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Abstract: The increasing prevalence of antimicrobial resistance against zoonotic bacteria, including
Streptococcus (S.) suis, highlights the need for new therapeutical strategies, including the reposition-
ing of drugs. In this study, susceptibilities of bacterial isolates were tested toward ten different
3-amidinophenyalanine (Phe(3-Am)) derivatives via determination of minimum inhibitory con-
centration (MIC) values. Some of these protease inhibitors, like compounds MI-432, MI-471, and
MI-476, showed excellent antibacterial effects against S. suis. Their drug interaction potential was
investigated using human liver microsomal cytochrome P450 (CYP450) measurements. In our work,
non-tumorigenic IPEC-J2 cells and primary porcine hepatocytes were infected with S. suis, and the
putative beneficial impact of these inhibitors was investigated on cell viability (Neutral red assay),
on interleukin (IL)-6 levels (ELISA technique), and on redox balance (Amplex red method). The
antibacterial inhibitors prevented S. suis-induced cell death (except MI-432) and decreased proinflam-
matory IL-6 levels. It was also found that MI-432 and MI-476 had antioxidant effects in an intestinal
cell model upon S. suis infection. Concentration-dependent suppression of CYP3A4 function was
found via application of all three inhibitors. In conclusion, our study suggests that the potential
antiviral Phe(3-Am) derivatives with 2′,4′ dichloro-biphenyl moieties can be considered as effective
drug candidates against S. suis infection due to their antibacterial effects.

Keywords: IPEC-J2 cells; Streptococcus suis; oxidative stress; hepatocytes; cytotoxicity; 3-amidinophenyalanine

1. Introduction

In large-scale pig farming, the post-weaning period is most crucial as piglets are
more susceptible to environmental pathogens due to an impaired immune system [1].
Streptococcus suis (S. suis) is one of the most important bacterial species causing dam-
age to swine health and, thus, significant economic loss worldwide [2,3]. Due to its
zoonotic potential, it is still a serious public health concern in many countries [4]. A total of
35 serotypes of S. suis (1–34 and 1/2) were originally classified based on the antigenicity
of the capsular polysaccharide (CPS) [2,5], but recent studies have shown that 6 of these
serotypes (20, 22, 26, and 32–34) belong to different bacterial species [6,7]. Serotype 2 is
most frequently responsible for the development of clinical signs in both humans and
pigs [8]. The bacteria colonize the upper respiratory tract (tonsil, nasopharynx) after birth
and become part of the normal microflora [9]. As a secondary pathogen, it is involved in
the porcine respiratory disease complex due to predisposing factors [10] and, by entering
the bloodstream, it can lead to pneumonia, septicemia, arthritis, and meningitis, the latter
with high mortality [11].
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While in Europe and America, human infections are caused by injuries [8], in Asia,
the disease is caused by the consumption of swine meat following inadequate heat treat-
ment [12]. Therefore, it has been suggested that in addition to oronasal transmission,
intestinal translocation may also play an important role in the spread of infection [13].
Human symptoms also include meningitis, arthritis, and sepsis [14,15], and endocarditis
has been described too [16].

With regard to epithelial damage, S. suis serotypes 2 and 9 possess differently com-
posed CPS, which impacts bacterial adhesion to human colorectal adenocarcinoma cells
(Caco-2) or intestinal porcine epithelial cells-jejunum 2 (IPEC-J2) cells via modulating the
binding affinity of bacteria to host intestinal epithelial cells. Additionally, other variants of
streptococci have been proven to translocate across human Caco-2 cells via the paracellular
route, which is a common route for bacterial pathogens in epithelial cells to penetrate
intestinal mucosa [17]. Other organs, such as the liver, spleen, kidney, or heart, were also
observed to be invaded as S. suis enters the systemic circulation after bacterial penetration
of host mucosal barriers and survival in the blood cells [18,19].

Bacterial infections in pigs are often treated with antibiotics; however, inappropriate
usage of these substances leads to the emergence of resistant strains. During an infection
caused by S. suis, β-lactams are mostly effective in eliminating the pathogen. In recent
studies, including the European VetPath survey between 2005 and 2012 [20], 100% and 97%
of S. suis strains isolated from pigs were found to be sensitive to amoxicillin–clavulanic
acid and ceftiofur, respectively. The low minimum inhibitory concentration values for
amoxicillin and cefquinome also indicate a high susceptibility of the bacterium. In the
same survey, more than 95% of strains were sensitive to enrofloxacin and florfenicol, but
high resistance was detected to tetracycline (only 4% of strains were sensitive) [21]. The
β-lactams, enrofloxacin, and florfenicol remain effective against the majority of S. suis
infections, based on monitoring programs in several European countries [22,23]; however,
there is increasing concern about the detection of fluoroquinolone- and florfenicol-resistant
strains in some areas of Asia [3,24]. In a recent study, susceptibility testing of S. suis strains
obtained in different locations in Thailand displayed widespread resistance to tetracyclines
and macrolides. S. suis obtained from asymptomatic pigs showed only intermediate
susceptibility to gentamicin, penicillin, norfloxacin, and enrofloxacin, indicating an onset
of S. suis antibiotic resistance [25].

