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Abstract: Community-acquired pneumonia is reported as one of the infectious diseases that leads
to the development of acute respiratory distress syndrome. The innate immune system is the first
line of defence against microbial invasion; however, its dysregulation during infection, resulting
in an increased pathogen load, stimulates the over-secretion of chemokines and pro-inflammatory
cytokines. This phenomenon causes damage to the epithelial–endothelial barrier of the pulmonary
alveoli and the leakage of the intravascular protein into the alveolar lumen. Fluoroquinolones
are synthetic antimicrobial agents with immunomodulatory properties that can inhibit bacterial
proliferation as well as exhibit anti-inflammatory activities. It has been demonstrated that the
structure of fluoroquinolones, particularly those with a cyclopropyl group, exerts immunomodulatory
effects. Its capability to inhibit phosphodiesterase activity leads to the accumulation of intracellular
cAMP, which subsequently enhances PKA activity, resulting in the inhibition of transcriptional
factor NF-κB and the activation of CREB. Another mechanism reported is the inhibition of TLR and
ERK signalling pathways. Although the sequence of events has not been completely understood,
significant progress has been made in comprehending the specific mechanisms underlying the
immunomodulatory effects of fluoroquinolones. Here, we review the indirect immunomodulatory
effects of FQs as an alternative to empirical therapy in patients diagnosed with community-acquired
pneumonia.

Keywords: immunomodulatory; fluoroquinolones; community-acquired pneumonia; acute respira-
tory distress syndrome

1. Introduction

Community-acquired pneumonia (CAP) is one of the most common infectious dis-
eases, contributing significantly to reported rates of mortality and morbidity around the
world [1,2]. Pathogens that cause CAP are classified into two types: ‘typical’ agents,
including Gram-positive organisms (such as Streptococcus pneumoniae, Staphylococcus au-
reus, Haemophilus influenza. Group A Streptococcus spp.; anaerobes), and Gram-negative
organisms (such as Klebsiella pneumoniae, Streptococcus pyogenes, Pseudomonas aeruginosa,
Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia); ‘atypical’ agents
include Legionella pneumophila, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Chlamy-
dophila psittaci, influenza viruses (A, B), severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), and other respiratory viruses [3–5]. Co-infection with bacteria is a frequent
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phenomenon observed in respiratory viral infections, leading to an elevation in both mor-
bidity and mortality rates [6,7]. Co-infection, also commonly referred to as “superinfection”,
is frequently found during the pandemic of viruses [8–10].

Complications may arise as a result of pneumonia, leading to the development of
acute lung injury (ALI)/acute respiratory distress syndrome (ARDS): a condition that is
associated with significant rates of morbidity and mortality [11,12]. Pneumonia and sepsis
are globally recognised as the main risk factor (~75% of cases) for ARDS [13]. A quantitative
model study generated data from 13 countries across the world and concluded that ~22.15%
of pneumonia patients developed ARDS [14].

The innate immune system serves as the first barrier of defence in the host’s response to
pathogens by identifying their pathogen-associated molecular patterns (PAMPs) or microbe-
associated molecular patterns (MAMPs). However, during infection, the innate immune
response experiences dysregulation, aggravating the severity of illness by increasing the
pathogen load as the consequence of inefficient pathogen clearance or irreversibly damaging
the organs of patients with sepsis, who subsequently may die as a result of multi-organ
failure [15,16]. The innate immune response specific to a particular organ determines the
infection severity. The lungs exhibit a robust innate immune response during localised lung
infections associated with severe ALI or ARDS, which significantly influences the outcome
of the disease [15,17].

The administration of anti-inflammatory agents such as steroids to patients with CAP
(with or without shock) remains controversial, although many studies have demonstrated
a significant decrease in hospitalisation duration and time to reach clinical stability [18–21].
Patients with significant inflammatory responses, such as those with a high level of c-
reactive proteins (CRPs), may constitute a subset of severe CAP patients who benefit from
such corticosteroid therapy, according to accumulated published data [19]. While many
studies suggest the benefit of steroids, one study showed increased mortality [22]. Another
study also suggested that corticosteroid treatment did not improve survival in CAP patients,
while nosocomial infections were increased [23].

Fluoroquinolones (FQs) are a class of synthetic antimicrobial agents that inhibit DNA
synthesis by targeting DNA gyrase and topoisomerase IV enzymes [24]. One of FQ’s
properties are its broad spectrum; therefore, these compounds are highly active in com-
bating Gram-positive and Gram-negative bacteria, and even anaerobes, mycobacteria and
atypical pathogens [24–27]. Besides the above-mentioned properties, these drugs have
been reported to exert anti-oxidative effects both in vitro and in vivo [28,29]. In addition,
FQs is also reported to block pro-inflammatory cytokines and chemokines, leading to the
disruption of neutrophil chemotaxis [25]. According to the most recent guidelines and the
literature available, FQs have been accurately proven to exert immunomodulatory effects,
which are clinically advantageous for the treatment of CAP. Immunomodulatory effects in
FQs have been described as beneficial to reducing lung damage due to bacterial, viral, and
fungal infections in animal models [27,29–33].

The main obstacle to improving the outcome of CAP is the excessive pro-inflammatory
response [34]. Several therapeutic options have been tested to improve the outcome of CAP
using different strategies. FQs have immunomodulatory effects beyond their antibacterial
effects that might be beneficial for patients with CAP. Hence, the present review article
focuses on the indirect immunomodulatory effects of FQs, in addition to their direct
antibacterial effects, which have been utilised as an alternative to empirical therapy in
patients diagnosed with CAP.

