation
and differentiation, cell survival, and death [1,2]. These disorders manifest as multisys-
tem syndromes, including, but not limited to, neurofibromatosis type 1 (NF1), Noonan
syndrome (NS), Legius syndrome (LS), Costello syndrome (CS), cardio–facio–cutaneous
(CFC) syndrome and SYNGAP1 encephalopathy (SE) [3]. Most RASopathies are associated
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with an autosomal dominant mode of inheritance, one exception being Noonan syndrome,
where recessive phenotypes caused by mutations in LZTR1 and SPRED2 have been de-
scribed [4,5]. Although each RASopathy syndrome is individually rare, collectively, this
family of congenital disorders is one of the largest in the world, affecting approximately
1 in 1000 individuals [6]. Patients affected by these disorders have common clinical features
such as short stature, dysmorphic facial features, cardiac structural and functional defects,
and lymphatic dysfunction [7]. The central and peripheral nervous systems of patients are
also frequently and severely affected, as evidenced by structural malformations of the brain,
such as macrocephaly [8], neurocognitive deficits [9], and intellectual disability, as well as
an increased risk of tumorigenesis [10]. The symptoms of RASopathies can either present
at birth or become apparent later in life. Regrettably, finding effective targeted therapies re-
mains a challenge, and available treatment options are currently scarce or non-existent [11].
It is therefore essential to better define the genetic, molecular and cellular etiologies of
these complex congenital diseases to identify effective treatments. The investigation of
RASopathies also offers profound insights into the intricate landscape of complex neuro-
logical disorders, enriching our comprehension of the molecular mechanisms dictating
neurological health. This scientific endeavor contributes fundamentally to the evolving
landscape of precision medicine, forging new pathways for the diagnosis and treatment of
a spectrum of neurodevelopmental challenges.

Previous works based on in vivo modelling of RASopathies highlight the relevance of
developing animal models for the study of these complex diseases [7,12]. Additional studies
addressing neurological disorders linked to RASopathies emphasize the involvement of
the RAS/MAPK pathway in human neurodevelopmental processes. These investigations
explore the impacts of mutations within pathway components on both human subjects
and mice [9,13]. In this context, our emphasis lies in elucidating recent advancements in
our understanding of the molecular and cellular underpinnings of neurological symptoms
in RASopathies, with a special focus on genetically modified non-mammalian animal
models. The zebrafish Danio rerio, the fly Drosophila melanogaster, the worm Caenorhabditis
elegans, the frogs Xenopus laevis and Xenopus tropicalis and the chick Gallus gallus stand as
valuable models for studying the effects of genetic factors on the RAS/MAPK pathway.
These models provide unique advantages for studying genetic modifiers and dissecting
interactions within the RAS/MAPK pathway while adhering to the “Three Rs” principles—
reduction, refinement and replacement—which are aimed at minimizing the number of
animals used, refining experimental procedures for animal welfare, and replacing animals
with alternative methods whenever possible. Additionally, these models can be effective
in capturing some of the complexity and variability seen in the clinical presentations
of these conditions. Nevertheless, it is essential to recognize the constraints inherent in
these models and to back up observations by using validation in mammalian and human
cellular models.

2. Neurological Manifestations of RASopathies

The RAS/MAPK pathway is involved in the control of processes of embryonic and
postnatal development, such as cell specification and axon growth, and also in the control of
adult plasticity of the central and peripheral nervous systems [14,15]. Consequently, genetic
mutations associated with RASopathies give rise to multiple neurological impairments [9]:
(i) structural intracranial anomalies like Chiari I malformation [16], syringomyelia, cerebral
vascular anomalies, benign external hydrocephalus, craniosynostosis and posterior fossa
anomalies [17]; (ii) neuropathies or headaches; (iii) seizures [18]; and (iv) diverse cognitive
deficits, such as psychomotor delay [19] and cognitive abnormalities [20]. As in other neu-
rodevelopmental disorders, these cognitive deficits consist in language delays [21], deficits
in learning ability and memory [20], and social impairments that are partly reminiscent
of autism spectrum disorders [22]. All these neurological disorders tend to be lifelong
and compromise the well-being of patients and their families. Furthermore, individuals
with RASopathies face a heightened susceptibility to both benign and malignant nervous
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system tumors, such as low-grade gliomas in NS and Chiari 1 malformations in CS [8],
an increased rhabdomyosarcoma risk [23], as well as other risks [2,24,25]. RASopathies
that manifest with neurological disorders include NF1, LS, NS, CS, CFC syndrome and SE
(Table 1). Further details of the neurological manifestations present in each disorder are
shown in the following.

Table 1. Neurological phenotypes in patients with RASopathies; the most common neurological
features observed in individuals affected by RASopathies. The ✔ symbol denotes the presence of a
specific phenotype within the respective RASopathy, while the X symbol indicates its absence. The
category “Increased risk of tumors” encompasses both benign and malignant tumors. NF1 stands
for neurofibromatosis type 1; LS stands for Legius syndrome; NS stands for Noonan syndrome;
CS stands for Costello syndrome; CFC stands for cardio–facio–cutaneous syndrome; SE stands for
SYNGAP1 encephalopathy; ADHD stands for attention-deficit/hyperactivity disorder; ASD stands
for autism spectrum disorder.

Neurological Feature NF1 LS NS CS CFC SE

Intellectual disability ✔ ✔ ✔ ✔ ✔ ✔

Cranial, facial or brain malformations ✔ ✔ ✔ ✔ ✔ X
Learning disability ✔ ✔ ✔ ✔ ✔ X
Seizures/Epilepsy ✔ ✔ X ✔ X ✔

ASD ✔ X ✔ X ✔ ✔

ADHD/Hyperactivity ✔ ✔ ✔ X X X
Increased risk of tumors ✔ X ✔ ✔ X X

Social impairments X X ✔ X X X
Hypotonia X X X X ✔ X

Schizophrenia X X X X X ✔

Neurofibromatosis type 1 (NF1) is a dominant autosomal disorder caused by muta-
tions in the NF1 gene [26]. These mutations render NF1-derived neurofibromin protein
unable to promote the intrinsic GTPase activity of RAS to hydrolyze RAS-bound GTP
to GDP, ultimately activating the RAS signaling pathway [27]. NF1 occurs in approxi-
mately one out of every 3200 people, and symptoms normally begin in newborns and
infants [28]. Neurological symptoms may be different from person to person, may differ
in number and can range from mild to severe (Table 1). Neurological abnormality is very
frequently found in NF1 patients, including neurological symptoms and disorders such as
hydrocephalus, macrocephaly, cerebrovascular events, neuropathy, seizures, epilepsy, and
headache [18]. Patients may have cognitive defects, including mild intellectual disability,
which is characterized by an intelligence quotient (IQ) ranging from 50 to 69, memory
impairment, neurological speech impairment and specific learning disabilities, such as
reading or writing, coordination, self-control or attention, that interfere with the ability to
learn [29–31]. Behavioral problems may include attention deficits, hyperactivity and im-
pulsivity, thus fulfilling the diagnostic criteria for attention-deficit/hyperactivity disorder
(ADHD), as well as an increased incidence of autism spectrum disorder (ASD) [32,33]. NF1
individuals may develop nervous system defects including cerebellar ataxia, glaucoma,
meningioma and neurofibromas. Synaptic plasticity alterations have also been detected
in adult NF1 patients [34,35]. Finally, they have heightened risk of malignant tumors of
the central nervous system (optic-pathway glioma, astrocytoma, and tumors in the brain,
on the cranial nerves, or involving the spinal cord) and malignant peripheral nerve sheath
tumors (MPNST) [25,36–38].