The antiviral effects of 3-amidinophenyalanine (Phe(3-Am))-derived inhibitors of host
proteases such as matriptase and transmembrane serine protease 2 (TMPRSS2) are based
on the inhibition of viral fusion with the host cell, which is essential for the replication
and spread of certain influenza and coronaviruses. Host proteases located in the TGN
and/or on the cell surface are responsible for the proteolytic cleavage of the influenza
haemagglutinin precursor (HA0) of influenza virus (H1N1 and H7N9) and spike protein (S)
of Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory
syndrome coronavirus (SARS-CoV) and SARS-CoV-2 [26–32]. The Phe(3-Am)-derived ma-
triptase/TMPRSS2 inhibitors MI-432 and MI-1900 have already been found to be effective
against SARS-CoV-2 in human airway cells synergistically in combination with the furin
inhibitor MI-1851 [30].

Due to the development of antimicrobial resistances (AMRs), there is an increasing
need to discover alternative solutions for replacing antibiotic treatment, which includes
vaccination of sows in the last trimester of pregnancy. It is also possible to produce herd-
specific vaccines. Another alternative option is the repositioning of already authorized
agents and novel drug candidates for various therapeutic indications instead of developing
new antibacterial agents from scratch. Serine, cysteine, and metalloproteases are prevalent
across various pathogenic bacteria. They play a vital function in colonization, attacking
host immune responses, relying on host nutrients for growth, and inducing tissue damage
during infection. Presently, most of the therapeutically used antibiotics primarily target bac-
terial cell wall biosynthesis or interfere with protein synthesis on ribosomes. However, the
widespread resistance to these antibiotics poses a significant medical challenge. Therefore,
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there is an increasing demand for novel or repurposed drugs with diverse mechanisms
of action, leading to the emergence of a new generation of antibiotics that specifically
target bacterial proteolytic enzymes and consequently offer potential solutions to combat
antibiotic resistance effectively. Development of these protease blockers appears to be a
promising approach to address AMR-related ineffective drug therapy [33–35].

In our study, MICs of ten Phe(3-Am) derivatives were determined against eight bacte-
rial strains. To assess drug interaction potential of the inhibitors, changes in activities of
liver microsomal cytochrome P 450 (CYP) isoenzymes such as CYP1A2, CYP2C9, CYP2C19,
CYP2D6, and CYP3D4 were measured. The cytotoxic effects of S. suis alone and the pres-
ence of protease inhibitors with antibacterial efficacy were determined by measuring the
viability of IPEC-J2 cells and primary porcine hepatocytes. Additionally, hydrogen perox-
ide (H2O2) production was monitored extracellularly (EC) after 24 h exposure to IPEC-J2
cells or swine hepatocytes to S. suis alone or with inhibitors. To detect cellular changes in
inflammatory processes induced by S. suis administration, proinflammatory interleukin
(IL)-6 levels were measured in the presence of inhibitors.

2. Materials and Methods
2.1. Chemicals

All chemicals were purchased from Merck (Darmstadt, Germany), including, dimethyl
sulfoxide (DMSO), Neutral Red (NR) dye, IL-6 porcine ELISA, and an Amplex red hydrogen
peroxide assay kit. Mueller–Hinton liquid broth was procured from Biolab Ltd. (Budapest,
Hungary). The Phe(3-Am) derivatives were prepared at the Faculty of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Germany.

2.2. Preparation of Inhibitor Solutions for IPEC-J2, Microsomal, and Hepatocyte Assays

The chemical structures of the protease inhibitors MI-432, MI-471, and MI-476 are
shown in Figure 1, and the structures of the other seven tested Phe(3-Am) derivatives are
provided in Figures 1 and S1. A total of 10 mM of stock solutions in DMSO were prepared
and kept at −20 ◦C. Freshly made working solutions for the inhibitors were prepared prior
to each study. Following incubation of the IPEC-J2 cells, hepatocytes, or microsomes with
the inhibitors at 37 ◦C in a humidified atmosphere of 5% CO2, the solutions underwent
subsequent spectrophotometric (NR, IL-6 ELISA), fluorometric (CYP assays, Amplex red
method), or UPLC/MS-MS procedures (depletion %).
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2.3. MIC Measurements