2. Immunopathogenesis of Pneumonia-Associated ALI/ARDS

ALI/ARDS is a condition that results from heterogeneous aetiologies, with bacterial
pneumonia being the dominant cause [11,35]. The disruption in the blood–air barrier due
to the infiltration of innate immune cells, the release of inflammatory mediators, and other
injury pathways leads to further lung damage and the influx of protein-rich pulmonary
oedema [25,36].
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Bacteria, both Gram-positive and Gram-negative, viruses, and fungi have uniform
molecular patterns known as PAMPs, which are identified by pattern recognition receptors
(PRRs) on the surface of the organism’s immune cells, one of which is Toll-like receptor
(TLR), before finally binding to them [17,37]. Following the successful entrance of bacteria
to the lower airway, bacteria interact with macrophages—PRRs—of the pulmonary innate
immune system via their cell walls and intracellular components (lipoteichoic acid, pepti-
doglycan, nucleic acids, pneumolysin, and other pore-forming toxins), and consequently,
transcription factors, such as nuclear factor κappa-B (NF-κB) are activated [17,25,38].

NF-κB represents a family of five transcription factors that play crucial roles in various
biological processes that support aspects of differentiation and development, immune
response modulation, cell growth, proliferation, apoptosis, and phenotypic outcomes
associated with inflammation [39,40]. Notably conserved in all mammalian cells, NF-
κB plays a pivotal role in the transcription of genes encoding numerous cytokines and
chemokines, including those with pro-inflammatory properties [41]. NF-κB is bound to the
inhibitory protein, inhibitory κappa B (IκB), and retained in the cytoplasm of the resting,
non-stimulated cell. NF-κB proteins are commonly activated and released in response
to various extracellular ligands, including agents that induce a DNA damage response
(DDR), leading to the translocation of DNA-binding protein dimers to the nucleus after
dissociating from IκB molecules [39,40,42].

Signal transduction pathways triggered by cell stimulation with multiple agonists
initiate the activation of IκB kinases (IKK). IKK induces the phosphorylation of IκB, which is
subsequently followed by a rapid degradation of the IκB proteins, leading to the liberation
of NF-κB. Consequently, NF-κB translocates into the nucleus, where it binds to DNA
and initiates the process of transcriptional activation [43]. The nuclear translocation of
the activated transcription factor triggers the induction of genes encoding various pro-
inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-8, IL-17, IL-18, tumour necrosis factor
(TNF)) and chemokines (CCL8, monocyte chemotactic protein 1 (MCP-1), macrophage
inflammatory protein 1α (MIP-1α)) [38,44]. High levels of cytokines and chemokines in
plasma and bronchoalveolar lavage (BAL) fluids are related to poor clinical outcomes in
ARDS, including a high mortality rate [44,45]. A study observing ARDS patients showed
that Staphylococcus, Streptococcus, and Enterobacteriaceae were identified as the specific
bacteria associated with elevated levels of IL-6 in non-surviving patients with ARDS.
Streptococcus secretes pneumolysin and MUC5B, both of which have been found to be
closely associated with lung cell fibrosis and lung inflammation [46].

The activation of protein-1 (AP-1) is observed to have a role in ALI/ARDS patho-
genesis by trans-activating pro-inflammatory cytokines and other genes that lead to lung
damage [47]. In response to various stimuli, TLR4 induces and recruits intracellular adaptor
proteins, resulting in a signalling cascade that involves similar signalling molecules to
NF-κB signalling on the TLR4/TRAF6 axis [48,49]. TRAF6 activates TAK1 (transforming
growth factor-activated kinase 1) and subsequently initiates a MAPK (mitogen-activated
protein kinase) cascade that includes ERK (extracellular signal-regulated kinases), JNK
(c-Jun N-terminal kinases), and p38, leading to the activation and nuclear translocation
of AP-1. The activated AP-1 interacts with the promoters of pro-inflammatory cytokines,
increasing their expression [47,48].

p38MAPK, an essential signalling protein, has been established in the literature to play
a major pro-inflammatory role in the development of ARDS at both the transcriptional and
post-transcriptional levels. Evidence has suggested that the activation of p38MAPK plays a
critical role in the synthesis of inflammatory cytokines [50]. Among its four isoforms, p38α
MAPK was the first to be identified for its function in the regulation of pro-inflammatory
cytokines. IL-8 and IL-6 production in response to IL-1 and TNF-α, respectively, were then
associated with p38α MAPK. As the initiation factors, IL-1β and TNF-α have the ability to
directly injure vascular endothelial cells as well as activate a series of effector cells [51].
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Following damage-associated molecular pattern molecules (DAMPs) or alarmins de-
rived from the host, which further bind with TLR on the lung epithelium and alveolar
macrophages, the polarisation of alveolar macrophages (AMs), neutrophil extracellular
trap (NET)osis, the pro-inflammatory response exhibited by T helper 17 subsets, and the
anti-inflammatory and regenerative functions performed by T regulatory cell subsets oc-
cur [52–54]. During infections, DAMPs and PAMPs synergistically stimulate the synthesis
and secretion of pro-inflammatory cytokines and chemokines, as well as induce cell dif-
ferentiation and cell death [52,53]. Pro-inflammatory cytokines have double effects on the
host defence mechanisms; on the one hand, they promote the activation of adaptive immu-
nity that releases multiple mediators such as prostaglandins, leukotrienes, and proteases;
however, on the other hand, they induce direct and indirect injury to the microvasculature
of the host [37].

The secreted pro-inflammatory cytokines stimulate the activation of localised vascu-
lar endothelia cells; while the release of chemo-attractants attracts more monocytes and
neutrophils, as well as the exudation of pro-inflammatory complement proteins and acute-
phase reactants [38]. The recruitment of neutrophils is a defining feature of ARDS and is
considered to play a critical role in the course of the disease [55]. When the neutrophils
migrate to the epithelium, these cells elicit toxic mediators, including proteases, nitric
oxide (NO), reactive oxygen species (ROS) and NET, which are essential host defence
mechanisms [32,56]. Neutrophils release extracellular fibres, myeloperoxidase, DNA, and
neutrophil elastase into the extracellular environment during pathogen invasion as a de-
fensive mechanism, referred to as NETosis, to create a network for microbe entrapment.
However, excessive neutrophil activation and unbalanced inflammatory responses may
result in further tissue damage, including endothelial and epithelial damage, which may
subsequently lead to an elevation in the permeability of these cells [55].

