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Abstract: Mutationsin epidermal growth factor receptor (EGFR) are found in approximately 48% of
Asian and 19% of Western patients with lung adenocarcinoma (LUAD), leading to aggressive tumor
growth. While tyrosine kinase inhibitors (TKIs) like gefitinib and osimertinib target this mutation,
treatments often face challenges such as metastasis and resistance. To address this, we developed
physiologically based pharmacokinetic (PBPK) models for both drugs, simulating their distribution
within the primary tumor and metastases following oral administration. These models, combined
with a mechanistic knowledge-based disease model of EGFR-mutated LUAD, allow us to predict the
tumor’s behavior under treatment considering the diversity within the tumor cells due to different
mutations. The combined model reproduces the drugs’ distribution within the body, as well as the
effects of both gefitinib and osimertinib on EGFR-activation-induced signaling pathways. In addition,
the disease model encapsulates the heterogeneity within the tumor through the representation of
various subclones. Each subclone is characterized by unique mutation profiles, allowing the model
to accurately reproduce clinical outcomes, including patients’ progression, aligning with RECIST
criteria guidelines (version 1.1). Datasets used for calibration came from NEJ002 and FLAURA clinical
trials. The quality of the fit was ensured with rigorous visual predictive checks and statistical tests
(comparison metrics computed from bootstrapped, weighted log-rank tests: 98.4% (NEJ002) and 99.9%
(FLAURA) similarity). In addition, the model was able to predict outcomes from an independent
retrospective study comparing gefitinib and osimertinib which had not been used within the model
development phase. This output validation underscores mechanistic models’ potential in guiding
future clinical trials by comparing treatment efficacies and identifying patients who would benefit
most from specific TKIs. Our work is a step towards the design of a powerful tool enhancing
personalized treatment in LUAD. It could support treatment strategy evaluations and potentially
reduce trial sizes, promising more efficient and targeted therapeutic approaches. Following its
consecutive prospective validations with the FLAURA2 and MARIPOSA trials (validation metrics
computed from bootstrapped, weighted log-rank tests: 94.0% and 98.1%, respectively), the model
could be used to generate a synthetic control arm.

Keywords: lung adenocarcinoma; EGFR-TKI; precision oncology; in silico; computational oncology

1. Introduction

Lung cancer remains the leading cause of cancer-related deaths globally, with over
1.8 million deaths and 2.2 million new cases yearly [1]. The high mortality rate is largely
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attributed to late-stage diagnosis despite advances in screening [1]. Non-small-cell lung
cancer (NSCLC) constitutes 80% of cases, with about 40% being lung adenocarcinoma
(LUAD) [2]. Driver mutations, like the mutation of the epidermal growth factor receptor
(EGFR) gene, prevalent in 48% of Asian and 19% of Western LUAD patients, play a cru-
cial role in tumor growth and invasiveness [3]. EGFR mutations, commonly, either exon
21 L858R insertion or deletion on exon 19, trigger uncontrolled activation of the EGFR
receptor, promoting cancer cell growth and survival [4]. This understanding has led to
targeted therapies focusing on these driver mutations, offering an alternative to traditional
chemotherapy. These therapies specifically target driver mutations and disrupt their ability
to drive tumor proliferation and metastasis apparition. EGFR tyrosine kinase inhibitors
(TKIs) compete with ATP at the intracellular kinase domain of EGFR, inhibiting its auto-
phosphorylation and constitutive downstream pathways’ activation. Since 2015, several
EGFR-TKIs have been approved by the Food and Drug Administration (FDA) to treat
LUAD patients with an EGFR driver mutation. The first-generation TKIs, namely, erlotinib
and gefitinib, are reversible inhibitors, meaning that once the drug unbinds its target, the
effects of the drug disappear, contrary to second-generation TKIs afatinib and dacomitinib,
which are irreversible inhibitors. Osimertinib, a third-generation, irreversible TKI, was later
developed to overcome resistance to first- and second-generation EGFR-TKIs. It targets
both common EGFR mutations and the T790M resistance mutation, an EGFR mutation on
exon 20 that frequently appears during treatment with first- or second-generation TKIs and
causes resistance to these treatments [5]. Despite these advancements in targeted therapies,
the prediction of patient response to specific EGFR-TKIs and the emergence of resistance to
treatment pose significant challenges [6]. This uncertainty in treatment response highlights
a gap in the ability to make informed decisions regarding the design of new drugs. This
article aims to shed light on a possible way to use the existing knowledge to support clinical
decisions. Specifically, we explore the potential of developing clinical predictive models.
These models could assist in evaluating efficacy and/or resistance profiles of existing and
upcoming EGFR-TKIs. By incorporating tumor heterogeneity, mechanistic models can
help identify patients most likely to benefit from specific targeted therapies. They can also
improve the exploration of regimen strategies to overcome or delay the development of
resistance. These models could take personalized medicine a step further by providing
an additional tool for patient selection in clinical trials. They could facilitate the individ-
ual optimization of therapeutic interventions, potentially improving treatment outcomes.
Therefore, they could become an invaluable tool for the planification of EGFR-mutated
LUAD care strategies. Through the application of a knowledge-based model (KBM), this
article proposes an avenue for solutions [7]. The KBM presented in this article can simu-
late the responses of a specific population to different TKIs targeting the same receptor,
thereby enabling comparative analysis of various treatment strategies and sequences. To
achieve this, we refine a KBM named ISELA-V1 that we previously developed [8], and
which mechanistically represents the main biological phenomena related to EGFR-mutated
LUAD disease, and combine it with physiologically based pharmacokinetics models of
osimertinib and gefitinib that incorporate data on these two EGFR-TKIs, their mode of
actions and their specific resistance mechanisms. Using this updated model, named ISELA-
V2, we simulate responses to both EGFR-TKIs in the same population and compare the
outcomes and efficacy of both treatments. This article intends to highlight the potential of
mechanistic modeling for optimization of therapeutic interventions, which would be even
further improved if given individual patient characteristics, paving the way for the future
development of tools that could enhance decision-making in the context of introducing a
new drug to market.