Bacterial strains used in this study were as follows: S. suis serotype 2 (ATCC 958242)
Staphylococcus (S.) aureus (ATCC 10832), Escherichia (E.) coli (ATCC 11775), Pseudomonas
(P.) aeruginosa (ATCC 27853), Pasteurella (P.) multocida (clinical isolate), Burkholderia (B.)
cepacia (clinical isolate), Salmonella (S.) enterica (clinical isolate), and Enterococcus (E.) faecalis
(clinical isolate). Of the clinical isolates used in this study, P. multocida is of porcine origin, B.
cepacia is of human origin, and S. enterica and E. faecalis are of poultry origin. The bacterial
strains were stored in the Microbiology Laboratory of the University of Veterinary Medicine,
Budapest, at a temperature of −80 ◦C. Bacterial strains were inoculated the day before the
test in 5 mL of Cation-Adjusted Mueller–Hinton Broth (CAMHB) and incubated for 18–24 h
at 37 ◦C. The initial inoculum concentration used for the MIC assay was 5 × 105/mL. All
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wells except the first column of the working plates were filled with 90 µL CAMHB. A
stock solution of inhibitors at 800 µM was then prepared, 180 µL of which was measured
into the first column of plates and used to prepare a 2-based dilution on 96-well plates.
After the 10th column, the tips were discarded with the 90 µL excess solution so that each
column contained 90 µL of solution. Each bacterial strain was tested in a single row on
the working plates. A bacterial suspension diluted to 25× was prepared on an auxiliary
plate for bacterial inoculation by loading 240 µL of TSB per column of plates and adding
10–10 µL of bacterial strain suspension per well. In the next step, the isolated bacterial
strains were inoculated onto the plates. Starting from column 11 (positive control) of the
plates containing dilution row 2, 10 µL of bacterial suspension was added to each well,
working backward. Column 11 served as a positive control (containing only bacterial
suspension and broth), while column 12 served as a negative control (containing only
broth). The microplates were then incubated at 37 ◦C for 18–24 h, and the MIC values were
assessed in comparison to positive controls.

2.4. IPEC-J2 Cell Culture and Cytotoxicity Assay

The IPEC-J2 cell line is unique as it is non-transformed and non-tumorigenic. IPEC-
J2 cells are derived from intestinal enterocytes extracted from the jejunum of neonatal
unsuckled piglets [36]. IPEC-J2 cells were gifted by Dr. Jody Gookin (Department of
Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh,
NC, USA). The cells were propagated in a medium containing Dulbecco’s modified Eagle’s
medium (DMEM) and Ham’s F-12 Nutrient (1:1, DMEM/F12), supplemented with 1%
insulin/selenium/transferrin, 5 ng/mL epidermal growth factor (EGF), 5% fetal bovine
serum, and 1% penicillin–streptomycin. The cells had undergone passage around 50 times.
The potential cytotoxic effects of S. suis (104 CFU/mL), inhibitors (at 50 µM), and their
combinations were evaluated on IPEC-J2 cells seeded on 96-well plates using the 2 h lasting
NR method [37]. This experiment included plain DMEM/F12 medium as a control. At the
end of the final treatments (24 h), the ratio of viable cells was measured by absorbance at
540 nm wavelength with a SpectraMax iD3 microplate reader.

2.5. Cytotoxicity Assays in Hepatocytes

Porcine cryopreserved primary hepatocytes were obtained from Primacyt Cell Culture
Company (Schwerin, Germany). Lonza Group Ltd. (Biocenter Ltd., Szeged, Hungary)
supplied the thawing, plating, and maintenance media. The cytotoxic effects of inhibitors
MI-432, MI-471, and MI-476 were tested on the viability of primary hepatocytes using
the NR method. The hepatocytes were cultivated on a 96-well plate for 24 h, followed
by incubation with the inhibitors at 0, 50, and 100 µM for an additional 24 h. Only
cell maintenance medium was used to incubate the control cells. The plate underwent
incubation together with NR dye for 2 h. Hepatocyte viability was recorded at 540 nm with
a SpectraMax iD3 microplate reader.