Legius syndrome (LS) is a dominant autosomal disorder, caused by heterozygous
inactivating mutations in SPRED1 [39], which negatively regulates the RAS-mediated
activation of BRAF, CRAF and neurofibromin [40,41]. The estimated birth prevalence of
this disorder is not known, but it is supposed to be very rare, and the age of onset can vary,
ranging from newborn to childhood, with a milder phenotype, compared with NF1 patients.
Symptoms may include, in rare cases, learning impairments, attention problems, ADHD,
abnormal brain imaging, Chiari type 1 malformation, intellectual impairment, speech
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difficulties and seizures [42] (Table 1). Occasional symptoms include short attention span,
whereas frequent neurological symptoms include various affective, behavioral, cognitive
and perceptual abnormalities, as well as specific learning disabilities (reading or writing,
coordination, or attention, not related to a global deficiency of intelligence), hyperactivity
and macrocephaly [43]. While development of tumors is common in NF1, they are rare
in LS, with only a few cases reported in the literature [39,44,45]. These findings suggest
that SPRED1 mutations may not confer the same tumorigenic risk as NF1 mutations,
although further research is needed to fully understand the relationship between SPRED1
and tumorigenesis.

Noonan syndrome (NS) is a dominant autosomal disorder caused by heterozygous
mutations in one of several RAS/MAPK pathway genes, although rare autosomal recessive
forms have been described [4,46]. In all, 50% of NS cases are caused by mutation in
PTPN11, 10% by mutation in SOS1, 10% by mutation in RIT1, 5% by mutation in RAF1,
and an additional 5% of cases are caused by mutations in KRAS (Table S1). The remaining
20% of cases are caused by rarer mutations in up to 10 different genes (Table S1). NS occurs
in approximately one in one thousand to one in twenty-five hundred individuals, with onset
ranging from prenatal stages up to 11 years, and symptoms vary in number and severity
among patients (Table 1). More than one-third of patients have neurocognitive delay,
including lower IQ, ADHD, language problems (dysarthric speech, neurological speech
impairment, and sensorineural hearing impairment), delayed verbal recall, and visual
recognition memory deficits [47,48]. Social and emotional problems are also seen [47], as
well as ASDs [49]. LTP-like synaptic plasticity induced by transcranial magnetic stimulation
(TMS) is impaired in Noonan syndrome patients, suggesting underlying synaptic plasticity
defects [34]. Other neurological features include high forehead, an intractable neuropathic
pain linked to generalized or proximal nerve hypertrophy in the peripheral nerve system
in adult patients [50], and an increased risk of developing neurological malignancies, such
as low-grade glioma [51].

Costello syndrome (CS) is a RASopathy caused by heterozygous gain-of-function
germline mutations in HRAS (Table S2), typically in the G12 position of HRAS (p.G12S
variant) [52]. Age of onset can vary, ranging from prenatal to newborns. Individuals
with CS typically present craniofacial abnormalities such as cerebral cortical atrophy,
ventriculomegaly or hydrocephalus in the brain, macrocephaly, and Chiari malformation
or demyelination of the basal ganglia [53]. They may also experience seizures and have
an increased risk of developing benign or malignant tumors [54]. Cognitive impairment,
including mild-to-moderate grade intellectual disability, and affected learning and memory
processes are also common features [55] (Table 1). Studies using TMS protocols have found
enhanced synaptic plasticity in CS patients, although these studies are from very small
cohorts [34,56,57].

Cardio–facio–cutaneous syndrome (CFC) syndrome is a dominant genetic disorder
caused by alterations in one of four genes: BRAF (~75%), MEK1/2 (~25%) and KRAS, which
occurs in few individuals, although some other genes might be also associated with CFC
syndrome [58] (Table S2). CFC syndrome is a very rare condition whose incidence is un-
known, and its age of onset can vary, ranging from prenatal to newborns. Hypotonia, motor
delay, speech delay and intellectual disability, and learning disability can be considered
the main neurologic features of this syndrome, although it is also characterized by the
presence of macrocephaly and brain structural malformations, among other symptoms [58]
(Table 1). The presence of ASD is also high in CFC syndrome patients, supporting the
importance of the RAS/MAPK pathway in the etiology of ASD [49]. Findings on magnetic
resonance imaging have included prominent Virchow–Robin spaces, abnormal myelination
and structural anomalies [53].

SYNGAP1 encephalopathy (SE) is caused by mutations in the SYNGAP1 gene. The
SYNGAP1 gene, identified as a causative factor for autosomal dominant intellectual dis-
ability type 5 [59] and classified as a RASopathy protein, primarily impacts the central
nervous system, functioning as a neuronal RAS GTPase-activating protein (GAP) with
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roles in the regulation of excitatory plasticity [60,61]. SYNGAP1 loss-of-function mutations
have been reported in patients with intellectual disability, schizophrenia, seizures and
epilepsy, with patients exhibiting ASD as well [61,62] (Table 1). In particular, large-scale
genetic studies utilizing exome sequencing have now related mutations in SYNGAP1 to
increased risk of both ASD [63] and schizophrenia [64]. Moreover, there is evidence of how
decreased SYNGAP1 expression in human neurons precipitates alterations in dendritic and
synaptic maturation, resulting in enlarged neurons, heightened excitatory synapse density
and earlier onset of synaptic activity [65]. This evidence collectively highlights the role of
SYNGAP1 in neurological processes.

3. Neuro-Phenotypic Complexity in RASopathies with Insights from
Non-Mammalian Models

Establishing a genotype–phenotype relationship in RASopathies is challenging, given
the substantial degree of clinical variability and incomplete penetrance of the associated
phenotypes. For instance, mutations occurring in neural progenitor cells during neu-
rogenesis can result in diverse tissue effects within the same person [66,67], and recent
studies have demonstrated that particular mutations associated with each disorder disrupt
central nervous system (CNS) development in a mutation-specific manner [13]. Non-
mammalian in vivo models have proven particularly valuable for validating the impact of
RASopathy genes on neurodevelopmental processes reliant on the RAS/MAPK signaling
pathway [12,68,69]. Techniques to modulate RAS-MAPK signaling activity include clus-
tered regularly interspaced short palindromic repeats (CRISPR), transcription activator-like
effector nucleases (TALENs) or transposon-based methods in Zebrafish and Drosophila [12],
RNA interference (RNAi) [70], CRISPR-Cas9 gene editing [68] and behavioral assays [71]
in C. elegans, CRISPR and TALEN in Xenopus [72], and in ovo electroporation of expression
vectors in chick embryos [73]. The employment of each technique depends on the final
goal of the study. For example, overexpression techniques such as mRNA injection and
transposon-based methods are desired to mimic a specific phenotype observed in humans
or to assay for the activity of the mutant protein in vivo. However, if the aim is to accurately
model a disease in heterozygous individuals, it is more effective to introduce mutations at
the endogenous locus by using techniques such as TALENs or CRISPR [12]. Bearing this in
mind, these models are adept at conducting phenotypic analyses across various biological
scales, spanning from the molecular to the tissue level.