2. Materials and Methods
2.1. Improvement of ISELA-V1 Model

In this paper, we aimed to simulate responses to both gefitinib and osimertinib within
the same population to compare their outcomes and efficacy. To achieve this, significant
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modifications were made to the ISELA-V1 model, originally presented by L’Hostis et al. [8],
to develop a more sophisticated disease model. This refined model represents neoangiogen-
esis, the cell cycle and cell death, as well as metastasis evolution, to consider the impact of
EGFR-TKIs on tumor growth while more precisely considering cancer hallmarks. All these
additions are presented in the Supplementary Materials (Section S1). The combination of
the improved disease model with gefitinib and osimertinib treatment options has been
named ISELA-V2. Its outputs are notably composed of the time to progression as defined
by the RECIST criteria version 1.1 [9].

2.2. Modeling of Osimertinib and Gefitinib
2.2.1. Characteristics of the Two Epidermal Growth Factor Receptor Tyrosine Kinase
Inhibitors and Modeling Strategy

Osimertinib and gefitinib are both small molecules. They penetrate inside tumor cells,
bind to the intracellular domain of the EGFR and inhibit its phosphorylation by ATP. They
thereby prevent the activation of downstream signaling pathways, leading to cell growth
and survival [10]. However, due to their distinct physicochemical properties, the two drugs
have specific characteristics that result in different clinical results for the two treatments.
These differences include the distribution of the drug in the organism, the differences in
affinity between the receptor and the drug, differences in the reversibility and irreversibility
of bindings with the EGFR for gefitinib and osimertinib, respectively, their mechanisms
of resistance and the off-target bindings responsible for adverse effects. The ISELA-V2
model notably aims to prove that, by modeling these differences and with the same disease
model, it is possible to simulate the observed differences in terms of clinical results for the
two treatments. The modeling of these differences is detailed in the following paragraphs,
with the exception of the off-target binding and adverse effects, which were out of the scope
of the study and constitute a limitation of the model.

2.2.2. Physiologically Based Pharmacokinetic Model of Osimertinib and Gefitinib

To assess the concentration of the TKI present in the tumor tissues contributing to
reduced growth signals, we developed two PBPK models, one for gefitinib and one for
osimertinib. PBPK models are designed based on known physiology. They predict how
a drug will be absorbed, distributed, metabolized and eliminated (ADME) by the body
depending on its physicochemical properties. These models estimate the concentration
of the drug in all the main organs of the body, thereby making them especially relevant
for the modeling of multiple tumor sites. Furthermore, the model structure, although
complex, is similar for two drugs with analogous physicochemical properties. For this
reason, the PBPK models of gefitinib and osimertinib were built using the same equations.
Nonetheless, a particularity of osimertinib is that one of its metabolites, AZ5104, also acts
as an EGFR-TKI [11]. The metabolization of osimertinib to AZ5104 in the liver has therefore
been modeled, as well as the equations of distribution of AZ5104 from the liver to different
tissues and tumors. The structure of the PBPK models with the equations and underlying
assumptions is presented in more detail in the Supplementary Materials (Section S2). The
equations of the PBPK models regulate the pharmacokinetics of the drugs and grant access
to the concentration of the drug in each of the main organs of the body. For the distribution
of the drug in the tumors (primary tumor or metastasis), it is assumed that the concentration
of drug in the tumor is directly proportional to its concentration in the organ in which
the tumor is located. Quantitative public data on osimertinib and gefitinib mechanisms
of action are mainly available for mice studies. Therefore, a mouse setting was included
in the model, keeping all the equations but changing all the physiological parameters to
correspond to a mouse. The parameters to calibrate related to the pharmacokinetics of the
drugs were calibrated separately in mice and humans to reproduce the plasmatic profile of
the drug after administration in each species.
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2.2.3. Modeling Tyrosine Kinase Inhibitor Mechanism of Action