2.6. CYP Enzyme Fluorometric Activity Measurements

The Biovision CYP assays (BioVision, Inc., Kampenhout, Belgium) employ non-
fluorescent CYP2D6, 2C9, 2C19, 1A2, or 3A4 substrates able to undergo transformation
into highly fluorescent detectable metabolites. In these experiments, positive controls
such as quinidine (CYP2D6, 3 µM), tienilic acid (CYP2C9, 60 µM), (+)-N-3-benzylnirvanol
(CYP2C19, 30 µM), α-naphthoflavone (CYP1A2, 6 µM), and ketoconazole (CYP3A4, 5 µM)
were selected. Human hepatic microsomal supernatants were prepared (Gibco, Biocen-
tre, Szeged, Hungary protein concentration: 20 mg/mL) separately by mixing 30 µL
with 2425 µL assay buffer and with 50 µL nicotinamide adenine dinucleotide phosphate
(NADPH) generating system (100×). A total of 20 µL of the protease inhibitor solutions
(250 µM for all CYP enzymes except CYP3A4, where 50, 125, and 250 µM have been used)
were added to aliquots of 50 µL microsomal suspensions. Control measurements were
performed in the absence of the inhibitors.
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In negative controls, 20 µL assay buffer and in positive controls, the reference inhibitors
(each 20 µL; α-naphthoflavone, 30 µM, tienilic acid, 300 µM; (+)- N-3-benzylnirvanol,
150µM; ketoconazole, 150 µM, quinidine, 15 µM) were added to the 50 µL microsome-
containing buffer. In background controls, only assay buffer excluding microsomes and
test compounds was used in a volume of 70 µL. Subsequently, after incubation at 37 ◦C for
15 min, 30 µL of the suitable CYP substrate/NADP+ mixture was incorporated into each
well, resulting in a final reaction volume of 100µL/well. The obtained microsomal protein
content was assessed using the bicinchoninic acid protein assay kit (Pierce BCA kit, Thermo
Fisher Scientific, Waltham, MA, USA). In each assay, the microsomal protein concentration
was calibrated to 100 µg/well. The fluorescence intensities were measured with a fluorom-
eter (Victor X2 2030, Perkin Elmer, Waltham, MA, USA) using λex/em = 406/468 nm for
CYP1A2 and for CYP2C19, λex/em = 415/502 nm for CYP2C9, λex/em = 390/468 nm for
CYP2D6, and λex/em = 535/587 nm for CYP3A4 assays. The solvents used (≤0.5%DMSO
and ≤1% acetonitrile (ACN)) on the function of the tested CYP enzymes did not cause
significant inhibition.

2.7. Examination of EC H2O2 Status

For oxidative status measurements, inhibitors MI-432, MI-471, or MI-476 were used at
50 µM in the absence and presence of S. suis for 24 h in IPEC-J2 cells and in primary porcine
hepatocytes on 24-well plates. An Amplex red hydrogen peroxide assay kit was used to
monitor EC hydrogen peroxide (H2O2) production in IPEC-J2 cells and in hepatocytes.
Following the manufacturer’s instructions, cell-free supernatants were collected and mixed
with the Amplex red working solution (in a ratio of 1:1). A Victor X2 2030 fluorometer was
used to detect fluorescence intensity at wavelengths 530 nm and 590 nm for excitation and
emission, respectively.

2.8. Evaluation of Proinflammatory Cytokine IL-6 Expression

After 24 h incubation time, the cell-free supernatants from MI-431, MI-471, and MI-476
exposure were sampled from IPEC-J2 cells and from porcine hepatocytes. The changes in
cytokine levels were detected with porcine IL-6 ELISA kits. The manufacturer’s instructions
were followed to treat the supernatants and measured by a SpectraMax iD3 microplate
reader at 450 nm.

2.9. Statistical Analysis

The statistical evaluation of the data was executed using version 2023 R Core Team.
One-way ANOVA was used to determine differences between groups. Post hoc Tukey was
applied for multiple comparisons. p < 0.05, p < 0.01, and p < 0.001 indicate statistically
significant differences.

3. Results
3.1. Determination of MIC Values of Inhibitors

The test substances (Figure 1 and Figure S1) were not able to inhibit bacterial growth
against P. aeruginosa, E. coli, S. enterica, and E. faecalis (MIC > 800 µM). Only test substances
471 and 476 were able to inhibit the growth of B. cepacia isolates to a moderate extent (MIC
at 400 µM). Against the S. aureus clinical isolate, test substance 432 showed a significant
inhibitory effect at MIC values of 50 µM, whereas test substances 471, 476, and 485 only
moderately inhibited bacterial growth (MIC 100–200 µM), while the other tested substances
had no significant effect on bacterial growth. Inhibitors 432, 471, and 476 had a significant
inhibitory effect on P. multocida clinical isolates at MIC values of 50 µM, while test substances
472 and 477 only moderately inhibited bacterial growth (MIC at 400 µM), and the other test
substances did not significantly affect bacterial growth. The highest efficacy of the screened
inhibitors was observed against S. suis, where test substances 432, 471, and 476 inhibited
bacterial growth at 1.5 µM, 3 µM, and 6 µM, respectively. The results are summarized
in Table 1.
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Table 1. Efficacy of the tested substances against different bacterial isolates. The green color indicates
sensitive isolates, the yellow color shows moderately sensitive isolates, and the red color refers to
isolates resistant to each applied inhibitor.