Danio rerio, the zebrafish, has emerged as a robust non-mammalian model for research
due to its high fecundity and time- and cost-efficient genetic manipulation and real-time
high-resolution imaging. Zebrafish embryos develop rapidly and have transparent bodies,
making it easy to observe developmental defects and organ dysfunction. Several techniques
can be employed to validate the consequences of RASopathy genes in neurodevelopmental
processes reliant on MAPK signaling in zebrafish, including behavioral assays [74], high-
content screening [75], and determining the major/minor axis ratio of embryos [5]. Also,
various functional assays have been used for gene discovery, including in vitro luciferase
assays and in vivo zebrafish modelling [76–79]. These techniques have greatly increased the
ability to investigate the impact of certain mutations and how these lesions impact disease
phenotype, positioning the zebrafish as a powerful in vivo tool for modeling neurological
syndromes [80]. In addition, the zebrafish platform supports medium- to high-throughput
preclinical drug screening to identify compounds that may represent novel treatment
paradigms or even prevent cancer evolution [81]. In fact, zebrafish is emerging as a time-
and cost-effective cancer avatar model to assess tumor phenotype and drug responses.
For instance, zebrafish patient-derived xenografts (zPDX) may be suitable for providing
precision cancer-medicine pipelines [82].

Nonetheless zebrafish has been used for the study of NF1, NS, CS and CFC syndromes
(Figure 1). Zebrafish has proven to be an effective in vivo model for investigating NF1, with
successful knockout of nf1a and nf1b paralogues displaying macrocephaly and increased
oligodendrocyte progenitor cell (OPC) migration within the spinal cord, and defects in
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myelin structure formation lead to decreased myelination in these mutants [83] (Table
S2). Additionally, nf1 mutants crossed with a p53 null background develop high-grade
gliomas and MPNSTs, similar to what is observed in NF1 patients [83]. Also, NF1 variants
associated with cognitive dysfunction have been linked to aberrant cAMP signaling [84].
Memory formation and recall have been tested in nf1 mutants, and deficits were improved
by treatment with chemical stimulants for the cAMP pathway [85]. The over-expression
of platelet-derived growth factor receptor alpha (PDGFRA) has been linked to malignant
transformation of MPNSTs [86], and over-expression of PDGFRA in a nf1a+/−; nf1b−/−;
p53m/m background accelerated the onset of MPNSTs [87]. Other studied neurological
defects include macro- and microcephaly [88], various developmental abnormalities, [76]
and tumors [84].
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stands for Costello syndrome; CFC stands for cardio–facio–cutaneous syndrome. Created with
BioRender.com.

As with NF1, the zebrafish genome contains two PTPN11 genes (ptpn11a and ptpn11b),
encoding Shp2a and Shp2b (Table S1), two proteins with a similar catalytic activity, although
only Shp2a is indispensable during zebrafish development [79]. NS-associated neurological
features, including shorter body axis length [79,89], craniofacial defects [90], and impaired
long-term memory [91], can be attributed to the dynamic regulation of cell movement
during zebrafish gastrulation and epiboly [92,93]. E-cadherin turnover, as well as ERK
signaling, contribute to these processes. Noonan-associated PTPN11 and NRAS mutants
can alter coordinated convergent-extension cell movements and result in oblong embryos
with abnormal axis ratios [12,94]. Additionally, introducing ptpn11 variants associated to
NS with multiple lentigines (NSML) in zebrafish embryos can increase the major/minor
axis ratio [89] and cause craniofacial dysmorphia in adult fish [79]. Shp2D61G mutant
zebrafish can display neurological NS traits, including craniofacial defects, which vary
in severity among individuals [95]. The introduction of gain-of-function mutations in
RIT1 into zebrafish embryos also causes NS and demonstrates a biological effect similar to
mutations in other RASopathy-related genes [76]. The biochemical relationship between
the RASopathy proteins KRAS, RIT1 and LZTR1 was tested in zebrafish and fruit flies;
all LZTR1 orthologs preferentially interacted with RIT1 orthologs, indicating that this
interaction is also conserved in less-complex model organisms [96]. Homozygosity of three
different SPRED2 variants can cause developmental delay, intellectual disability, cardiac
defects, short stature, skeletal anomalies, and a typical facial gestalt as major features
linked to a recessive phenotype evocative of NS [5] (Table S2). Furthermore, activating
RRAS2 mutations can cause NS, and several zebrafish models were generated to study
this; larvae overexpressing RRAS2G24_G26dup or RRAS2Q72H variants, but not wild-type
RRAS2, showed craniofacial defects and macrocephaly [97], and RRAS2Q72L caused severe
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developmental impairments and craniofacial defects, whereas RRAS2F75C resulted in no
aberrant in vitro or in vivo phenotypes [97] (Table S2).

Zebrafish embryos have been employed to probe craniofacial anomalies associated
with NS, a condition linked to A2ML1 variants detected in NS patients (Table S2). In
this context, morphometric analysis of A2ML1 mutant-expressing embryos revealed sub-
stantial head broadening and facial blunting [77]. On the other hand, A2ML1 mutations
showed no influence on zebrafish development [98]. Notably, since RAC1 activates PAK,
which assists in the MEK/ERK pathway via phosphorylation of c-RAF and MEK1 [99],
RAC1 variants implicated in developmental delay during neuronal maturation exhibited
dominant-negative properties causing microcephaly, diminished neuronal proliferation,
and cerebellar anomalies when overexpressed in zebrafish [88]. Intriguingly, the RAC1P29S

variant induced RASopathy-like manifestations in zebrafish akin to activated BRAF and
KRAS, mitigated by PAK and MEK inhibitors [100]. Furthermore, a RABL3S36* mutant
linked to hereditary pancreatic cancer led to RASopathy features in a zebrafish model, with
adult homozygous mutants displaying indicative swimming defects [101]. Expression of
activated BRAF, KRAS, or RAC1 prompted pronounced body axis disruption and height-
ened ERK and PAK activity, contrasting with wild-type BRAF’s inert impact [100]. These
findings collectively underscore the potency of zebrafish models in elucidating molecular
and developmental mechanisms underlying diverse genetic disorders.

Transgenic zebrafish that ubiquitously expresses the constituently active HRASG12V in
the germline display phenotypes consistent with CS: shortened body length, craniofacial
dysmorphia and oncogene-induced senescence in the brain [102]. Overexpression of
HRASG12V led to a 22% mortality rate at 2 dpf and a 60% mortality rate at 5 dpf in zebrafish
embryos, with 6% of surviving embryos exhibiting brain hemorrhage at 5 dpf [103].

The biological consequences of CFC syndrome that have been associated with BRAF
mutations have been studied in several non-mammalian models, including zebrafish.
Expression of the common kinase-activating variant in CFC syndrome BRAFQ257R in
zebrafish embryos increased the major/minor axis ratio [104]. Also, overexpression of
BRAFV600E before gastrulation in zebrafish embryos caused severe embryonic malignancy
with truncated posterior structure and compromised forebrain, while later induction led to
craniofacial deformities resembling CFC syndrome [105] (Table S2). Activating mutations
in MEK1 have different strengths, which are correlated with the severity of the phenotypes
observed in human patients affected by these mutations [106]. Further, spatiotemporal
resolution was used in zebrafish to discover that intrinsically active variants of MEK can
both increase and reduce the levels of pathway activation in vivo [107].