The increase in endothelial and epithelial permeability enables the transmigration
of leucocytes and ultimately results in the influx of oedematous fluid and red blood cells
(RBCs). RBCs produce cell-free haemoglobin, which aggravates damage through oxidant-
dependent pathways. The airspace is filled with oedematous fluid, subsequently resulting
in impaired gas exchange and profound hypoxemia. Vascular injury and alveolar oedema
also participate in the decrease in CO2’s excretion ability (hypercapnia), causing an increase
in pulmonary dead space in ARDS. Furthermore, hypoxaemia and hypercapnia reduce
alveolar oedema clearance by impairing vectorial sodium transport [45,55].

Figure 1 illustrates the immunopathogenesis of ARDS (black arrow).
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stimulation of the macrophage TLR receptor rapidly activates not only the NF-κB pathway but also 
the ERK pathway. The TLR-activated ERK pathway regulates AP-1 transcriptional activity. The nu-
clear translocation of the activated transcription factor (NF-κB and AP-1) triggers the induction of 
genes encoding various pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, etc.)/chemokines (MCP-1, 
MIP-α, etc.) which stimulate the transepithelial migration of neutrophils, oxidative damage, and 
increases in NO and ROS. All of these mechanisms result in a cytokine storm and then subsequently 
lead to ARDS. Pro-inflammatory cytokines and environmental stress cause p38MAPK activation, 
which plays a role in the regulation of the transcriptional activity of NF-κB. (red arrow) Fluoroquin-
olones exert their immunomodulatory activity by inhibiting the TLR and ERK signalling pathways. 
FQs also inhibit the activity of phosphodiesterase activity and result in the accumulation of intra-
cellular levels of cAMP. The accumulation of cAMP levels leads to an augmentation in the activity 
of PKA, which is known to inhibit the transcription factor of NF-κB, thereby inhibiting further lung 
damage by reducing pro-inflammatory cytokines and chemokine production, neutrophil influx, ox-
idative damage, as well as NO and ROS. In addition, PKA, in turn, activate CREB as a primary 
regulator of anti-inflammatory and immune response. We created this figure using the BioRender 
online app and license. 
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Figure 1. (Black arrow) PAMPs of microorganisms and DAMPs released by the infected or injured
cells interact with PRRs on the surface of the organism’s immune cells, one of which is TLR. The
stimulation of the macrophage TLR receptor rapidly activates not only the NF-κB pathway but also the
ERK pathway. The TLR-activated ERK pathway regulates AP-1 transcriptional activity. The nuclear
translocation of the activated transcription factor (NF-κB and AP-1) triggers the induction of genes
encoding various pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, etc.)/chemokines (MCP-1, MIP-α,
etc.) which stimulate the transepithelial migration of neutrophils, oxidative damage, and increases
in NO and ROS. All of these mechanisms result in a cytokine storm and then subsequently lead to
ARDS. Pro-inflammatory cytokines and environmental stress cause p38MAPK activation, which
plays a role in the regulation of the transcriptional activity of NF-κB. (red arrow) Fluoroquinolones
exert their immunomodulatory activity by inhibiting the TLR and ERK signalling pathways. FQs
also inhibit the activity of phosphodiesterase activity and result in the accumulation of intracellular
levels of cAMP. The accumulation of cAMP levels leads to an augmentation in the activity of PKA,
which is known to inhibit the transcription factor of NF-κB, thereby inhibiting further lung damage
by reducing pro-inflammatory cytokines and chemokine production, neutrophil influx, oxidative
damage, as well as NO and ROS. In addition, PKA, in turn, activate CREB as a primary regulator of
anti-inflammatory and immune response. We created this figure using the BioRender online app and
license.

3. Specific Features of Quinolone Molecules Related to Immunomodulatory Effects

Quinolone is a class of antibiotics with a bicyclic structure derived from the 4-quinolone
compound [57]. The carboxylic acid group at position 3 and the carbonyl at position 4
appear to have a significant role in determining the activity of quinolones. In addition,
bulky substituents on one face of the bicyclic core are permitted, specifically at positions 1
and 7 and/or 8, and they are likely important in determining the spectrum of quinolone an-
tibiotics. Regarding these substituents, most quinolones can be classified into three primary



Biomedicines 2024, 12, 761 6 of 20

types based on their sidechains: piperazinyl-, pyrrolidinyl-, and piperidinyl-types [58]. A
class of 6-fluoro-7-piperazinyl-4-quinolones, or fluoroquinolones, are synthetic antimicro-
bial agents that have a wide range of activity. These agents are derived from quinolones
and have a fluorine atom attached to the central ring [59].

FQs have indirect antibacterial effects in addition to their intrinsic antibacterial activity,
which may be due to their immunomodulatory activity [41]. Based on their pharmacoki-
netic profile and antimicrobial activity, fluoroquinolones are classified into four generations.
Nalidixic acid was the first within the quinolone class that was discovered to have antibac-
terial activity. The first generation of quinolones was retracted from the market shortly
after their introduction. Besides nalidixic acid, the first generation included cinoxacin [60].
The second generation of quinolones began with the formation of fluoroquinolones by
fluoridating the quinolone molecule at position C6, which enhanced the compounds’ ac-
tivity against Gram-negative bacteria. The addition of a cyclopropyl group at position R1
further improved the compounds’ overall activity [61,62]. Examples of second-generation
drugs include ciprofloxacin, enoxacin, norfloxacin, ofloxacin and lomefloxacin. However,
lomefloxacine was withdrawn from the market after a few years of approval for clini-
cal use [63]. The third generation of quinolones was initiated with the development of
fleroxacin. In this generation, more powerful FQs, including levofloxacin, sparfloxacin,
grepafloxacin and gatifloxacin, were developed [64]. According to the WHO’s list of es-
sential medications, ciprofloxacin and levofloxacin are the most commonly prescribed
drugs [65]. Third-generation compounds also have an additional incorporation of new
substituents, namely a chloro group (Cl) at the R8 position, which demonstrates enhanced
bactericidal action against Gram-positive bacteria and atypical bacteria [62]. In the current
market, sparfloxacin, gatifloxacin, and grepafloxacin were discontinued for clinical use [63].
The specific insertion of a cyclic diamine piperazine molecule at position C-7 and a fluorine
atom at position C-6 have synthesised present-day FQs, which exhibit notable efficacy
against anaerobic, Gram-positive, and Gram-negative bacteria. The third and fourth gener-
ations of FQs contain a methoxy group at the C-8 position and are currently licensed for the
treatment of respiratory tract infections, including lethal pulmonary tuberculosis [66]. The
fourth generation is represented by trovafloxacin, moxifloxacin, and gemifloxacin, with
trovafloxacin being withdrawn from the market [63]. Some FQs were withdrawn from
the market after a few years of approval for use due to an increased risk of various severe
adverse effects that were associated with FQ administration [67,68].