Strains Sources
MIC (µM) of Phe(3-Am)-Derived Protease Inhibitors

432 463 471 472 476 477 485 490 1903 1904
P. aeruginosa ATCC . >800 >800 >800 >800 >800 >800 >800 >800 >800

E. coli ATCC >800 >800 >800 >800 >800 >800 >800 >800 >800 >800
S. enterica 204/22 >800 >800 >800 >800 >800 >800 >800 >800 >800 >800

P. multocida 380/22 50 >800 50 400 50 400 >800 800 800 800
S. aureus ATCC 50 >800 100 800 100 800 200 800 800 800

S. suis 672/22 <1.5625 >800 3.125 50 6.25 50 50 400 200 200
B. cepacia 20-10299 800 >800 400 800 400 800 800 800 800 400
E. fecalis 442 >800 >800 >800 >800 >800 >800 >800 >800 >800 >800

3.2. Influence on Human CYP3A4, 1A2, 2D6, 2C9, and 2C19 Activities

The following experiments have been only conducted with the three inhibitors MI-432,
-471, and -476, which showed the highest antibacterial effects against S. suis. Inhibitor
concentrations of 10 µM, 25 µM, and 50 µM were added to human microsomal prepara-
tions for 15 min, using ketoconazole as a CYP3A4 reference inhibitor. It was observed
that CYP3A4 isoenzyme activities were mitigated by the addition of inhibitors at 10 µM
(p < 0.0001), 25 µM (p < 0.0001), and 50 µM (p < 0.0001), as seen in Figure 2.
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Figure 2. The effect of the protease inhibitors at 10 µM, 25 µM, and 50 µM on human hepatic
microsomal CYP3A4 isoenzyme function. The microsomal preparations were treated by the inhibitors
for 15 min at 37 ◦C. The reference inhibitor ketoconazole (INH) was used at a concentration of
5 µM and significantly suppressed CYP3A4 activities in humans (*** p < 0.001). The expressed data
are the mean relative fluorescence intensities (RFUs) shown as a percentage of the untreated control
fluorescence values ± SD (n = 3); *** signifies p < 0.001 compared to controls.

Similar results are shown in Figure 3, where the same inhibitors were added at 50 µM
to human microsomal preparations for 15 min using α-naphthoflavone, quinidine, tienilic
acid, and N-3-benzylnirvanol as reference inhibitors for measurements with CYP1A, 2D6,
2C9, and 2C19, respectively. Together, all four CYP isoenzyme activities were not mitigated
by the addition of these inhibitors (p > 0.05).
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Figure 3. The effect of the protease inhibitors at 50 µM on human hepatic microsomal CYP1A2 (A),
2D6 (B), 2C9 (C), and 2C19 (D) isoenzyme activities. The microsomal preparations were treated by the
inhibitors for 15 min at 37 ◦C. The reference inhibitor α-naphthoflavone (α-NF) used at a concentration
of 6 µM significantly suppressed CYP1A2 activities in humans (*** p < 0.001); however, neither of the
protease inhibitors at 50 µM changed CYP1A2 activity. The reference inhibitor, quinidine, used at
3 µM, significantly suppressed CYP2D6 activities (* p < 0.05). Furthermore, the reference inhibitors
tienilic acid (TA) at 60µM and (+)-N-3 benzylnirvanol (BN) at 30µM significantly suppressed CYP2C9
and CYP2C19 function (*** p < 0.001). The expressed data are the mean relative fluorescence intensities
(RFUs) shown as a percentage of the untreated control fluorescence values ± SD (n = 3–4); * signifies
p < 0.05, and *** signifies p < 0.001 compared to controls.

3.3. Cell Viability Assay

Prior to 2 h of incubation with Neutral red dye, the viability of IPEC-J2 cells exposed
to S. suis for 24 h in the absence or in the presence of inhibitors was measured (Figure 4A).
S. suis (104 CFU/mL) increased the death rate of the cells (p = 0.00248), and in combination
with inhibitor MI-432 (50 µM), a slightly less worsening of the cells can be seen (p = 0.00436).
However, S. suis did not show any negative effect on cell viability together with inhibitors
MI-471 and MI-476 at 50 µM after 24 h treatment (p > 0.05). It was also ascertained that all
three inhibitors alone at 50 µM for 24 h did not cause significant cell death (p > 0.05). It was
also seen in Figure 4B that S.suis significantly decreased cell viability in porcine hepatocytes
(p < 0.001) even in combination with inhibitor MI-432 (p < 0.001). In contrast, S.suis did not
deteriorate cell viability in primary porcine hepatocytes when combined with inhibitors
MI-471 and MI-476 at 50 µM (p > 0.05). It was also discovered that all three inhibitors alone
at 50 µM for 24 h did not result in significant damage to porcine hepatocytes (p > 0.05).
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Figure 4. Determination of cell viability in IPEC-J2 cells (A) and swine hepatocytes (B). Changes in
cell viability determined by absorbance measurements after 24 h of administration of 104 CFU/mL S.
suis, (MI-)432, (MI-)471, and (MI-)476 at 50 µM and their combinations. Data are represented as cell
viability % expressed in control % with standard errors of mean (SEM), n = 3–4 samples per group.
** indicates p < 0.01 and *** signifies p < 0.001 compared to controls.