Drosophila melanogaster has been a powerful genetic system with which to decipher
fundamental cell and developmental biology questions, including the discovery of compo-
nents of the RAS/MAPK pathway [108]. Drosophila presents many interesting attributes
such as its short life-cycle, small size, high fecundity and a relatively compact genome [109].
Furthermore, more than half of Drosophila genes have orthologs in the human [110] and
its complex brain and behavioral repertoire make it a particularly useful model for under-
standing neurobiology [111,112]. Results from this model organism may provide valuable
insights into how pathogenic variants promote specific traits in humans, as well as enable
tailored therapeutic approaches to treat them. Drosophila has been used for the study of
NF1 and NS (Figure 1). Early work in Drosophila identified the ortholog of ERK as the
terminal kinases of the RAS/ERK signaling cascade [113]. Later on, Drosophila RASopathy
models were generated, generally emulating RAS gain-of-function phenotypes found in
NS patients, by mutating the Drosophila ortholog of human PTPN11, corkscrew (csw) [90,91],
and SOS2 [114]. Drosophila wing vein formation and eye development have been settled as
excellent in vivo readouts for RAS signaling [115,116]. For example, expression of PTPN11
variants associated in NS-like in Drosophila results in ectopic wing vein and rough eye phe-
notypes [117], and NS-associated mutations in RIT1 also result in ectopic wing veins [76].
Studies have shown that the loss of neurofibromin affects the synaptic function of neurons,
which is associated with a decrease in neurotransmitter release, changes in synaptic plas-
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ticity and abnormal activation of signaling pathways involved in neuronal development
and function [118,119]. Although the NF1 mutations affect both types of memory, the GAP
domain that regulates RAS affects only long-term memory [118,119], while the C-terminal
domain reduces the immediate memory through regulation of adenyl cyclase [120]. In-
terestingly, this memory impairment could be rescued by expression of a human NF1
transgene [118,119]. Other studies also support the proposition that Drosophila lacking
the NF1 homolog exhibit specific learning and memory deficits similar to those of many
children with NF1 [121,122]. Expression of Dsor1Y130C, the MEK1 ortholog in Drosophila,
leads to larval cuticle deficits and ectopic wing veins [106] (Table S2), and intrinsically
active variants of MEK can produce either an increase or a decrease in pathway activation
levels in vivo, as previously reported for zebrafish [107]. Aberrant RAS/MAPK signaling
in the eye leads to small, rough eyes; aberrant signaling in the wing leads to ectopic wing
development [7]. Drosophila Lztr1 preferentially regulates Ric rather than Ras levels, as seen
with the corresponding mammalian orthologs [96]. However, a previous study showed
that flies expressing RNA interference constructs against Lztr1 displayed minor defects
in wing vein patterning [123]. Divergent outcomes between these two studies may arise
from the incomplete knockdown and off-target effects in the RNA interference study by
Bigenzahn et al. (2018), compared to the complete loss of function achieved in the null
Lztr1 flies of the Cuevas-Navarro et al. (2022) study, which was potentially compounded
by differences in experimental conditions.

Studies in Drosophila also identified novel modifiers (Dap160 and CCKLR-17D1) that
implicate synaptic defects in the dNf1 growth deficiency [124]. This and other studies
also have implicated the neuronal-specific RTK Anaplastic Lymphoma Kinase (ALK) as an
upstream activator of RAS signaling in neurons [124,125]. Altering ALK activity in these
animal models partially ameliorates NF1 cognitive deficits, suggesting that it represents a
potential therapeutic target. More recently, 13 Drosophila RASopathy models expressing
commonly observed RASopathy variants were generated and used to explore fly pheno-
types, altered cellular signaling networks, and responses to drugs [126] (Table S2). Using
up to 33 Drosophila models, it was planned to provide a broad overview of how RASopathy
variants alter the signaling network in different tissues [11].

Caenorhabditis elegans stands as a potent model to unveil the pathogenic implications
of RASopathy mutations. C. elegans is a small nematode worm that has become a promising
model organism for studying neurological diseases due to its simple and well-characterized
nervous system. It has a transparent body, enabling researchers to study the effects of
genetic and environmental factors on its development, physiology, and behavior. With
only 302 neurons and ~7000 synapses, it has the ability to recapitulate key aspects of
neurological function, and to unravel complex signaling pathways involved in human
disease systems [127,128]. The genome of C. elegans contains homologs of two-thirds
of all human disease genes, including many related to neurological disorders [129]. In
recent years, C. elegans has also been used for high-throughput drug screening, further
highlighting its potential as a model organism for studying neurological diseases [130]. C.
elegans has been used for the study of NS (Figure 1). Mutations in the MAPK1 gene cause
the multivulva (Muv) phenotype, which is consistent with aberrant RAS/MAPK pathway
activity. Up to five (p.Ile74Asn, p.His80Tyr, p.Ala174Val, p.Asp318Gly and p.Pro323Arg)
de novo MAPK1 variants found in patients with a neurodevelopmental disease within the
RASopathy phenotypic spectrum were expressed in C. elegans, and all of them were found
to cause the Muv phenotype [68] (Table S2). Similarly, the SHOC2S2G variant, which is
involved in neurodevelopmental disorders including NS [131], was found to introduce a
N-myristoylation site, resulting in an impaired translocation to the nucleus upon growth
factor stimulation, and engendered protruding vulva, a phenotype also associated with an
aberrant signaling in the RAS/MAPK pathway [132] (Table S2). In addition, expression of
the RRASG39dup, identified in a panel of NS patients, ortholog in C. elegans enhanced RAS
signaling and engendered protruding vulva, as well as decreased egg-laying efficiency and
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accumulation of larvae inside the mother, supporting the proposition of the gain-of-function
role of the mutation in RAS-1 function [133] (Table S2).

Xenopus has been used as a model organism in the study of embryology, cell biology,
genetics, physiology, toxicology and disease, among other fields [134]. This amphibian has
several advantages as a model system, including its external development, easy genetic
manipulation, and availability of a variety of techniques for the study of neural develop-
ment and function, along with the balance between mesoderm formation and the levels of
MAPK [135]. Furthermore, one of the main advantages of its use is that the disruptions of
development caused by RASopathy-associated mutations can be effectively modeled in
Xenopus, presenting phenotypes that are highly reminiscent of the symptoms of patients
and thus allowing the shedding of light into the mechanisms by which these diseases
develop [69]. Xenopus has been used for the study of NS and CFC syndrome (Figure 1).
Induction of a dominant-negative SHP2 in Xenopus blocks mesoderm formation by im-
pairing ERK signaling, leading to arrest of gastrulation [136,137]. Also, Xenopus has been
used to study the effects of mutations in the RAS/MAPK pathway on neural crest (NC)
cell migration, a key process in the development of the peripheral nervous system [138].
Xenopus embryos expressing a dominant negative FGFR4 showed reduced NC gene ex-
pression at mid-neurula stages [14]. When a CFC syndrome germline variant in 14-3-3ζ
(YWHAZ) was expressed in Xenopus tropicalis, it caused an increase in BRAF and RAF1
binding, ERK phosphorylation, and a decrease in body length [139]. Furthermore, recent
studies in Xenopus have revealed the role of the RAS/MAPK pathway in the development
of the visual system [140]. Overall, the use of Xenopus as a non-mammalian model system
has proven to be a valuable tool in the study of the neurobiology of RASopathies.

4. Other Potential Models: Chick Embryos

Leveraging chick embryos as a model organism provides a valuable avenue for un-
raveling intricate molecular mechanisms underpinning neurological disorders. Aberrant
RAS signaling activation in chick embryos notably induces shifts in axon guidance [141].
Additionally, mutations in RAS/MAPK components prompt alterations in cortical neuron
migration and morphological changes [142]. Intriguingly, investigations have illuminated
the pivotal role of PI3K as an anti-apoptotic transducer in neuroblasts and neurons, while
also governing cellular migration within the neuroepithelium through Rho GTPases. Re-
cent advancements showcase that an overactivation of ERK1/2 in the trunk neural tube,
mediated by the constitutive active form of MEK1 (MEK1ca), drives shifts in the tran-
scriptional profile of developing spinal cord cells. MEK1ca-transfected cells relinquish
neuronal identity, expressing potential oncogenes like AQP1, highlighting MEK1’s promise
as an in vivo model in uncovering mechanisms fostering neoplasia and malignancy in
neural-origin ERK-induced tumorigenesis [73]. This model is notably advantageous for
examining early embryonic development, a pivotal phase for brain maturation [143].