The disease model has been developed in the context of EGFR-mutated LUAD, and the
modeling of the growth factor signaling, including the signals arising from EGFR activation,
follows the activation pathways depicted in Figure 1. Once activated, the phosphorylation
of EGFR activates the MAPK and PI3K/AKT downstream pathways, eventually leading to
cell proliferation and survival. Not all intermediaries have been modeled; the first modeled
actors are RAS and PI3K. It is of note that several other tyrosine kinase receptors that activate
the same downstream pathways as EGFR exist [12]. Among them, we chose to model MET
and VEGFR receptors, as they play specific roles in the phenomena of interest in the context
of the use of the model. The resistance of a tumor to EGFR-TKI treatment can be caused by
an amplification of the MET receptor [6], and the VEGFR is a receptor that plays a role in the
neoangiogenesis of the tumor [13]. The activation of RAS and PI3K by EGFR, VEGFR and
MET is, respectively, depicted in Equations (1) and (2).

d RasActive
dt

= [RasInactive]×
(

kaRasByMet × cMetActive

+ kaRasByVeg f r × Veg f rActive

+ kaRasByEg f r × Eg f rActive × propPhosphoEg f rActive
)

− RasActive × kdaRas

(1)

d Pi3kActive
dt

= [Pi3kInactive]×
(

kaPi3kByMet × cMetActive

+ kaPi3kByVeg f r × Veg f rActive

+ kaPi3kByEg f r × Eg f rActive × propPhosphoEg f rActive

+ kaPi3kByRas × RasActive

)
− Pi3kActive × kdaPi3k

(2)

Table 1 presents the parameters used in Equations (1) and (2); they were parameterized
based on an MAPK cascade model developed by Schoeberl et al. [14].

Table 1. Parameters used to model the activation of RAS and PI3K.

Parameter Name Description Value

kaPi3kByMet Forward speed of PI3K activation by MET 4.69 × 106 (L/mole/s)
kaPi3kByVegfr Forward speed of PI3K activation by VEGFR 9.99 × 107 (L/mole/s)
kaPi3kByEGFR Forward speed of PI3K activation by EGFR 6.04 × 105 (L/mole/s)

kaPi3kByras Forward speed of PI3K activation by RAS 3.94 × 104 (L/mole/s)
kdaPi3k Reverse speed of PI3K activation 1 (1/s)

kaRasByMet Forward speed of RAS activation by MET 1.89 × 106 (L/mole/s)
kaRasByVegfr Forward speed of RAS activation by VEGFR 1.34 × 103 (L/mole/s)
kaRasByEGFR Forward speed of RAS activation by EGFR 1.89 × 106 (L/mole/s)

kdaRas Reverse speed of RAS activation 1 (1/s)

The model represents the different states of EGFR: inactivated, activated and phospho-
rylated. The parameter propPhosphoEgfrActive corresponds to the proportion of activated
EGFR that is phosphorylated. It multiplies the concentration of activated EGFR to model
the concentration of EGFR activating downstream pathways. It includes the mechanism of
action of tyrosine kinase inhibitors that impacts the strength of the signal by competing
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with ATP in the intracellular domain and preventing the phosphorylation of the receptor.
It is defined by:

propPhosphoEg f rActive =
[ATP]

[ATP] + atpA f f inity × (1 + 1+[TKI]
KiTKI

)
(3)

The ATP affinity with the EGFR intracellular domain can differ across EGFR mutation
types, as well as the inhibition coefficient of the tyrosine kinase inhibitor [15–17]. The
values of the inhibition coefficient are given in Table 2.

Table 2. Values of the inhibition constant of gefitinib and osimertinib for the binding of ATP to
the intracellular domain of EGFR depending on the EGFR mutation. Values have been taken from
or computed from Eck et al. [15] (gefitinib) and Masuzawa et al. [16] and the EMA report [17]
(osimertinib). Note: AZ5104, the most active metabolite of osimertinib that was included in the
model, has been assumed to have the same Ki values as osimertinib.