3.4. Determination of EC ROS Status

A significant increase in EC H2O2 secretion in IPEC-J2 cells exposed to S. suis
(104 CFU/mL) alone or in combination with inhibitor MI-471 (*** p < 0.001) can be seen
in Figure 5A. However, IPEC-J2 treated with S. suis together with inhibitors MI-432 and
MI-476 at 50 µM after 24 h treatment had unchanged H2O2 production (p > 0.05), similar to
inhibitors MI-432, MI-471, or MI-476 alone (p > 0.05). In Figure 5B, hepatocytes treated with
S. suis (104 CFU/mL) alone and in combination with all inhibitors significantly elevated
EC H2O2 levels (** p < 0.01 in each treatment). However, hepatocytes treated with the
inhibitors alone showed no change in redox balance (p > 0.05).
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Figure 5. Measurement of EC H2O2 production after treatment with S. suis (104 CFU/mL) alone
or in combination with the indicated inhibitors (MI-)432, (MI-)471, and (MI-)476 at a concentration
of 50 µM in IPEC-J2 cells (A) and in hepatocytes (B) using the Amplex red method. The EC H2O2

levels were determined by measurements of the relative fluorescence intensities compared to the
control (100%) with standard errors of mean (SEM), n = 3 samples per group. ** signifies p < 0.01, and
*** signifies p < 0.001 compared to controls.

3.5. Changes in Proinflammatory Cytokine IL-6 Expression

Figure 6A shows an elevated IL-6 production in cell-free supernatants of IPEC-J2
cells exposed to S. suis (104 CFU/mL) alone (*** p < 0.001). All inhibitors alone and in
combination with S. suis for 24 h did not significantly raise IL-6 levels (p > 0.05). Similarly,
as seen in Figure 6B, IL-6 production was increased in hepatocytes to a greater extent after
exposure to S. suis alone (* p < 0.05). In contrast, no elevation was seen in IL-6 levels in
hepatocytes after exposure to S. suis in combination with all three inhibitors (p > 0.05) or
with the inhibitors alone (p > 0.05).
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Figure 6. Measurement of interleukin-6 production after 24 h treatment with S. suis (104 CFU/mL)
alone or in combination with the indicated inhibitors (MI-)432, (MI-)471, and (MI-)476 or with the
inhibitors alone in IPEC-J2 cells (A) and in hepatocytes (B). Data are represented as IL-6 levels %
expressed in control with standard errors of mean (SEM), n = 3–4 samples per group. * signifies
p < 0.05 and *** indicates p < 0.001 compared to controls.

4. Discussion

S. suis is a worldwide zoonotic pathogen and still poses a major public health risk
in many countries [3,11]. Treatment is primarily based on β-lactams, which have been
shown to be still effective [21]. However, there is concern about the increasing emergence
of strains resistant to florfenicol and enrofloxacin, an AMEG B category antibiotic, due
to inappropriate antibiotic use [3,24,25] in some countries. Among the bacterial isolates
screened, P. aeruginosa, E. coli, S. enterica, and E. faecalis could not be inhibited by the test
substances, even at very high, nearly millimolar concentrations. In the case of B. cepacia,
a minor antibacterial activity was only observed at high concentrations (400 µM) of the
test substances MI-471, MI-476, and MI-1904, and against P. multocida and S. aureus, some
inhibitory activity was found at lower concentrations (50 µM) for several test substances.
The most pronounced suppression was obtained with six test compounds against S. suis,
which showed antibacterial activity even at concentrations of 50 µM or lower. The lowest
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MICs were found in the presence of agents MI-432, MI-471, and MI-476. However, further
in vivo studies are needed to evaluate the antibacterial effect in animal models.

All compounds that are currently examined can be described as sulfonylated tertiary
amides of the unnatural amino acid Phe(3-Am). The N terminus of the Phe(3-Am) is
coupled with a 2′,4′ disubstituted (either dichloro- or dimethoxy) 3-sulphonyl-biphenyl
moiety, while its carboxyl group is amidated with various piperidine derivatives containing
either a terminal free amino or an ureido group. The benzamidine moiety in the side chain
of Phe(3-Am) is a strongly basic group, and the best antibacterial effects were found for
dibasic compounds, which contain an additional amino group on the piperidine moiety.
In contrast, a negligible antibacterial effect was observed for compound MI-490, although
it is also a dibasic inhibitor containing its second basic group in a different position at
the N-terminal biphenyl moiety. Furthermore, all of the most effective compounds (MIC
values against S. suis: MI-432, <1.5625 µM; MI-471, 3.125 µM; MI-476, 6.25 µM) contain
an N-terminal 2′,4′ disubstituted biphenyl moiety. Notably, the 2′,4′-dichloro-substituted
compounds have a stronger antibacterial activity compared with the otherwise structurally
similar 2′,4′-dimethoxy-substituted derivatives, and the latter compounds had to be used
at significantly larger concentrations. In addition, no measurable antibacterial effect against
any of the tested strains was found for the monobasic compound MI-463, which contains a
very bulky cyclohexyl-substituted C-terminal ureido group.