The chicken embryo, with a resemblance to the human embryo’s frontonasal mass
surpassing that of the mouse, offers an invaluable platform for craniofacial research, bol-
stered by the capacity for replicative accumulation [144]. Techniques, including RNAi,
morpholinos, promoter-driven DNA constructs for gain of function, ex ovo early embryo
electroporation, and in ovo electroporation, stand at our disposal to investigate neurode-
velopmental gene involvement in chick embryos [145]. A distinctive advantage lies in
the chicken embryo’s capacity for comprehensive observation, enabling the association of
genes or signals with phenotypes. These studies, uncovering the effects of RAS signaling
modulation on chick embryo development, underscore the species’ potential in delving
into the etiology of neurological disorders associated with RASopathies [144].

5. Limitations of Using Non-Mammalian Models

While non-mammalian models offer significant advantages for studying various dis-
eases, including RASopathies, they are not without limitations that warrant consideration.
In general terms, there are limitations when studying some of the most fundamental aspects
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of development, genetics, pathology, and disease mechanisms unique to humans in animal
models. These drawbacks are even higher if the study is focused on disorders that affect
the brain, where the most significant differences between humans and animal models have
been found. Neuronal subtype complexity and human-specific aspects of gene expression
and regulation are some of the key differences that limit the ability of animal models
to recapitulate human brain development and to be used in identifying the underlying
cellular and molecular mechanisms [146]. Another limitation to take in account is the
difference between human and animal models in response to drugs, as pharmacokinetics
and pharmacodynamics vary not only between species but also between individuals from
the same species [147]. Also, it is well known that mammalian models are evolutionary
closer to humans and thus are more similar to them than are non-mammalian models [148].

Zebrafish has a comparatively lower brain complexity when compared to humans
and mammals, and this, coupled with the field’s relatively early stage, presents challenges.
Also the variability in responses due to a low inbreeding rate can complicate data analy-
sis [149]. Drosophila models mainly rely on human disease-causing gene overexpression
in fly eyes, which lack the complexity and significant anatomical differences seen in the
human brain [150]. In the case of C. elegans, its simplicity in terms of replicating human
neural connections and cell interactions, which is critical for understanding the pathogene-
sis of neurodegenerative diseases, represents a limitation [129]. The yolk content within
Xenopus embryos can hinder signal detection, and deep live imaging within early embryos
is constrained in conventional imaging methods. Additionally, the longer generation time
and reproduction cycle can impact experimental frequency [151]. Susceptibility to high
doses of potentially lethal chemicals and the influences of poorly understood factors like
breeder genetics, age, egg size, and incubation conditions are limitations in using chick
embryos [152,153].

6. Effective Neurological Treatments and RASopathy Inhibitors Used in
Non-Mammalian Models

Currently, there are no definitive cures for RASopathies. However, ongoing research
focuses on the exploration of the RAS/MAPK signaling pathway, aiming to develop phar-
maceutical interventions that may effectively alleviate neurological symptoms. However,
the complexity of the signaling pathway and the diversity of the symptoms associated
with RASopathies make drug development challenging. Still, there are several treatments
and therapies available, based on the medical issues of each patient [7,11,19,154]. Neu-
ropharmacology is a promising approach for the treatment of neurological symptoms in
RASopathies, and studies using non-mammalian model organisms may help to identify
potential therapeutic targets (Figure 2).

In zebrafish embryos, studies have shown that expression of BRAFQ257R increased
the major/minor axis ratio, a phenotype that was prevented by treatment with the MEK
inhibitors CI-1040 and PD0325901 [104,155]. Similarly, the CFC-syndrome-like phenotypes
associated with ectopic expression of BRAFV600E were profoundly ameliorated by simul-
taneous treatment with vemurafenib [105]. Furthermore, in the zebrafish model of NF1,
treatment with sunitinib, a RTK inhibitor, effectively arrested the progression of trans-
planted MPNSTs, and combination treatment with both sunitinib and trametinib, a MEK
inhibitor, enhanced this therapeutic effect [87]. Additionally, the study of the effects of
various drugs on the zebrafish models of RASopathies has allowed the identification of
targets of the RAS/MAPK pathway and the investigation of the mechanisms underlying
the pathogeneses of RASopathies [69]. DNA Topo I and mTOR kinase inhibitors were
identified as the most effective single agents in eliminating MPNST cells while avoiding
excessive toxicity [156]. Treatment with a combination of bezafibrate and urolithin A
provided a synergistic effect at a mitochondrial level, rescuing the genetic developmental
defects in the CS zebrafish model [103].
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The Drosophila model has been instrumental in identifying potential therapeutic targets
for RASopathy-associated symptoms [126,157]. For example, preclinical studies using
Drosophila have shown that inhibitors of the Ras/MAPK pathway, such as SHP2 inhibitor
NSC-87877 [91] and MEK inhibitors CI-1040 [104] and trametinib [87], have potential
therapeutic value. Studies in flies have also shown that activating the cAMP pathway can
rescue neurofibromin deficiency [158]. In addition, the gene nemy has been identified as a
potential therapeutic target for the treatment of cognitive impairment [159].

In C. elegans, expression of activated LIN-45/Raf in head acetylcholine neurons is
sufficient to cause a waveform phenotype and hypersensitivity to the acetylcholinesterase
inhibitor aldicarb, similar to an activated heterotrimeric G protein (Gq) mutant, suggest-
ing that the ERK/MAPK pathway modulates the output of Gq-Rho signaling to control
locomotion [160]. Furthermore, although not directly studied in RASopathy models, the
GABAergic signaling pathway [161] and acetylcholine system [162] have been identified as
potential therapeutic targets for treating cognitive impairment.

Several studies using Xenopus have identified potential therapeutic targets for treating
neurological symptoms that may be present in patients affected by RASopathies. One study
found that the use of A-582941, an agonist of the α7 nicotinic acetylcholine receptor (α7
nAChR), can lead to broad-spectrum efficacy at doses that enhance ERK1/2 and cAMP
response element-binding protein (CREB) activation, and may represent a mechanism that
offers potential for the improvement of cognitive deficits [163]. In another study, the effects
of a 14-3-3ζ variant found in CFC syndrome patients were investigated, and the results
suggested that the inhibition of the RAS/MAPK pathway could potentially be a therapeutic
approach used to ameliorate CFC syndrome symptoms [139].

In chick embryos, only a limited number of studies have focused on the identification
of key signaling pathways and targets that may be relevant in this context. One study
investigated the effects of arsenic on NC cells in chick embryos and found that it induced
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gross abnormalities in craniofacial development and neural tube defects [164]. Inhibition of
ERK1/2 activity by overexpressing the ERK1/2 phosphatase DUSP6 reduced the expression
of the NC genes, although the way by which ERK1/2 signaling promotes NC induction is
still unclear [14].

7. Discussion

The spectrum of neurological symptoms associated with RASopathies is underpinned
by a myriad of factors, including the progressive nature of the disease, genetic modifiers,
the intricate interplay of RASopathy-related gene mutations, and the relationships between
tumor suppressors and neural tumors. Acknowledging the evolving nature of their symp-
toms over an individual’s lifespan and comprehending the genetic nuances that drive
symptom diversity are paramount to a holistic understanding of the disease’s clinical land-
scape. Furthermore, a more comprehensive exploration of neural tumors within the context
of RASopathies would provide a well-rounded depiction of the neurological intricacies that
patients encounter. Importantly, delving into the intricacies of neural symptoms within
the context of RASopathies not only contributes to a more thorough understanding of
the associated neurological complexities, but also has broader implications, potentially
shedding light on fundamental aspects of neurological diseases that are more complex.