EGFR Mutation Tyrosine Kinase Inhibitor KiTKI (nmol/L) KITKI
atpA f f inity × 10−3

Exon 19 deletion + T790M
resistance mutation Gefitnib 4.3 × 10 5.1

Osimertinib 3.2 × 10−2 3.8 × 10−3

Exon 21 insertion +
T790M resistance

mutation
Gefitinib 2.9 × 101 3.4

Osimertinib 9.4 × 10−3 1.1 × 10−3

Exon 19 deletion
mutation Gefitnib 8.3 × 101 6.5 × 10−3

Osimertinib 1.1 8.5 × 10−3

Exon 20 sensitive
mutation Gefitinib 2.5 1.3 × 10−1

Osimertinib 5.9 × 10−1 3.1 × 10−2

Exon 20 resistant
mutation Gefitnib 2.6 × 10 7.0 × 10−1

Osimertinib 6.2 1.7 × 10−1

Exon 21 insertion
mutation Gefitinib 6.4 4.3 × 10−2

Osimertinib 9.7 × 10−1 6.5 × 10−3

Wild type Gefitnib 1.6 × 10 3.2
Osimertinib 3.3 6.4 × 10−1

As expected, the T790M mutation that causes resistance to gefitinib treatment is linked
to a high KiTKI/atpA f f inity ratio for gefitinib compared to other sensitive mutations. The
exon 20 resistant mutation that causes resistance to both gefitinib and osimertinib also
presents a high KiTKI/atpA f f inity ratio for gefitinib and osimertinib. The disease model,
for which the EGFR activation signals are hereby explicitly detailed, aims to translate
the effective drug concentration into treatment efficacy. The PBPK models developed are
independent from the disease model and have the objective of predicting the effective drug
concentration evolution after its administration. The effective concentration corresponds to
the unbound intracellular concentration (not linked with any protein other than EGFR) of
the drug in tumor cells. It is presumed to be proportional to the unbound concentration of
the drug in the organ in which the tumor is located. The two EGFR-TKI models built use
the same model structure, whether it be for the EGFR inhibition or the pharmacokinetics
(this structure could also be used to model EGFR-TKIs other than gefitinib or osimertinib).
However, some elements still allow these two models to be distinguished: the inhibition
constant for ATP binding in the tumor site (Table 2) and the PK data on which the models
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are calibrated (Section 2.4). For differentiating osimertinib and gefitinib, the mechanisms
that will grant the tumor resistance to the treatment are more important.

2.3. Mechanisms of Resistance

In most cases, the development of a resistance mechanism is marked by a regrowth
of the tumor after a phase of decline. Cancer drug resistance is viewed as based upon
a plethora of distinct mechanisms. Drug resistance mutations can occur in the same
protein or in different proteins, as well as in the same pathway or in parallel pathways,
bypassing the mechanism of action of the drug. Neither all the genomic alterations nor the
adaptations in the tumor microenvironment that generate resistance are known. Whether
those mechanisms of resistance appear during the treatment or are already in place but
only for a limited number of cells which are then selected by the treatment is uncertain
and may depend on each patient and each mechanism of resistance [18,19]. In our case, for
simplification purposes, we chose the second option and assumed that a limited number
of cells bearing resistance mechanisms are already present in the tumor when starting
the treatment. Gefitinib and osimertinib, even though they have a similar mechanism of
action, have shared but also distinct mechanisms of resistance [20]. What also differentiates
the two treatments is the frequency of apparition of the mechanisms of resistance, which
can also be impacted by whether the treatment is given in the first or second line [21,22].
For each treatment, we have implemented the most prevalent associated mechanisms
of resistance, namely, EGFR alteration (amplification, T790M mutation loss and C797S
mutation), MET amplification, KRAS mutation or amplification and PIK3CA mutation or
amplification for osimertinib [21] and T790M EGFR mutation and MET amplification for
gefitinib (listed in decreasing order of frequency) [23]. Note that some mechanisms of
resistance to osimertinib also provide resistance to gefitinib treatment, but they were not
implemented in the model as their prevalence is negligible compared to the other resistance
mechanisms to gefitinib. All this explains why our models do not integrate pathways
or phenomena other than those representing the drug mechanisms of action and cancer
growth shown in Figure 1.

Figure 1. Downstream signaling pathways and resistance mechanisms. Left: downstream pathways
following EGFR or MET activation, either after activation by EGF or HGF or via constitutive activation
caused by a mutation. VEGFR is not shown in the figure but also activates the same pathways. Right:
resistance mechanisms to osimertinib (blue) and gefitinib (orange). Created with Biorender.com, 2024.

In order to be able to represent both the tumor heterogeneity and the dynamics of
resistance to a treatment, each tumor is divided into separate subclones that are distinct

Biorender.com
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subpopulations of tumor cells, each carrying their own set of mutations. Among those
subclones is a resistant subclone that can carry the resistance mechanisms described above.
This subclone is initialized with a negligible size compared to other subclones; however,
if it carries a mechanism of resistance, it will grow to the point where it will predominate
over the other subclones, which, in contrast, will decline in response to the treatment. To
reproduce the variability of response to EGFR-TKIs, more than 70 patient descriptors were
introduced, with the complete list of sources available in the Supplementary Materials
(spreadsheet). As an example, regarding the resistance to treatment, for each virtual pa-
tient, the presence or absence of each resistance mechanism in the resistant subclone is
drawn from a Bernoulli distribution whose parameter has been informed by the litera-
ture [21,23–25]. It is important to note that the presence of a resistance mechanism in the
primary tumor does not necessarily mean that all the metastases will carry this resistance.
Therefore, we introduced a parameter that either ensures the same mechanism of resis-
tance in all the tumors and metastases (with a 70% probability) or allows for independent
mechanisms of resistance between the primary tumor and the metastases (with a 30%
probability). The assumption that, in 70% of EGFR-mutated LUAD cases, the mechanisms
of resistance are the same in the tumor and metastases has been made based on discussions
with clinicians.