The inhibitory effects on CYP activities were determined in human liver microsomes
to assess the potential drug interaction of the applied inhibitors. No significant inhibitory
effects of compounds MI-432, MI-471, and MI-476 were found on CYP1A2, CYP2C9,
CYP2C19, and CYP2D6 activities. In contrast, a previous study has shown a significant
inhibition of monkey CYP1A2 enzymes after the administration of inhibitor MI-432 [38],
suggesting species-dependent differences in the CYP-modulating function of the com-
pounds. Otherwise, inhibitors MI-432, MI-471, and MI-476 significantly mitigated CYP3A4
activity corresponding to previous findings, whereas other Phe(3-Am) derivatives demon-
strated similar inhibitory effects on CYP3A4 function [39].

IPEC-J2 cells have been proven to be an appropriate model for investigating intestinal
functions. The suitability of IPEC-J2 cells is based on their sufficient properties for bacterial
adhesion and cellular entrance [40]. Not only are these features present, but the superiority
of IPEC-J2 cells in this study over other typically used intestinal cell lines such as HT-
29, Caco-2, or T84 can also be explained by considering their carcinogenicity. These cell
lines, which are derived from different types of carcinomas found in the colon, may have
characteristics that are non-physiological. The relative lack of responsiveness to cytokines,
as well as the adapted glycosylation pattern or deviating protein expression, lead to the
preferred use of IPEC-J2 over the cancerous cell types [41]. The primary porcine hepatocytes
used in this study better mimic physiological in vivo conditions because they are not
derived from a hepatoma, as is the case with commonly used cell lines such as HepG2.
Although human liver cancer cells have some benefits, like a long lifespan and a stable
phenotype, they are not reliable for most drug-metabolizing enzymes and hepatotoxicity
studies due to their limited expression [42].

Examining the effect of S. suis on IPEC-J2 is important not only in the veterinary
field to improve gut health in pigs for higher production rates but also because of its
similarity to the human epithelium, which provides insight into its effect on the human
gut [43]. The porcine IPEC-J2 cell line has been widely used in microbiological experiments
to model the interactions between various pathogens and the jejunum. Several cell studies
involving the infection of intestinal epithelial cells with Enterobacteriaceae such as S.
enterica and pathogenic E. coli have been published recently [44,45]. Inflammatory cytokine
IL-8 and tumor necrosis factor (TNF)-α levels of porcine enterocytes treated with Lawsonia
intracellularis alone or in the presence of S. enterica serovar Typhimurium were elevated
significantly, and synergistic effects were observed in case of co-infection [46].

In our studies, IPEC-J2 and primary pig hepatocytes were used as cell-based models
to study the (sub)cellular changes induced by S. suis infection and to monitor the potential



Biomedicines 2024, 12, 783 12 of 16

beneficial effects of the repurposed antiviral drug candidates. To the best of our knowledge,
this study was the first to measure the effect of this type of matriptase/TMPRSS2 inhibitor
on the cell viability and redox status of IPEC-J2 cells and primary porcine hepatocytes in
the presence of S. suis. It was shown that treatment with S. suis at 104 CFU/mL for 24 h had
a negative effect on the cell viability of IPEC-J2 cells and hepatocytes. In the cell viability
assay, a reduction in the number of viable cells in both IPEC-J2 cells and hepatocytes was
also observed after treatment with S. suis in combination with inhibitor MI-432. In contrast,
the cytotoxic impact of S. suis was effectively suppressed via concomitant administration
of compounds MI-471 and MI-476 in both cell models.

Previous studies have shown deviations in certain interleukin levels after treatment
with Enterobacteriaceae. However, all proinflammatory cytokines can be indicators of
inflammatory processes if they are elevated above physiological values. The focus of
this study was on the measurement of IL-6 levels, which are primarily responsible for
inducing acute phase proteins [47]. Both IPEC-J2 and primary pig hepatocytes are capable
of cytokine production [40,44,47], and they showed significant increases in IL-6 levels after
S. suis treatment after 24 h. Interestingly, together with an inhibitor treatment, the IL-6 levels
were no longer significantly increased, which is beneficial because elevated IL-6 serum
levels can be considered as a precursor for serious hepatic diseases, such as hepatocellular
carcinoma [47]. In summary, significant anti-inflammatory effects were found in cell-based
models challenged with S. suis upon administration of MI-432, MI-471, and MI-476.