The use of non-mammalian model organisms, such as zebrafish, Drosophila, C. elegans,
Xenopus and chick embryos, has been instrumental in advancing our understanding of
RASopathies and developing new neuropharmacological approaches. No single model can
fully replicate human diseases, and further research is required to bridge the gap between
these models and clinical settings. Non-mammalian model organisms provide a simplified
system for studying the RAS/MAPK signaling pathway and the underlying mechanisms
of neuroprotection and neurotoxicity, which can be challenging to study in mammalian
models. Based on the current literature, it seems that some of the less common RASopathies,
such as NSML and CFC syndrome, have not been studied as extensively as some of the
more common RASopathies like NF1 and NS. There are still several common RASopathy
variants identified in humans that have yet to be modeled in non-mammalian models. For
example, the PTPN11 mutation A72T is common in NS but has not been studied in any
non-mammalian model. Similarly, the RAF1 mutation G266E, which is also commonly
found in NS, has not been studied in any non-mammalian models. In addition, some
mutations that have been studied in non-mammalian models have not been identified as
common variants in humans. For example, the RAF1 mutation S259A has been studied
in zebrafish but is not a common variant in humans [165]. It is important to note that
the study of RASopathies is an ongoing and constantly evolving field, and new variants
are constantly being identified and studied. So, while some variants may not have been
modeled yet, they may be studied in the future as new research is conducted.

Non-mammalian models have significantly contributed to the quest for effective
treatments in the realm of RASopathies. Studies in C. elegans have underscored the intricate
relationship between the ERK/MAPK pathway and locomotion, indirectly hinting at
potential intervention points. Zebrafish models have shown promise in assessing RASopathy
inhibitors, with MEK inhibitors and RTK inhibitors demonstrating potential therapeutic
value. Drosophila has played a pivotal role in identifying therapeutic targets for RASopathy-
associated cognitive deficits, including inhibitors of the RAS/MAPK pathway and the
activation of the cAMP pathway. Xenopus models have unveiled potential targets for
the amelioration of cognitive deficits in RASopathies, and although chick embryos are
relatively less explored in this context, they have begun shedding light on the impact
of environmental factors and ERK1/2 signaling. The chick embryo model emerges as
an indispensable asset used for uncovering the underlying mechanisms of neurological
disorders within the spectrum of RASopathies. Its utility extends to the identification of new
neuroprotective compounds and a heightened comprehension of the RAS-MAPK pathway’s
role in neurodevelopment. Significantly, the potential of chick embryos in drug discovery
for RASopathies is underscored, demonstrating their transformative capacity in advancing
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therapeutic avenues. These non-mammalian models offer diverse advantages, from cost-
effectiveness to the ability to study genetic modifiers and pathway interactions, collectively
aiding in the quest for effective treatments in the complex landscape of neurobiology.

Current research suggests a dynamic interplay between non-mammalian, mouse and
iPSC models in RASopathy research. Zebrafish and C. elegans models have identified key
signaling pathways and potential therapeutic targets, which have then been validated
and further characterized in mice. Subsequently, iPSC models can be used to refine these
findings in a human context, considering individual patients’ variations. This multi-model
approach strengthens the translational potential of research findings and increases the
likelihood of successful therapeutic development. While non-mammalian models offer
valuable starting points, mice and iPSCs play critical roles in validating and translating
their findings towards clinical application. The future lies in a collaborative approach,
leveraging the strengths of each model system to bridge the gap between basic research and
effective therapies for RASopathies and other complex diseases. Additionally, advanced
computational tools are emerging to integrate data from diverse models, providing a more
comprehensive understanding of RASopathies.

While non-mammalian models have been invaluable in understanding RASopathies
and developing therapeutic approaches, the future may hold even more revolutionary
solutions. The emergence of powerful technologies like artificial intelligence (AI) has
the potential to redefine the way we think about and develop therapies, potentially even
questioning the need for traditional model systems altogether. These systems could identify
intricate patterns and connections that might be missed by traditional research methods,
leading to the discovery of novel therapeutic targets and personalized treatment strategies
tailored to individual patients’ unique genetic makeup. AI could also be used to simulate
complex biological processes, including disease progression and drug interactions, with a
level of detail and accuracy that surpasses current model systems. However, it is crucial
to remember that it is a tool, not a replacement for biological understanding, and it still
needs further development to accurately predict or stimulate the outcome of a disease and
drug interaction. Model systems, especially those incorporating human-derived cells or
organoids, will still play a vital role in validating AI-generated predictions and testing the
safety and efficacy of potential therapies in a more biological context. The convergence of
AI and other emerging technologies will undoubtedly reshape the landscape of therapeutic
discovery, offering exciting possibilities for the future of medicine.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomedicines12040841/s1, Table S1: Conservation of the
RASopathy genes in non-mammalian model organisms. This table illustrates the percentage of
identity between genes associated with RASopathies and their orthologs in non-mammalian mod-
els, focusing exclusively on those genes and models mentioned in the text. In genes associated
with Noonan syndrome (NS), asterisks are used to indicate an additional connection with Noonan
Syndrome with Multiple Lentigines (NSML, denoted by *) or syndromes resembling Noonan syn-
drome (**). Data have been obtained from DIOPT Ortholog Finder (accessed on 31 August 2023,
https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl) and Ensembl Bio Mart (accessed on 31 August
2023, https://www.ensembl.org/info/data/biomart/index.html); Table S2: RASopathy-associated
mutations studied in non-mammalian model organisms. Collation of investigated RASopathy-
associated mutations in non-mammalian models emphasized in this review, along with observed
related features. In genes related to Noonan syndrome (NS), double asterisks (**) signify an additional
correlation between the mutations and Noonan-like syndrome.

Author Contributions: Conceptualization, J.L., M.R.-M., J.B.-F. and V.R.; investigation, J.L., M.R.-M.
and V.R.; writing—original draft preparation, J.L., M.R.-M. and J.B.-F.; writing—review and editing,
J.L., M.R.-M., J.B.-F., V.R., M.I.-G. and P.P.-M.; supervision, J.L.; funding acquisition, P.P.-M. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was made possible through the support of the Alicia Koplowitz Foundation,
provided via the Research Grants program (Code: FAK21/001). Additionally, funding from the

https://www.mdpi.com/article/10.3390/biomedicines12040841/s1
https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl
https://www.ensembl.org/info/data/biomart/index.html


Biomedicines 2024, 12, 841 14 of 20

European Union—NextGenerationEU, under the “Programa Investigo,” played a crucial role in
facilitating this study. We also extend our appreciation to Banco Santander and the University of
Salamanca (USAL) for their financial backing through the “Becas para realizar estudios de Doctorado
en la Universidad de Salamanca destinadas a estudiantes latinoamericanos” program. Specifically,
the salary support for Mario Rodríguez Martín was sustained by the Programa Investigo, while Juan
Báez Flores received a predoctoral fellowship from Banco Santander. We express our sincere gratitude
to the Alicia Koplowitz Foundation, SEPE, the European Union, Banco Santander, and USAL for their
instrumental contributions, which were vital for the successful completion of this study. The APC
was waived by Biomedicines.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bahar, M.E.; Kim, H.J.; Kim, D.R. Targeting the RAS/RAF/MAPK Pathway for Cancer Therapy: From Mechanism to Clinical

Studies. Signal Transduct. Target. Ther. 2023, 8, 455. [CrossRef] [PubMed]
2. Cizmarova, M.; Kostalova, L.; Pribilincova, Z.; Lasabova, Z.; Hlavata, A.; Kovacs, L.; Ilencikova, D. Rasopathies—Dysmorphic