FQs were initially optimised and developed as antimicrobial agents, and each gen-
eration appeared to confer increased potency. However, according to a review article by
Anderson and Osheroff [69], multiple reports have indicated that their capabilities may
extend beyond antimicrobial effects only. The extensive utilisation of quinolone derivatives
in clinical applications has contributed to the identification of their immunomodulatory
effects [70].

Several studies have reported how certain FQs exhibit in vitro anti-proliferative prop-
erties through various mechanisms, including the induction of apoptosis, the disrup-
tion of the biochemical transformation of potentially cancerous cells, the enhancement
of other chemotherapeutic agents’ uptake, and/or mediation of immunomodulatory re-
sponses [71–73]. Quinolones, in general, exert their modulating effects only when combined
with a co-stimulant. Nevertheless, it has been widely observed that quinolone compounds
have a tendency to reduce the production of pro-inflammatory cytokines. The induction of
cytokines has been observed only in a subset of FQs, and this effect seems to be related to
the presence of the cyclopropyl moiety at the N1 position [74].

Quinolones are comprised a bicyclic ring structure with a substitution at position N-1
containing various moieties. The majority of current agents contain a fluorine atom at
position 6 and a nitrogen heterocycle moiety at position C7 [75]. The precise mechanism
remains unclear, but it is conceivable that certain FQs may activate transcription factors,
such as AP-1, which are known to be associated with elevated cytokine levels [76]. The
observed variations in outcomes across multiple studies can be attributed to the distinct
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chemical structures and different pathogens involved. The outcomes of these studies were
likely influenced by the timing and frequency of administered doses [31,32,77].

Immunomodulatory effects are especially evident in FQs with a cyclopropyl-moiety
at position N1 of their quinolone ring, such as ciprofloxacin and moxifloxacin [78]. Sub-
stituents located at position 1 of the basic quinolone structure affect antibacterial activity
potency. The presence of a cyclopropyl substituent at this specific position, which is present
on all of the new FQs besides levofloxacin and trovafloxacin, is regarded as the most
optimal for activity [79]. Several quinolones with and without the cyclopropyl group on
N1 are presented in Figure 2.
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The presence of a cyclopropyl group at position N1 of the quinolone molecule has
been shown to exhibit superior antibacterial action against Gram-negative bacteria, as
demonstrated by Chu et al. [80] and Domagala [81]. Exposure to ciprofloxacin and CP-
115,953, which contain a cyclopropyl group at position N1, significantly boosted the release
of interferon (IFN)-y from human peripheral blood cells in vitro compared to compounds
without this moiety [82,83]. Similarly, certain structural properties of FQs are also associated
with these agents’ non-antibacterial activity against eucaryotic topoisomerase II. The study
conducted by Yamashita et al. [84] presented the augmented anti-leukemic effects observed
in a murine leukaemia model, which were accompanied by an increased inhibitory activity



Biomedicines 2024, 12, 761 8 of 20

against topoisomerase II. This enhanced activity was observed specifically in quinolones
that possessed the same cyclopropyl group attached to the N1 position of the quinolone
ring. A comparable discovery was documented in a comparative study examining the
effect of six quinolones on the production of IL-3 and the granulocyte–macrophage colony-
stimulating factor (GM-CSF) by stimulated murine splenocytes [74]. Under the same
experimental conditions, the production of these aforementioned cytokines was found to be
enhanced exclusively by quinolones that incorporated the cyclopropyl group at position N1.
Conversely, quinolones lacking in this moiety had either no impact or an inhibitory effect.
The data presented in these studies provide clear evidence that specific FQs containing an
N1-cyclopropyl group exhibit immunomodulatory effects [78].

Another study revealed that gemifloxacin, a fourth-generation fluoroquinolone drug,
has significant immunomodulatory potential. Due to the presence of a cyclopropyl N-1
group in its structure, gemifloxacin may have the potential to influence both innate and
adaptive immune systems. This drug has demonstrated a dual effect on both innate and
adaptive immune systems, whereby it enhances the activity of the innate system while
suppressing the adaptive immune system. The humoral immune response is produced
through the synthesis of antibodies that target the specific epitope of the antigen employed
to induce the immune response [85].