2.4. Data for Model Calibration

Table 3 describes the datasets used to inform the model of the drug pharmacokinetics
and mechanism of action.

Table 3. Data used during the calibration of the model for the pharmacokinetics of the drugs and
their mechanism of action.

Study Biological Process to
Reproduce Experimental Conditions Treatment Type of Study

Kang et al. [26]
Tumor volume evolution after

treatment administration
in mice

Mouse PDX model YHIM-1003 harbors EGFR exon
19 deletion. Mouse PDX model YHIM-1009 harbors
EGFR exon 19 deletion and PIK3CA E542K mutation.

Treated with gefitinib or osimertinib

Gefitinib,
osimertinib Pre-clinical

Wang et al. [27] Gefitinib plasmatic profile
in mice

Tumor bearing mice that have been administered
50 mg/kg of gefitinib orally Gefitinib Pre-clinical

Yates et al. [28] Osimertinib and AZ5104
plasmatic profile in mice

Tumor-bearing mice that have been administered
5 mg/kg of osimertinib orally Osimertinib Pre-clinical

Bergman et al. [29] Gefitinib plasmatic profile
in humans

Healthy volunteers who have been administered
250 mg of gefitinib orally Gefitinib Clinical

Zhao et al. [30] Osimertinib and AZ5104
plasmatic profile in humans

EGFR-mutated NSCLC patients who have been
administered 40 mg or 80 mg of osimertinib orally Osimertinib Clinical

FLAURA [31] 2

Distribution of time to
progression (computed from

OS and PFS curves 1) in target
population + distribution of
progression cause and site of

new lesions

Patients with an advanced stage of NSCLC harboring
an EGFR mutation, treated as first line with 80 mg/day

of osimertinib
Osimertinib Clinical

NEJ002 [32] 2

Distribution of time to
progression (computed from

OS and PFS curves 1) in
target population

Patients with an advanced stage of NSCLC harboring
an EGFR mutation, treated as first line with

250 mg/day of gefitinib
Gefitnib Clinical

AURA3 [33] 2

Distribution of time to
progression (computed from

OS and PFS curves 1) in target
population + distribution of
progression cause and site of

new lesions

Patients with EGFR T790M-positive advanced-stage
NSCLC who previously had disease progression
during first-line EGFR-TKI therapy, treated with

80 mg/day of osimertinib

Osimertinib Clinical

1 The methodology used to determine the time to progression is explained by Jacob et al. [34]. 2 Population-level
data were used as we did not have access to individual patient data.

As the available data were heterogeneous (from the Ki presented in Table 2 to the
evolution of tumor size in xenograft mice), we applied a calibration strategy detailed by
Palgen et al. [35]. This step-by-step approach minimizes an objective function to calibrate
complex mechanistic models focusing on adjusting parameters that are challenging to
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derive from the literature. This method applies computational constraints derived from
various sources such as textual descriptions, numerical values or graphical data, here listed
in Table 3, combined with a CMAES algorithm, to ensure accurate replication of the desired
pathophysiology within the specified context of use. Finally, to successfully calibrate the
efficacy in humans using FLAURA and NEJ002 data (aggregated TTP in human population),
we inferred distributions of parameters characterizing the virtual population, as realized
by L’Hostis et al. [8]. In order to assess the model’s capacity to successfully reproduce
EGFR-TKIs’ PK, or EGFR-TKIs’ efficacy in mice, we compared the data used for calibration
to the model outputs.

2.5. Comparison of Model Prediction with a Retrospective Study

The retrospective study presented by Li et al. [36] compares the efficacy of osimertinib
and gefitinib and was not used for calibration purposes. It was therefore possible to
use this study to compare the model predictions with real-life data. This study included
102 patients with stage III-B or IV NSCLC, of whom 49 were treated with osimertinib and
53 with gefitinib. The PFS was measured and serves as a comparative endpoint for our
model. Table 4 summarizes the characteristics of the patients that participated in this study
and that were used to create the associated virtual population.

Table 4. Characteristics of the patients from the retrospective study that were used to create the
related virtual population. Values taken from Li et al. [36].

Treated with Osimertinib
(n = 49)

Treated with Gefitinib
(n = 53)

Sex (M/F) 24/25 26/27
Age (<65/>65) 27/22 25/28

Smoking status (Y/N) 38/11 35/18
Cancer stage (IIIb/IV) 30/19 35/18

As we were comparing two distinct endpoints (PFS for retrospective study vs. sim-
ulated TTP from the ISELA-V2 model), we did not use traditional statistical comparison
methods. Our objective was to ascertain the consistency of the outcomes, ensuring that the
model’s predictions aligned with the real-world data observed in the study.