Syndromes with Short Stature and Risk of Malignancy. Endocr. Regul. 2013, 47, 217–222. [CrossRef] [PubMed]
3. Montero-Bullón, J.-F.; González-Velasco, Ó.; Isidoro-García, M.; Lacal, J. Integrated in Silico MS-Based Phosphoproteomics and

Network Enrichment Analysis of RASopathy Proteins. Orphanet J. Rare Dis. 2021, 16, 303. [CrossRef] [PubMed]
4. Johnston, J.J.; van der Smagt, J.J.; Rosenfeld, J.A.; Pagnamenta, A.T.; Alswaid, A.; Baker, E.H.; Blair, E.; Borck, G.; Brinkmann,

J.; Craigen, W.; et al. Autosomal Recessive Noonan Syndrome Associated with Biallelic LZTR1 Variants. Genet. Med. 2018, 20,
1175–1185. [CrossRef] [PubMed]

5. Motta, M.; Fasano, G.; Gredy, S.; Brinkmann, J.; Bonnard, A.A.; Simsek-Kiper, P.O.; Gulec, E.Y.; Essaddam, L.; Utine, G.E.;
Guarnetti Prandi, I.; et al. SPRED2 Loss-of-Function Causes a Recessive Noonan Syndrome-like Phenotype. Am. J. Hum. Genet.
2021, 108, 2112–2129. [CrossRef] [PubMed]

6. Rauen, K.A.; Alsaegh, A.; Ben-Shachar, S.; Berman, Y.; Blakeley, J.; Cordeiro, I.; Elgersma, Y.; Evans, D.G.; Fisher, M.J.; Frayling,
I.M.; et al. First International Conference on RASopathies and Neurofibromatoses in Asia: Identification and Advances of New
Therapeutics. Am. J. Med. Genet. Part A 2019, 179, 1091–1097. [CrossRef]

7. Hebron, K.E.; Hernandez, E.R.; Yohe, M.E. The RASopathies: From Pathogenetics to Therapeutics. Dis. Model. Mech. 2022, 15,
dmm049107. [CrossRef]

8. Weaver, K.N.; Gripp, K.W. Central Nervous System Involvement in Individuals with RASopathies. Am. J. Med. Genet. Part C
Semin. Med. Genet. 2022, 190, 494–500. [CrossRef]

9. Kim, Y.E.; Baek, S.T. Neurodevelopmental Aspects of Rasopathies. Mol. Cells 2019, 42, 441–447. [CrossRef]
10. Borrie, S.C.; Brems, H.; Legius, E.; Bagni, C. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the

Ras-MAPK and PI3K-AKT-MTOR Pathways. Annu. Rev. Genomics Hum. Genet. 2017, 18, 115–142. [CrossRef]
11. Kontaridis, M.I.; Roberts, A.E.; Schill, L.; Schoyer, L.; Stronach, B.; Andelfinger, G.; Aoki, Y.; Axelrad, M.E.; Bakker, A.; Bennett,

A.M.; et al. The Seventh International RASopathies Symposium: Pathways to a Cure—Expanding Knowledge, Enhancing
Research, and Therapeutic Discovery. Am. J. Med. Genet. Part A 2022, 188, 1915–1927. [CrossRef] [PubMed]

12. Jindal, G.A.; Goyal, Y.; Burdine, R.D.; Rauen, K.A.; Shvartsman, S.Y. RASopathies: Unraveling Mechanisms with Animal Models.
Dis. Model. Mech. 2015, 8, 769–782. [CrossRef] [PubMed]

13. Kang, M.; Lee, Y.S. The Impact of RASopathy-Associated Mutations on CNS Development in Mice and Humans. Mol. Brain 2019,
12, 96. [CrossRef] [PubMed]

14. Dinsmore, C.J.; Soriano, P. MAPK and PI3K Signaling: At the Crossroads of Neural Crest Development. Dev. Biol. 2018, 444,
S79–S97. [CrossRef] [PubMed]

15. Hall, A.; Lalli, G. Rho and Ras GTPases in Axon Growth, Guidance, and Branching. Cold Spring Harb. Lab. Press 2010, 2, a001818.
[CrossRef]

16. Han, Y.; Chen, M.; Wang, H. Chiari I Malformation in Patients with RASopathies. Child’s Nerv. Syst. 2021, 37, 1831–1836.
[CrossRef] [PubMed]

17. Ayaz, E.; Yıldırım, R.; Çelebi, C.; Ozalkak, S. Noonan Syndrome: Neuroimaging Findings and Morphometric Analysis of the
Cranium Base and Posterior Fossa in Children. J. Neuroimaging 2023, 33, 318–327. [CrossRef] [PubMed]

18. Bayat, M.; Bayat, A. Neurological Manifestations of Neurofibromatosis: A Review. Neurol. Sci. 2020, 41, 2685–2690. [CrossRef]
[PubMed]

19. Zenker, M. Clinical Overview on RASopathies. Am. J. Med. Genet. Part C Semin. Med. Genet. 2022, 190, 414–424. [CrossRef]
20. Ryu, H.H.; Lee, Y.S. Cell Type-Specific Roles of RAS-MAPK Signaling in Learning and Memory: Implications in Neurodevelop-

mental Disorders. Neurobiol. Learn. Mem. 2016, 135, 13–21. [CrossRef]
21. Lazzaro, G.; Caciolo, C.; Menghini, D.; Cumbo, F.; Digilio, M.C.; Capolino, R.; Zampino, G.; Tartaglia, M.; Vicari, S.; Alfieri, P.

Defining Language Disorders in Children and Adolescents with Noonan Syndrome. Mol. Genet. Genomic Med. 2020, 8, e1069.
[CrossRef] [PubMed]

https://doi.org/10.1038/s41392-023-01705-z
https://www.ncbi.nlm.nih.gov/pubmed/38105263
https://doi.org/10.4149/endo_2013_04_217
https://www.ncbi.nlm.nih.gov/pubmed/24156711
https://doi.org/10.1186/s13023-021-01934-x
https://www.ncbi.nlm.nih.gov/pubmed/34229750
https://doi.org/10.1038/gim.2017.249
https://www.ncbi.nlm.nih.gov/pubmed/29469822
https://doi.org/10.1016/j.ajhg.2021.09.007
https://www.ncbi.nlm.nih.gov/pubmed/34626534
https://doi.org/10.1002/ajmg.a.61125
https://doi.org/10.1242/dmm.049107
https://doi.org/10.1002/ajmg.c.32023
https://doi.org/10.14348/molcells.2019.0037
https://doi.org/10.1146/annurev-genom-091416-035332
https://doi.org/10.1002/ajmg.a.62716
https://www.ncbi.nlm.nih.gov/pubmed/35266292
https://doi.org/10.1242/dmm.020339
https://www.ncbi.nlm.nih.gov/pubmed/26203125
https://doi.org/10.1186/s13041-019-0517-5
https://www.ncbi.nlm.nih.gov/pubmed/31752929
https://doi.org/10.1016/j.ydbio.2018.02.003
https://www.ncbi.nlm.nih.gov/pubmed/29453943
https://doi.org/10.1101/cshperspect.a001818
https://doi.org/10.1007/s00381-020-05034-2
https://www.ncbi.nlm.nih.gov/pubmed/33409618
https://doi.org/10.1111/jon.13075
https://www.ncbi.nlm.nih.gov/pubmed/36480458
https://doi.org/10.1007/s10072-020-04400-x
https://www.ncbi.nlm.nih.gov/pubmed/32358705
https://doi.org/10.1002/ajmg.c.32015
https://doi.org/10.1016/j.nlm.2016.06.006
https://doi.org/10.1002/mgg3.1069
https://www.ncbi.nlm.nih.gov/pubmed/32059087