4. Immunomodulatory Activity of Fluoroquinolone in ARDS

The immunomodulatory effects of quinolones are mostly anti-inflammatory and have
been widely documented in in vitro models; however, the precise mechanisms by which
quinolones act as immunomodulators are not yet fully comprehended [65,86,87]. FQs are
suggested to exhibit their immunomodulatory activities via influencing phosphodiesterase
activity and promoting the production of intracellular cyclic adenosine monophosphate
(cAMP) [88,89]. Presumably, quinolones elevate intracellular levels of cAMP by inhibiting
the activity of phosphodiesterase enzymes [90]. cAMP is essential for the regulation of vari-
ous inflammatory responses in innate immune cells [91]. The intracellular levels of these
cyclic nucleotides are primarily regulated by enzymes called phosphodiesterases (PDEs),
which catalyse the hydrolysis of a cyclic phosphate bond in cAMP and cyclic guanosine
monophosphate (cGMP) to produce the inactive 5′-AMP and 5′-GMP [92]. The predom-
inant subtype of PDE in neutrophils is PDE4, which is involved in the pathogenesis of
inflammatory diseases [93]. Bailly et al. suggested that the inhibitory effect of ciprofloxacin
on TNF-α and IL-1 may possibly be attributed to its inhibitory effect on phosphodiesterase,
resulting in the accumulation of intracellular cAMP [94]. The accumulation of cAMP levels
leads to an augmentation in the activity of protein kinase A (PKA), which is known to
decrease the TNF-α expression [92]. Several investigations have indicated that this accu-
mulation inhibits TNF-α and IL-1 production in mononuclear phagocytes [94–96]. A study
conducted by Blaine et al. [97] provided evidence of the phosphodiesterase inhibitory effect
of ciprofloxacin, which caused cAMP to accumulate in the cells and increase PKA activity,
which, in turn, is known to inhibit the production of TNF-α in stimulated monocytes.
There is a proposition that cAMP, which functions as a second messenger, has the potential
to function as an anti-inflammatory agent through its ability to stimulate downstream
signalling pathways, including PKA and the exchange protein directly activated by cAMP
(Epac), while also reducing the secretion of cytokines [88]. PKA then subsequently activates
CREB (cAMP response element-binding protein), which is a primary regulator of anti-
inflammatory and immune response [98]. Furthermore, recent results present compelling
evidence suggesting that certain cellular properties associated with cell motility can also be
regulated by modulating cAMP levels [99,100].

The mechanisms by which quinolones exert their effects on various cytokines and
chemokines involve the regulation of certain key cellular transcription factors. The tran-
scription factor known as NF-κB is one of the key factors in cellular signals [41,42]. It is
crucial to emphasise that the modulatory effects of quinolones are not observed when they
are used alone, and an extra stimulating effect is required. The stimulators independently
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induce an intracellular stress response, such as lipopolysaccharide, which may interact
synergistically with the inhibitory effects of topoisomerase-II to induce the augmented
immunomodulatory event [41]. The inhibition of topoisomerase II impacts protein C kinase,
resulting in enhanced AP-1 activity, which has been associated with increased cytokine
levels [101,102]. The precise sequence of events that underlie the effect of quinolones on the
above transcription factors and their activators, including Iκβ and potentially IKK, remains
unknown and requires further studies.

It is known that MAPK, ERK, and JNK are involved in the activation of the transcrip-
tion factor NF-κB, which, in turn, modulates immunological and inflammatory genes [103].
A biological molecule with a short lifespan called NO is considered a key marker of in-
flammatory lung diseases, including ARDS, asthma and lung fibrosis. The respiratory
epithelium appears to serve as its primary source, subsequently to inducible NO synthase
(iNOS) activation [104]. The production of iNOS in humans, as well as various inflamma-
tory cytokines in the lung, are reliant on the MAPK and NF-κB signalling pathways [105].
Multiple in vitro studies have demonstrated that moxifloxacin inhibits the activation of
NF-kB and MAP kinases (ERK1/2, p38, and JNK), thereby attenuating the inflammatory
response induced by microbial stimuli and inflammatory mediators in various cell types
(e.g., respiratory epithelial cells, monocytes) [103–106]. Moxifloxacin inhibited nitric oxide
synthesis and the cytokine-induced activation of NF-κB and MAP kinases in the A549
alveolar epithelial cell line [104]; meanwhile, the expression of inflammatory mediators
(IL-6, IL-8) that are dependent on NF-κB- and MAP-kinase and induced by TNF-α was
inhibited in cystic fibrosis epithelial cells [106]. The activation of NF-κB and MAP kinases,
as well as the release of inflammatory mediators, was also inhibited by moxifloxacin in
human monocytes upon bacterial stimuli [103,107].

Quinolones eliminate bacterial cells by increasing the intracellular levels of cova-
lent topoisomerase-cleaved DNA complexes, which serve as intermediates in these en-
zymes’ DNA strand-passing reactions instead of inhibiting the critical functions of type
II topoisomerases. This activity elicits a high number of double-stranded breaks inside
the chromosomes of treated bacteria, which induces the SOS (‘Save Our Souls’) response
and, eventually, cell death [108]. Riesbeck et al. [109] also demonstrated that ciprofloxacin
elicits a stress response in mammals that has a resemblance to the SOS signal response
observed in bacteria. This study has shown a strong similarity between the human PBL
response to topoisomerase II inhibition and the bacterial SOS response. Thus, the im-
munomodulatory effects of quinolones were suggested as the result of fluoroquinolones
inhibiting topoisomerase II, thereby inducing a stress response in mammals that is compa-
rable to the bacterial quinolones-induced SOS response [110]. Therefore, it is conceivable
that cytosolic activation or the inhibition of NF-κB may be influenced by intra-nuclear
processes involving the interaction between quinolone and topoisomerase II. A study by
Zusso et al. [111] using molecular docking methods provides evidence that FQs inhibit LPS
to bond with TLR4-MD-2 complex; hence, the activation of the TLR4/NF-κB signalling
pathway is inhibited.

Figure 1 illustrates FQs’ mechanisms and immunomodulatory effects on ARDS (red
arrow).

5. Evidence of FQ’s Immunomodulatory Effects Documented in Preclinical and Clinical
Studies

A randomised controlled trial (RCT) conducted in Egypt revealed that treatment
with 750 mg of levofloxacin once daily for 10 days affected the production of IL-10 as
an anti-inflammatory cytokine and TNF-α as a pro-inflammatory cytokine, which may
offer additional benefits in the treatment of respiratory tract infections irrespective of their
antibacterial properties [112]. A recent in silico study provided evidence that ciprofloxacin
and moxifloxacin have a potent ability to bind the main protease (Mpro) of SARS-CoV2,
indicating that fluoroquinolone can inhibit SARS-CoV2 replication [113]. According to the
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current guidelines and literature, fluoroquinolone has an immunomodulatory effect that is
clinically beneficial for the treatment of severe pneumonia.