2.6. Effect Model

Lastly, we performed an in silico clinical trial to compare the efficacy of gefitinib and
osimertinib in the same virtual population. By doing so, we could assess for each patient
his time to progression, whether he is treated with osimertinib or with gefitinib, and plot
the distribution of absolute benefit, i.e., the difference between the two scenarios. Table 5
contains the distribution for each of the patient’s descriptors used to generate a virtual
population of EGFR-mutated advanced LUAD patients. The number of virtual patients
has been defined to be 10 times the number of patients in the retrospective study in order
to have enough variability in the virtual population as well as enough statistical units for
bootstrapped approaches. This method has been described by Boissel et al. as a way to
give insights on treatment efficacy and best responders characteristics [37].

Table 5. Characteristics of the virtual population used to make the effect model.

Virtual Population

Sex (M:F ratio) 1:2
Age (mean, sd) (67, 11)

Smoking status (Never, Former, Current) (28%, 34%, 38%)
Ethnicity (Asian, Other) (55%, 45%)

EGFR mutation (19, 20, 21) (51.6%, 13.2%, 35.2%)
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3. Results
3.1. Reproducing Pharmacokinetic Data of Gefitinib and Osimertinib

After calibration, the PBPK models of gefitinib and osimertinib were able to reproduce
the plasmatic concentrations of the drugs both in mice and in humans (Figure 2). All the
simulated data points were within the range defined by the standard deviation.

Figure 2. TKI plasma concentration in mice after an oral administration of 5 mg/kg of osimertinib (A) or
50 mg/kg of gefitinib (B). TKI plasma concentration in humans after an oral administration of 80 mg of
osimertinib (C) or 250 mg of gefitinib (D). The observed values with the standard deviation are repre-
sented in gray ((A): Yates et al. [28], (B): Wang et al. [27], (C): Zhao et al. [30], (D): Bergman et al. [29]),
and the simulated plasmatic concentration of the drug with the PBPK models is represented in color.
The administration was given at t = 0.

3.2. Reproducing Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Efficacy

After calibration, the model was also able to reproduce the tumor volume evolution
after gefitinib or osimertinib treatment in mice transplanted with xenografts bearing an
EGFR exon 19 deletion (Figure 3) and also with xenografts bearing both an EGFR exon
19 deletion and a PIK3CA mutation (Palgen et al. [35]). The model also reproduced the dy-
namics of the tumor without treatment (Palgen et al. [35]), ensuring that the treatment was
indeed responsible for the shrinkage of the tumor when administered. Table 6 summarizes
the calibration results in mice.

We used target population characteristics including age, gender, initial cancer stage
and type of EGFR mutation to generate the virtual populations for FLAURA, NEJ002
and AURA3 clinical trials. Trial simulations on these virtual populations successfully
reproduced the probability of tumor progression as measured in the real trials. In order to
achieve these results, several parameters of the model that could not be informed by in vitro
experiments or via animal testing were calibrated: the initial size of the micrometastases,
the initial size of the resistant subclone, the reduced impact of the immune system in
the metastases compared to the primary tumor [38] and the scaling factor regulating
the distribution of the treatments in the tumors. To compare the goodness of fit of the
simulated Kaplan–Meier curve with the one from the associated clinical trial, we used the
MaxCombo method on R software, v.4. This approach is based on the use of a combination
of weighted log-rank tests. The latter was integrated into a bootstrapped approach where
5000 randomly drawn samples, each containing a tenth of the global virtual population,
were compared to the real-life observations. This statistical methodology has been described
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by Jacob et al. [34]. As illustrated in Figure 4, the threshold of the ratio of non-significant
tests required to consider the two curves as similar was set to 80% and was largely exceeded
for the two simulations (99.86% for the population treated with osimertinib and 98.42% for
the population treated with gefitinib). The minor discrepancies can be attributed to the
random sampling process; nevertheless, the obtained results show that, globally, the model
successfully reproduces real-life results at a population level. More precise results could
have been obtained if individual data were available.

Figure 3. Tumor volume evolution in mice implanted with a tumor carrying an exon 19 deletion
mutation and treated with osimertinib (A) and gefitinib (B). The observed data (Kang et al. [26]) with
the standard deviation are represented in gray, and the tumor volume predicted with the models is
represented in color. Drugs were administered orally starting at t = 0 with a posology of 25 mg/kg
daily for gefitinib and 6.25 mg/kg daily for osimertinib.

Table 6. Calibration results for the efficacy of osimertinib and gefitinib based on mice experiments
(Kang et al. [26]).