The two cell lines used in this study are also suitable for measuring oxidative stress
levels since they are both exposed to high levels of reactive oxygen species (ROS) under
physiological conditions. Issues arise when the ROS exceeds antioxidant capacity, called
oxidative stress, and processes such as lipid peroxidation or protein damage occur, ulti-
mately leading to cell death [48,49]. The IPEC-J2 experiment revealed a significant elevation
in H2O2 levels when S. suis was used alone and when bacterial exposure was combined
with MI-471. This phenomenon requires further investigation. In contrast, compounds
MI-432 and MI-476 could exert antioxidant properties in S. suis infection. The hepatocytes
exhibited significantly increased H2O2 values when infected with S. suis, which could not
be reduced significantly by adding the inhibitors. Treatment with the inhibitors alone did
not result in an elevated H2O2 level, indicating that they can be safely used alone without
causing redox imbalance.

Inhibition of the proteolytic cleavage of the surface glycoprotein haemagglutinin
prevents the influenza virus from entering the cell, thereby preventing replication and
infection [30,31]. Even though this concept has mainly been optimized in the context of
influenza virus replication inhibition, applying this mechanism to SARS-CoV-2 could offer
a potential treatment strategy against COVID-19. It is essential to inhibit the proteolytic
cleavage at the S2′ site of the spike protein, which is a substrate for TMPRSS2 and is
located on the surface of the virus itself. TMPRSS2 appears to be the most important
transmembrane serine protease associated with coronavirus replication. By preventing
the direct fusion of the virus with the host cell membrane, the inhibitor would provide
concentration-dependent inhibition of virus replication. So far, these mechanisms have
been successfully demonstrated mainly in Calu-3 cells [30,31].

Proteolytic enzymatic activities have been considered important virulence factors in
host–pathogen interaction. Several types of proteases were identified and characterized as
produced by S. suis, including cell-associated and EC Arg-aminopeptidase, chymotrypsin-
like and caseinase activities of serine- and metalloprotease classes, and DPP IV [50]. Re-
cently, there have been emerging findings that cysteine protease ApdS from S. suis takes
part in the cleavage of the antimicrobial peptide cathelicidin LL-37; thus, bacteria can evade
LL-37-triggered immune processes [51]. In addition, a novel specific complement evasion
factor, prokaryotic immunoglobulin M protease in S. suis, is also involved in adaptive
immune response [52]. Until now, the antibacterial effects of Phe(3-Am) derivatives have
not been described in S. suis-caused infection. Only structurally similar synthetic inhibitors
of benzamidine type were proven to have inhibitory effects on cysteine proteinases on
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the virulence of Porphyromonas gingivalis strains [53]. Further studies should, however, be
conducted to determine the modulatory function of the applied Phe(3-Am) inhibitors on
certain proteases necessary for bacterial invasion.

The concept of drug repurposing, also known as drug repositioning, is a special area
of research that aims to develop specific drugs for new or variations of diseases in a faster
manner. Shortening the duration of development and reducing costs for repurposed drugs
is also facilitated by the presence of basic knowledge about the potential adverse effects
of these compounds. Other examples include drugs that have not reached the market
yet for their intended purpose but have been found to possess additional functions that
enable their use against other targets. On this basis, the potential for drug repurposing is
extensive [54,55]. In this study, the antibacterial effects of three inhibitors against matriptase
and/or TMPRSS2 were confirmed against S. suis at low micromolar concentrations. A drug
repurposing of already existing serine protease inhibitors could be a suitable strategy to
speed up the process of providing sufficient treatment options against resistant bacterial
strains instead of overusing critically important antibiotics.

5. Conclusions

Due to the zoonotic potential of S. suis and the development of AMR because of fre-
quent antibiotics usage, the repurposing of authorized drugs and drug candidates has been
of key interest worldwide. In our work, several Phe(3-Am)-derived matriptase/TMPRSS2
inhibitors were screened for their antibacterial properties in vitro. It was demonstrated
that inhibitors MI-471 and MI-476 possess a significant antibacterial efficacy against S.
suis infections without affecting the cell viability and exhibiting anti-inflammatory prop-
erties. For inhibitors MI-432 and MI-476, an antioxidant effect in intestinal epithelial cells
upon S. suis infection was found. Conductance of in vivo studies in the future could fur-
ther reflect the efficacy and potency of the antimicrobial Phe(3-Am) derivatives with 2′,4′

dichloro-biphenyl moieties against S. suis infection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12040783/s1, Figure S1: Matriptase/TMPRSS2
inhibitors applied in this study besides MI-432, MI-471, and MI-476 [32,56]. The chemical structures
of the additionally used inhibitors for MIC studies are provided in Figure S1.
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