Several studies have reported that FQs can reduce the synthesis of pro-inflammatory
cytokines. As demonstrated in an in vitro study, FQs can reduce pro-inflammatory cytokine
levels in human peripheral blood mononuclear cells (PBMCs) [114]. Levofloxacin has also
been shown to inhibit the secretion of TNF-α, IL-6, and IL-8 by human bronchial epithelial
cells [115]. Several other studies suggest that FQs inhibit the production of IL-1 and TNF,
which are pro-inflammatory cytokines [86,111,116]. Furthermore, the inhibitory effects of
ciprofloxacin and levofloxacin on the NF-κB-mediated microglial inflammatory response
have been reported. These effects are attained by the inhibition of lipopolysaccharide (LPS)
signalling via TLR4 [107,111].

Moxifloxacin has been shown to effectively decrease the release of IL-8, IL-1b, and TNF-
a, which were produced in response to Aspergillus fumigatus infection in human peripheral
blood monocytes. The findings of this investigation showed that moxifloxacin inactivates
the MAP-kinase ERK1/2, p38 and p65-NF-κB signalling pathways [114]. Ciprofloxacin has
been demonstrated to significantly reduce the levels of TNF-α, IL-1β, and CXCL2/MIP-2a
and improve the severity of lung damage and overall survival in cases of lung damage
induced by LPS [32]. The study by Bailly et al. [94] revealed that both ofloxacin and nor-
floxacin can inhibit cytokine synthesis. Similar to ciprofloxacin, ofloxacin and grepafloxacin
also inhibit the synthesis of IL-1α and IL-1β in LPS-stimulated human peripheral blood
lymphocytes (hPBLs).

Another study demonstrated that the activation of TLRs on alveolar cell type II (ATII)
in ARDS induces the migration of neutrophils into the epithelium, subsequently leading to
the release of toxic mediators, such as proteases and ROS. FQs exhibited antioxidant activity
against these conditions and suppressed pneumonia-related pulmonary inflammation [117].
Moxifloxacin has been reported to reduce neutrophil influx and pro-inflammatory cytokines
levels, including keratinocytes-derived chemokine (KC), IL-1β, and IL-17A in experimental
mice with lung infections induced by Streptococcus pneumoniae and P. aeruginosa [31].
Levofloxacin has also been shown to suppress oxidative and nitrative stress in mice models
with ARDS induced by H1N1 influenza. In addition, levofloxacin demonstrated scavenging
activity on neutrophil-derived ROS, resulting in a significant reduction in lung injury and
an improvement in survival rates [29].

According to recent evidence, the pathogenesis of ARDS may be influenced by several
immune cell types, including AMs, as mentioned before. In a healthy state, the fundamental
function of AMs in tissue homeostasis is the scavenging and removal of cellular debris and
apoptotic cells without inducing an inflammatory response [53]. Three typical quinolone
antibiotics, ciprofloxacin, norfloxacin, and pipemidic acid, were investigated for their effects
on the polarisation of macrophage RAW264.7 cells in an experimental study conducted
by Lang et al. The results suggest that exposure to quinolone at environmentally relevant
residual concentrations can lead to the polarisation of macrophages [118].

The immunomodulatory effect of FQ on Th cells was also documented in a study
demonstrating that ciprofloxacin induced an immunomodulatory stress response in human
T lymphocytes [119]. These cells are essential for humoral and cellular immunity, and the
nature of the immune response is regulated by various effector Th cells (Th1, Th2, Th9, Th17,
and Th22), which differentiate from naïve T cells in response to antigen stimulation [120].
The activation of T cells is facilitated by the concentration and volume of cytokine secretion
in response to infection, leading to the subsequent clearance of the infection [121].

According to Kamiński et al. [122], pre-activated T cells treated with ciprofloxacin
exhibited an immunosuppressed phenotype as the result of lower activation-induced ROS
production, leading to the reduced expression of IL-2 and IL-4. These findings suggest
that ciprofloxacin treatment could have significant implications for the management of
inflammatory diseases. Furthermore, several studies in the literature demonstrate that
FQs have pharmacodynamic interactions with other drugs, implying that FQs may have
immunomodulatory effects, particularly following T-cell activation [123–125]. Findings
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from other studies also suggest that ciprofloxacin, at a dose of more than 20 µg/mL,
is capable of counteracting cytokine production inhibition as one of cyclosporine A’s
immunosuppressive effects [126]. Additionally, another study on the human leukaemia
cell line (HL-60) revealed that levofloxacin-treated cells exhibited an upregulation in the
mRNA expression of cytokines and chemokines (e.g., CCL2 and CXCL8) [127].

The administration of gemifloxacin resulted in the inhibition of the immune response
in both the 25 mg/kg and 75 mg/kg treatment groups after a 24 h period. The study
assessed the effect of gemifloxacin on the humoral component of the immune system at
three different doses (25 mg/kg, 50 mg/kg, and 75 mg/kg) using heamagglutination and
pneumonia plaque formation assays. The humoral immune response is produced through
the synthesis of antibodies that target the specific epitope of the antigen employed to induce
the immune response [85].

The summary of the role of FQs as an immunomodulator based on the findings of
in vitro, in vivo and ex vivo studies both in humans and animal models is presented in
Table 1.

Table 1. Immunomodulatory effects of FQs with their mechanism of action in in vitro, in vivo, ex
vivo, and human models.

No Author Agent Subject/Study
Design/Model Disease Outcome Study Design References

1 Zusso et al.,
2019

Ciprofloxacin,
Levofloxacin

LPS-induced primary
microglia

IL-1β, TNF-α, NFkB
translocation ↓ In vitro [111]

2 Serebryakova
et al., 2018 Levofloxacin Infiltrative pulmonary

tuberculosis

IL-12 in drug-sensitive
tuberculosis ↓,

TNFα in drug-resistant
pulmonary tuberculosis ↓,

IFNγ in drug-sensitive
tuberculosis ↓

In vitro [110]

3 Gupta et al.,
2017 Levofloxacin Staphylococcus aureus

IL-10 ↑,
TNF-α, PCT, IL-1β, and

IL-6 ↓

In vitro and
in vivo in rats [128]

4 Saini et al., 2015 Ciprofloxacin Pseudomonas aeruginosa MDA, NO, MIP and IL-6 ↓,
IL-10 ↑

In vitro and
in vivo in mice [129]