Biomedicines 2024, 12, 841 15 of 20

22. Adviento, B.; Corbin, I.L.; Widjaja, F.; Desachy, G.; Enrique, N.; Rosser, T.; Risi, S.; Marco, E.J.; Hendren, R.L.; Bearden, C.E.; et al.
Autism Traits in the RASopathies. J. Med. Genet. 2014, 51, 10–20. [CrossRef]

23. Davies, O.M.T.; Bruckner, A.L.; McCalmont, T.; Mascarenhas, L.; Oza, V.; Williams, M.L.; Wine-Lee, L.; Shern, J.F.; Siegel, D.H.
Cutaneous Mosaic RASopathies Associated with Rhabdomyosarcoma. Pediatr. Blood Cancer 2022, 69, e29639. [CrossRef] [PubMed]

24. Ly, K.I.; Blakeley, J.O. The Diagnosis and Management of Neurofibromatosis Type 1. Med. Clin. North Am. 2019, 103, 1035–1054.
[CrossRef] [PubMed]

25. Staedtke, V.; Bai, R.Y.; Blakeley, J.O. Cancer of the Peripheral Nerve in Neurofibromatosis Type 1. Neurotherapeutics 2017, 14,
298–306. [CrossRef] [PubMed]

26. Báez-Flores, J.; Rodríguez-Martín, M.; Lacal, J. The Therapeutic Potential of Neurofibromin Signaling Pathways and Binding
Partners. Commun. Biol. 2023, 6, 436. [CrossRef]

27. Dard, L.; Bellance, N.; Lacombe, D.; Rossignol, R. RAS Signalling in Energy Metabolism and Rare Human Diseases. Biochim.
Biophys. Acta—Bioenerg. 2018, 1859, 845–867. [CrossRef] [PubMed]

28. Lee, T.S.J.; Chopra, M.; Kim, R.H.; Parkin, P.C.; Barnett-Tapia, C. Incidence and Prevalence of Neurofibromatosis Type 1 and 2:
A Systematic Review and Meta-Analysis. Orphanet J. Rare Dis. 2023, 18, 292. [CrossRef] [PubMed]

29. Debrabant, J.; Plasschaert, E.; Caeyenberghs, K.; Vingerhoets, G.; Legius, E.; Janssens, S.; Van Waelvelde, H. Deficient Motor
Timing in Children with Neurofibromatosis Type 1. Res. Dev. Disabil. 2014, 35, 3131–3138. [CrossRef]

30. Lehtonen, A.; Howie, E.; Trump, D.; Huson, S.M. Behaviour in Children with Neurofibromatosis Type 1: Cognition, Executive
Function, Attention, Emotion, and Social Competence. Dev. Med. Child Neurol. 2013, 55, 111–125. [CrossRef]

31. Plasschaert, E.; Van Eylen, L.; Descheemaeker, M.J.; Noens, I.; Legius, E.; Steyaert, J. Executive Functioning Deficits in Children
with Neurofibromatosis Type 1: The Influence of Intellectual and Social Functioning. Am. J. Med. Genet. Part B Neuropsychiatr.
Genet. 2016, 171, 348–362. [CrossRef] [PubMed]

32. Morris, S.M.; Acosta, M.T.; Garg, S.; Green, J.; Huson, S.; Legius, E.; North, K.N.; Payne, J.M.; Plasschaert, E.; Frazier, T.W.;
et al. Disease Burden and Symptom Structure of Autism in Neurofibromatosis Type 1 A Study of the International NF1-ASD
Consortium Team (INFACT) Supplemental Content. JAMA Psychiatry 2016, 73, 1276–1284. [CrossRef] [PubMed]

33. Plasschaert, E.; Descheemaeker, M.J.; Van Eylen, L.; Noens, I.; Steyaert, J.; Legius, E. Prevalence of Autism Spectrum Disorder
Symptoms in Children with Neurofibromatosis Type 1. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2015, 168, 72–80.
[CrossRef] [PubMed]

34. Mainberger, F.; Langer, S.; Mall, V.; Jung, N.H. Impaired Synaptic Plasticity in RASopathies: A Mini-Review. J. Neural Transm.
2016, 123, 1133–1138. [CrossRef] [PubMed]

35. Zimerman, M.; Wessel, M.J.; Timmermann, J.E.; Granström, S.; Gerloff, C.; Mautner, V.F.; Hummel, F.C. Impairment of Procedural
Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients. EBioMedicine 2015, 2, 1430–1437. [CrossRef]
[PubMed]

36. Brems, H.; Beert, E.; de Ravel, T.; Legius, E. Mechanisms in the Pathogenesis of Malignant Tumours in Neurofibromatosis Type 1.
Lancet Oncol. 2009, 10, 508–515. [CrossRef] [PubMed]

37. Daniel, R.; De Souza, M.R.; Pipek, L.Z.; Fagundes, C.F.; Solla, D.J.F.; Carlos, G.; Godoy, D.A.; Kolias, A.G.; Luis, R.; Amorim, O.;
et al. External Validation of the Glasgow Coma Scale-Pupils in Low- to Middle-Income Country Patients with Traumatic Brain
Injury: Could “ Motor Score-Pupil ” Have Higher Prognostic Value ? Surg. Neurol. Int. 2022, 13, 4–7. [CrossRef]

38. Williams, K.B.; Largaespada, D.A. New Model Systems and the Development of Targeted Therapies for the Treatment of
Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Genes 2020, 11, 477. [CrossRef] [PubMed]

39. Brems, H.; Chmara, M.; Sahbatou, M.; Denayer, E.; Taniguchi, K.; Kato, R.; Somers, R.; Messiaen, L.; De Schepper, S.; Fryns,
J.P.; et al. Germline Loss-of-Function Mutations in SPRED1 Cause a Neurofibromatosis 1-like Phenotype. Nat. Genet. 2007, 39,
1120–1126. [CrossRef] [PubMed]

40. Bergoug, M.; Doudeau, M.; Godin, F.; Mosrin, C.; Vallée, B.; Bénédetti, H. Neurofibromin Structure, Functions and Regulation.
Cells 2020, 9, 2365. [CrossRef]

41. Mo, J.; Moye, S.L.; McKay, R.M.; Le, L.Q. Neurofibromin and Suppression of Tumorigenesis: Beyond the GAP. Oncogene 2022, 41,
1235–1251. [CrossRef] [PubMed]

42. Denayer, E.; Chmara, M.; Brems, H.; Kievit, A.M.; Van Bever, Y.; Van Den Ouweland, A.M.W.; Van Minkelen, R.; De Goede-Bolder,
A.; Oostenbrink, R.; Lakeman, P.; et al. Legius Syndrome in Fourteen Families. Hum. Mutat. 2011, 32, 1985–1998. [CrossRef]
[PubMed]

43. Brems, H.; Pasmant, E.; Van Minkelen, R.; Wimmer, K.; Upadhyaya, M.; Legius, E.; Messiaen, L. Review and Update of SPRED1
Mutations Causing Legius Syndrome. Hum. Mutat. 2012, 33, 1538–1546. [CrossRef] [PubMed]

44. Lorenzo, C.; McCormick, F. SPRED Proteins and Their Roles in Signal Transduction, Development, and Malignancy. Genes Dev.
2020, 34, 1410–1421. [CrossRef]

45. Chłopek, M.; Lasota, J.; Thompson, L.D.R.; Szczepaniak, M.; Kuźniacka, A.; Hińcza, K.; Kubicka, K.; Kaczorowski, M.; Newford,
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