EGFR Mutation Ratio of Points within the
Standard Deviation Gefitinib Osimertinib

Exon 19 deletion mutation 100% 90% 80%
Exon 19 deletion

mutation + PI3KCA mutation 80% 100% 100%

Figure 4. Kaplan–Meier curves of time to progression obtained in the in silico clinical trials per-
formed with the ISELA-V2 model and compared to real clinical trial data ((A) FLAURA clinical
trial; (B) NEJ002 clinical trial). The uncertainty interval of the simulated curve corresponds to the
variability obtained from bootstrapping the virtual population, while the 1 of the observed curves
stands for the 95% confidence interval. In the FLAURA study, patients were treated with 80 mg of
osimertinib administered orally daily, and, in the NEJ002 study, patients were treated with 250 mg of
gefitinib orally daily. Both treatments started at t = 0.

3.3. Reproducing the Results from a Retrospective Study

We simulated a clinical trial comparing the efficacy of gefitinib and osimertinib in
treating EGFR-mutated LUAD with virtual patients representing the participants of the
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retrospective study by Li et al. [36], as illustrated in Figure 5. In contrast to the previous
simulation, no parameter was changed to fit the outcome of the retrospective study; only
the patients’ characteristics were updated to match the ones of the real population described
in the Li et al., study.

Figure 5. Exploratory in silico clinical trial: Comparison of gefitinib and osimertinib performed with
the LUAD model and with the same patient baseline characteristics as the retrospective study from
Li et al. The uncertainty intervals stand for the 95% confidence intervals of the progression curves.
The dotted lines represent the median TTP. Patients were orally treated with 250 mg of gefitinib daily
in the gefitinib arm (in orange) and with 80 mg of osimertinib daily in the osimertinib arm (in blue).
Both treatments were started at t = 0.

As presented in Table 7, the results of the in silico clinical trial show that osimertinib
is associated with a longer TTP than gefitinib for the designed population with a median
TTP of 20 months (95%CI: 15–24) for osimertinib and 11 months (95% CI: 7.5–12) for
gefitinib. The retrospective study reported a median PFS of 18.1 months (95%CI: 15.4–20.7)
for osimertinib and 10.7 months (95%CI: 9.9–11.4) for gefitinib, consistent with the TTP
results of our in silico clinical trial, although the endpoints are not identical as the model
predicts the TTP while the retrospective study reports the PFS. As, theoretically, the TTP
cannot be lower than the PFS because the event of progression is part of the PFS, it is
consistent that the simulated TTP is greater than the observed PFS. This result highlights
the robustness of the model in predicting the efficacy of osimertinib and gefitinib in EGFR-
mutated LUAD patients.

Table 7. Results from the retrospective study by Li et al. [36] and from the in silico clinical trial
performed with the ISELA-V2 with the same patient characteristics as the retrospective study.

Retrospective Study In Silico Clinical Trial with the
Same Patient Characteristics

Osimertinib PFS: 18.1 months (95%CI: 15.4–20.7) TTP: 20 months (95%CI: 15–24)
Gefitnib PFS: 10.7 months (95%CI: 9.9–11.4) TTP: 11 months (95%CI: 7.5–12)

3.4. Effect Model

We applied an in silico effect model to the virtual population mentioned in the Materi-
als and Methods section, shown in Table 4. While this method is exploratory due to the fact
that the model is limited to population-level predictions, the insights one can deduce from
such additional explorations underscore mechanistic models’ potential.

By simulating the time to progression for each patient of the virtual population,
whether they are treated with osimertinib or gefitinib, we can directly compare the efficacy
of the two treatments by plotting an effect model (Figure 6). This effect model suggests
that treatment with osimertinib is linked to a longer TTP for the majority of patients. This
result is even more greatly accentuated for patients carrying an EGFR exon 20 mutation,
which should, however, be interpreted with caution as the data that were used to calibrate
the model did not contain any patients carrying EGFR exon 20 mutations. Only patients
who progressed when treated with both gefitinib and osimertinib were included in the
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effect model, but it is interesting to note that, out of the 1020 virtual patients, 329 did not
progress during the 24 months of simulation when treated with osimertinib, while there
were only 119 for gefitinib. This is additional information supporting the superior efficacy
of osimertinib. Furthermore, it shows that one can make individual predictions and use the
model to figure out factors of response. This exploration serves to broaden possibilities,
and future calibration with individual patient data would enhance the precision of our
findings and their applicability to personalized treatment strategies.

Figure 6. Effect model comparing the effect of osimertinib and gefitinib in terms of time to progression
(TTP) in a virtual population. Only virtual patients that progressed within the 24 months of the in
silico trial with both osimertinib and gefitinib are plotted (691 out of the 1020 that were simulated).
Each point corresponds to one virtual patient defined by time to progression when treated with
osimertinib and when treated with gefitinib. The circled areas correspond to confidence ellipses
computed using the Pearson coefficient. (the number of standard deviations was set to 1).