5 Enoki et al.,
2015 Levofloxacin H1N1 influenza virus

A/PR/8/34

Oxidative stress, nitrative
marker, NO metabolites,

ROS, and IFN-γ ↓

In vitro and
in vivo in mice [29]

6 Badari et al.,
2015 Levofloxacin

TNF-α and IL-10 in the
serum of pneumonic

patients

TNF-α ↓
IL-10 ↓ in control, IL-10 ↑

in pneumonic patients
RCT in human [112]

7
Müller-

Redetzky
et al., 2015

Moxifloxacin Streptococcus
pneumoniae

IL-6, IL-8, IL-1β,
KC/CXCL1 ⇔

Ex vivo in
human [77]

8 Badari et al.,
2014 Levofloxacin Community-Acquired

Pneumonia TNF-α ↓ and IL-10 ↑ RCT in human [130]

9 Beisswenger
et al., 2014 Moxifloxacin

Bacterial pneumonia (S.
pneumoniae,

Pseudomonas aeruginosa)

KC, IL-1β, IL-17A,
TNF-α-expressing cells,

neutrophil influx ↓
In vivo in mice [31]

10 Blasi et al., 2013 Levofloxacin Chronic bronchitis KL-6 and IL-6 ↓
Open-label,
randomised

study in human
[131]

11 Tsivkovskii
et al., 2011 Levofloxacin Human bronchial

epithelial cells TNF-α, IL-6, IL-8 ↓ In vitro [115]
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Table 1. Cont.

No Author Agent Subject/Study
Design/Model Disease Outcome Study Design References

12 Kamiński et al.,
2010 Ciprofloxacin Pre-activated primary

human T cells
TCR-induced generation

ROS, IL-2 and IL-4 ↓ In vitro [122]

13 Huang et al.,
2008

Ciprofloxacin,
levofloxacin,
moxifloxacin

LPS
TNF-α, IL-1β,

CXCL2/MIP-2α ↓
(ciprofloxacin)

In vivo in
mouse [32]

14 Calbo et al.,
2008 Levofloxacin Severe pneumococcal

pneumonia

TNF-α, IL-1β, IL-6, IL-8,
IL-10, and IL-1 receptor

agonist ↓

Open-label,
randomised

study in human
[132]

15 Remund et al.,
2008 Ciprofloxacin Post-transplant

bronchiolitis obliterans TGF-β ↓ and IFN-γ ↑ In vivo in rats [133]

16 Zhang and
Ward 2007 Besifloxacin

LPS-stimulated human
THP-1 monocytes

(ophthalmic infections)

IL-1α, G-CSF, IL-1rα, IL-6,
GM-CSF, IL-12p40, IL-1β,

IL-8, IP-10, MCP-1 and
MIP-1α ↓

In vitro [87]

17 Blau et al., 2007 Moxifloxacin Cystic fibrosis in IB3
and corrected C38 cells

IL-6, IL-8, MAPK ERK1/2,
JNK, and NF-κB ↓ In vitro [106]

18 Kitazawa et al.,
2007 Levofloxacin LPS-induced

IL-1β production

pre-synthesised IL-1β, p38
↑

IL-1β ↓
In vitro [134]

19 Shalit et al.,
2006 Moxifloxacin

Human monocytes
stimulated with

Aspergillus fumigatus

IL-8, IL-1β, TNF-α,
MAPK ERK 1/2, p38,

p65-NF-κB ↓
In vitro [114]

20 Werber et al.,
2005 Moxifloxacin Human respiratory

epithelial cell line MAP kinase, NF-κB, NO ↓ In vitro [104]

21 Araujo et al.,
2004 Gemifloxacin LPS-stimulated human

monocytes
NF- κB, IL1α, IL-1β, IL-6,

IL-10 and TNF-α ↓ In vitro [135]

22 Gogos et al.,
2004 Ciprofloxacin

Gram-negative bacteria
(Escherichia coli, P.

aeurginosa, Proteus spp.,
Klebsiella pneumonia)

IL-10 alongside the
IL-10/TNF-α ratio ↑,

TNF-α and IL-6 ↓
RCT in human [136]

23 Weiss et al.,
2004 Moxifloxacin

Activated human
peripheral blood

monocytes and THP-1
cells

IL-8, TNF-α, IL-1β, MAPK
ERK 1/2, NF-κB

translocation, JNK ↓
In vitro [103]

24 Uriarte et al.,
2004

Levofloxacin,
moxifloxacin,
gatifloxacin

HUVEC infected with
Chlamydophila
pneumoniae or

stimulated with TNF-α

Neutrophil and monocyte
TEM ↓

IL-8 ↓ (MOX and GTFX)
MCP-1 ↓ (MOX)

In vitro [137]

25 Shalit et al.,
2002 Moxifloxacin Candida albicans,

cyclophosphamide
TNF-α, KC/CXCL1 ↓,
IL-2, IL-10, IFN-γ ⇔ In vivo in mice [33]

26 König et al.,
2002 Moxifloxacin

Staphylococcal
superantigen-induced

apoptosis
Fas, FasL, and TNF- RI ↓ In vitro [138]

27 Araujo et al.,
2002 Moxifloxacin LPS-stimulated

monocytes
IL-1α, IL-1β, IL-6, IL-10,

IL-12 (p70), TNF-α ↓ In vitro [107]

28 Ono et al., 2000 Grepafloxacin LPS-stimulated human
peripheral blood cells

IL-2 ↑,
TNF-α, IL-8, IL-1α, and

IL-1β ↓
In vitro [139]
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Table 1. Cont.

No Author Agent Subject/Study
Design/Model Disease Outcome Study Design References

29 Khan et al.,
1998 Trovafloxacin

Human monocytes
stimulated by LPS or S.
aureus heat-killed cells

IL-1α, IL-1β, IL-6, IL-10,
GM-CSF, and TNF-α ↓ In vitro [140]

30 Nwariak FE
et al., 1997 Ciprofloxacin P. aeruginosa TNF response ↓

In vitro
samples

obtained from
rabbits

[141]

31 Riesbek et al.,
1994 Ciprofloxacin

Lymphocytes
incubated with

cyclosporine
IFN-γ, IL-2 ↑ In vitro [126]

32 Bailly et al.,
1990

Ciprofloxacin,
Ofloxacin,

Grepafloxacin

in LPS-stimulated
hPBL TNF, IL-1α, IL-1β ↓ In vitro [94]

↓: Decreased/downregulated/inhibited; ↑: increase/upregulated/stimulated; ⇔: no significant difference;
CXCL: C-X-C motif chemokine ligand; GM-CSF: granulocyte–macrophage colony-stimulating factor; GTFX:
gatifloxacin; IFN: interferon; IL: interleukin; KC: keratinocytes-derived chemokine; KL: Krebs von den Lungen;
LPS: lipopolysaccharide; MAPK: MAP-Kinases; MDA: malondialdehyde; MIP: macrophage inflammatory protein;
MOX: moxifloxacin; NF-κB: NF-kappaB; NO: nitric oxide; P. aeruginosa: Pseudomonas aeruginosa; ROS: reactive
oxygen species; S.: Streptococcus; TGF-β: transforming growth factor-β; TNF-α: tumour necrosis factor-α.

6. Future Perspectives

ALI/ARDS induced by pneumonia is a heterogeneous syndrome with significant
variability in pathophysiology, severity, and clinical outcomes. Infection induces an inflam-
matory response and initiates a complex cytokine network. Heterogeneity contributes to
the inconsistent immunomodulatory effects observed in clinical studies. Immunomodula-
tory effects are likely to occur in the event of severe injury; however, some of the effects
identified in preclinical studies are contradicting with clinical observations. A compre-
hensive understanding of the activation of the inflammatory cascade and the biological
phenotype of ARDS patients is required in order to obtain consistent data for performing
clinical trials. Phenotypically, the role of fluoroquinolones compared to other antimicrobial
agents is considerably well described; however, certain features remain incompletely eluci-
dated at present. Variations in outcomes among studies were associated with the different
protocol designs and methodologies used. Although the sequence of events has not been
completely understood, significant progress has been made in comprehending the specific
mechanisms underlying the immunomodulatory effects of FQs, which involved the kinetic
production of cytokines and chemokines, early gene transcription, and the activation or
inhibition of transcription factors in cells. Therefore, further comprehensive investigation
is necessary to ascertain the precise pathway that ensures FQ interacts with the cellular
target topoisomerase II, as well as the subsequent impacts on the transcription mechanism.

In addition, further studies that can effectively identify the clinical characteristics of
ARDS and the immunological phenotypes that are likely to respond to immunomodulatory
therapy are also needed. Antibiotics administered via aerosol delivery offer higher doses
that improve bacterial eradication and lower bacterial resistance. A study suggests that
higher concentrations of levofloxacin administered via aerosol may provide immunomod-
ulatory properties independent of its antimicrobial effects; however, further research on
in vivo models and in patients is recommended [115].

It should be noted that not every fluoroquinolone demonstrates immunomodulatory
properties. The results of several studies reported that differences in time, the frequency
of administration and chemical structure may influence it. The development of study
models that aim to predict desirable pharmacological properties and facilitate structural
modifications of FQs will shape future generations of quinolones. The modification of the
chemical structure of FQs may be necessary in order to enhance their capacity to effectively
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target immune function as immunomodulatory agents in addition to their ability to inhibit
bacterial proliferation. The production of FQs should focus on reducing unfavourable
features, including developing molecules capable of minimising off-target and drug–drug
interactions. On the other side, it is critical to develop novel compounds that are capable of
overcoming drug resistance. Drug resistance may be caused by protein post-translational
modifications (PTMs), which are enzymatic or chemical reactions that insert covalent
groups into the side chains or terminals of amino acids in proteins. Disruptive PTMs can
lead to alterations in protein functions and properties that are strongly associated with
the development and occurrence of numerous diseases. Targeting PTMs and associated
regulatory enzymes may be highly desirable to overcome resistance to FQs and establish
therapeutic prospects for various diseases, including CAP.

7. Conclusions

Fluoroquinolones are a class of synthetic antimicrobial agents known for their broad-
spectrum activity and have been reported to exhibit immunomodulatory properties. Vari-
ous pathogens, including both Gram-negative and Gram-positive bacteria, induce cytokine
production through different signal transduction pathways, consequently leading to the
development of CAP-associated ARDS. In vitro, in vivo, and ex vivo studies have demon-
strated the modulation of innate and adaptive immune responses by FQs, which have
elucidated the involvement of intracellular signal transduction pathways. According to
the evidence demonstrated by these studies, the immunomodulatory activity of FQs was
proven to provide indirect antibacterial effects and exhibit anti-inflammatory properties.
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cAMP Cyclic adenosine monophosphate
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cGMP Cyclic guanosine monophosphate
CREB cAMP response element-binding protein
CRP C-reactive protein
DAMPs Damage-associated molecular pattern molecules
ERK Extracellular signal-regulated kinases
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GM-CSF Granulocyte–macrophage colony-stimulating factor
hPBL Human peripheral blood lymphocytes
IFN Interferon
IL Interleukin
iNOS Inducible NO synthase
IκB Inhibitory κappa B
JNK c-Jun N-terminal kinases
KC Keratinocytes-derived chemokine
LPS Lipopolysaccharide
MAMPs Microbe-associated molecular patterns
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemotactic protein
MIP-1α Macrophage inflammatory protein 1α
Mpro Main protease
NET Neutrophil extracellular trap
NF-κB Nuclear factor κappa-B
NO Nitric oxide
PAMPs Pathogen-associated molecular patterns
PBMCs Peripheral blood mononuclear cells
PDEs Phosphodiesterases
PKA Protein kinase A
PRRs Pattern recognition receptors
RBCs Red blood cells
RCT Randomised controlled trial
ROS Reactive oxygen species
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
TAK1 Transforming growth factor-activated kinase 1
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TNF Tumour necrosis factor
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