4. Discussion and Conclusions

The success of the calibration in reproducing the pharmacokinetics and drug effect
of gefitinib and osimertinib in mice and humans provides evidence of the robustness,
and, by extension, the credibility, of the model [39]. The model credibility is further
enhanced by the reproduction of a retrospective study that contains patient data not used
during the calibration process using only the patient characteristics at the population level.
This provides evidence that knowledge-based mechanistic models can comprehend the
complexity of biological phenomena to predict the result of experiments or clinical trials
by integrating already gathered knowledge and data. Such models could play a major
role in the development of new therapies [40]. With this credible model, we showed
that one can predict which of two treatments is more efficacious at a population level.
Its extension could be used to identify patients who would respond the best to a given
treatment. Another attractive aspect of such models is their ability to generate control arms
for real-life clinical trials. Indeed, our model successfully predicted responses to osimertinib
and gefitinib, two standards of care, in an EGFR-mutated NSCLC population. In order
to achieve this impression of a real trial, we generated virtual patients representative of
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the target trial population. Following a similar process, we could create a virtual control
arm with simulated patients receiving the standard of care. This virtual control arm
could then be compared to any arm of real patients receiving an investigational treatment.
This comparison allows for a more accurate assessment of the investigational treatment’s
efficacy because the generated virtual population enrolled in the control arm has the
same measurable characteristics as the group from the investigational arm. In addition,
the construct of the virtual arm can account for the unmeasurable patient characteristics
that might alter the difference in investigational and control drug efficacies. This asset
can only be found with numerical methods and is particularly useful in the case of rare
diseases where the recruitment of patients can be difficult. While potentially yielding
amazing perspectives, such approaches should be considered as explorations because, as of
today, due to the domain of application of the model, they are limited to population-level
predictions [39]. While the model highlights promising applications, it also opens avenues
for further enhancements. Currently, ISELA-V2’s scope does not extend to modeling the
drug’s adverse effects or the patient’s health status, key factors in predicting mortality.
Integrating specific adverse effects into the model is a potential relevant improvement,
although a comprehensive mechanistic model of patient death may still be beyond reach.
Here, statistical models could complement our approach, offering a viable strategy for
predicting death. Furthermore, this limitation becomes easier to manage when the safety
profile of a treatment is well established, potentially allowing our model to contribute
valuable insights into treatment outcomes without directly modeling overall survival rates.

Moreover, the ambition to model the impact of patient-specific conditions on drug
pharmacokinetics such as renal impairment highlights a relevant potential future direction [41].
Despite the challenge posed by the current availability of data, which predominantly focus
on population-level characteristics, advancing towards individualized predictions based
on specific patient attributes remains a key goal.

Nevertheless, the model presented in this article could become an asset in the search for
new therapeutic strategies in EGFR-mutated lung cancer. It has even recently been utilized
to successfully predict the results of Phase III clinical trials in the FLAURA2 and MARIPOSA
trials (94.0 and 98.1% of non-significant, bootstrapped log-rank tests, respectively [42,43]),
further enhancing its credibility. This could help guide the recruitment of patients for
clinical trials, recruitment whose quality dictates the outcome of the trial and that can be
challenging depending on the rarity of the disease [44].

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomedicines12030704/s1, Figure S1: Schema of the cell
cycle and cell death in ISELA-V2. Created with Biorender.com, 2024; Figure S2: Schema of the neoan-
giogenesis in ISELA-V2. One tumor is able to synthesize both VEGF, through the EGFR downstream
pathway, and other TAFs, described by hypoxia. These TAFs have several impacts on the endothelial
cells dynamics (synthesis, maturation, stabilization and deletion). Also, the mature endothelial
cells pool modifies the carrying capacities of the tumor. Metastases are impacted by the main tu-
mor TAF but also have their own neoangiogenesis processes. Created with Biorender.com, 2024;
Figure S3: Representation of the osimertinib treatment submodel. (A) Pharmacokinetic model of
osimertinib. (B) Metabolization of osmertinib in AZ5104. (C) Mechanism of action of osimertinib
and AZ5104. Created with Biorender.com, 2024; Figure S4: Representation of the gefitinib treatment
submodel. (A) Pharmacokinetic model of gefitinib. (B) Mechanism of action of gefitinib. Created with
Biorender.com, 2024; Figure S5: Schema of the metastases in ISELA-V2. Created with Biorender.com,
2024; Figure S6: Structure of the ISELA-V2 model: the different submodels are labeled and their
connecting variables are represented in light blue. The two main model outputs are also represented
(i) the biological one, corresponding to the radius of the primary & metastases tumors; (ii) the clinical
one, corresponding to the time at which the disease progressed, as defined according to the RECIST
(Response Evaluation Criteria In Solid Tumors) guidelines (version 1.1) [9]; Figure S7: Represen-
tation of the PBPK structure used to build osimertinib and gefitinib PBPK models. Created with
Biorender.com, 2024. References [45–58] are cited in Supplementary Materials.
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