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Abstract: Imaging biomarkers permit improved approaches to identify the most at-risk patients
encountering knee osteoarthritis (KOA) progression. This study aimed to investigate the utility of
trabecular bone texture (TBT) extracted from plain radiographs, associated with a set of clinical,
biochemical, and radiographic data, as a predictor of long-term radiographic KOA progression. We
used data from the Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium
dataset. The reference model made use of baseline TBT parameters adjusted for clinical covariates and
radiological scores. Several models based on a combination of baseline and 24-month TBT variations
(TBT∆TBT) were developed using logistic regression and compared to those based on baseline-only
TBT parameters. All models were adjusted for baseline clinical covariates, radiological scores, and
biochemical descriptors. The best overall performances for the prediction of radio-symptomatic,
radiographic, and symptomatic progression were achieved using TBT∆TBT parameters solely, with
area under the ROC curve values of 0.658 (95% CI: 0.612–0.705), 0.752 (95% CI: 0.700–0.804), and
0.698 (95% CI: 0.641–0.756), respectively. Adding biochemical markers did not significantly improve
the performance of the TBT∆TBT-based model. Additionally, when TBT values were taken from the
entire subchondral bone rather than just the medial, lateral, or central compartments, better results
were obtained.

Keywords: trabecular bone texture; knee osteoarthritis; conventional radiograph; X-rays; prediction
of knee osteoarthritis progression; longitudinal variations; biochemical biomarkers

1. Introduction

Bone is among the key factors in the pathological process of OA, as illustrated by
the numerous features depicted by several imaging modalities, such as Magnetic Reso-
nance Imaging (MRI)-based bone marrow lesions [1], dual-energy X-ray absorptiometry
(DXA)-based tibial subchondral bone mineral density [2], X-ray-based subchondral bone
thickening, osteophytes [3], and the trabecular bone texture (TBT) of subchondral tibial
bone [4].

TBT is a promising imaging biomarker for the prediction of radiographic knee os-
teoarthritis (KOA) outcomes (incidence, progression, and total knee arthroplasty) [5–10].
TBT-based prediction models have, furthermore, demonstrated to be robust and flexible, as
they have been trained and validated on different cohorts [11].

Searching for tools for predicting KOA progression is not limited to imaging biomark-
ers, as KOA is also characterized by an imbalance between pro-inflammatory (procatabolic)
and anti-inflammatory cytokines and growth factors. Thus, the corresponding imbalance
between tissue degradation and formation can be assessed and monitored by both syn-
ovial and blood-based biomarkers. Biochemical trial enrichment biomarkers have been
suggested to improve successful therapy development for KOA [8,12].

In the present study, we included biochemical data obtained from the Foundation for
the National Institutes of Health (FNIH) OA Biomarkers Consortium, Bethesda, MD, USA,
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namely urinary C-terminal crosslinked telopeptide type II collagen (uCTX-II), crosslinked
N-telo peptide of type I collagen (sNTXI) serum, and hyaluronic acid (sHA) serum, which
have previously been evaluated for their role in the progression of the disease [8,13,14].
The restriction to utilizing these three biochemical biomarkers stemmed from their demon-
strated superior predictive capacity within the FNIH dataset [8]. Combining imaging
biomarkers and molecular biomarkers has received limited attention [15] despite its po-
tential to improve the prediction of KOA progression, and to stratify therapeutic interven-
tions [16,17]. Thus, in addition to the baseline parameters employed by the reference model
(age, sex, Body Mass Index (BMI), Kellgren–Lawrence (KL), joint space narrowing in the
medial tibial plateau (JSNM), and TBT at baseline), we examined the use of longitudinal
TBT variations associated with the aforementioned biochemical markers (uCTX-II, sNTXI,
and sHA) for the prediction of the radiographic, symptomatic, and radio-symptomatic
progression of KOA in the FNIH dataset.

2. Materials and Methods
2.1. Patients

This study included data from 600 patients (one knee per patient) obtained from the
nested case–control study of the Osteoarthritis Initiative (OAI) cohort, previously identified
by the FNIH Biomarkers Consortium [7]. The OAI permission group of the National
Institute of Mental Health Data Archive, Bethesda, MD, USA, gave us access to the raw
data used in our study. Only one knee per patient was included to avoid inter-organ
correlation [18]. We recall that the inclusion criteria imposed by the FNIH dataset included
clinical, biological, and radiological descriptors of included patients whose knees had
KL scores of 1–3 at baseline and whose relevant information concerning medial knee OA
progression was available at 24-month and 48-month control points.

2.2. Definition of Radiographic and Symptomatic Progression

Radiographic progression was defined as a loss in medical joint space width of less
than 0.7 mm during the first 24 months of the study, but a loss of at least 0.7 mm during the
period from 24 months to 48 months, while symptomatic progression was defined by an
insignificant worsening of pain during the first 24 months but a significant worsening of
pain during the period from 24 months to 48 months of the study, expressed by an increase
in the Western Ontario McMaster Universities Osteoarthritis (WOMAC) pain score of at
least 9 points (on a 0–100 normalized score) [19]. Radio-symptomatic progressors were
defined as patients with both radiographic and symptomatic progression. Non-progressors
were defined as patients with no radiographic progression in the medial or lateral tibial
plateaus, and no symptomatic progression in both the index and contralateral knees.

One participant with missing BMI data at baseline and two participants with missing
biochemical data were excluded from our study. Of the remaining 597 knees, 192 were
both radiographic and symptomatic (radio-symptomatic) progressors (Group 1), 102 were
radiographic-only progressors (Group 2), 103 were symptomatic-only progressors (Group
3), and 200 were non-progressors (Group 4).

2.3. Trabecular Bone Texture Analysis

Several well-known approaches have been used to describe the fractal dimension of
XR image texture, including fractal signature analysis [20], the Whittle estimator [9], and
the quadratic variation method (VAR) [9,10]. These three various fractal analysis techniques
all produced reliable outcomes in terms of their ability to predict KOA progression [10].
The VAR approach, used in [6,11], was retained for the studies presented in this paper. As
previously reported [11], the cut-off scale was observed around 500 mm on the empirical
variograms. From each knee X-ray, the TBT parameters were calculated from a patchwork
of 16 ROIs covering the entire tibial subchondral bone structure (Figure 1). Two fractal
parameters were extracted, corresponding to the texture complexity computed for the
two micro (µ: below 400 mm) and milli (m: above 600 mm) scales of observation, and
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filtered in both horizontal (HF) and vertical (VF) directions, yielding 64 descriptors for
each patchwork.
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Figure 1. Illustration of the 16 regions of interest (ROIs) automatically selected, covering the entire
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2.4. Biochemical Parameters

We included in our prediction models the biochemical data (BIO: uCTX-II, sNTXI, and
sHA) obtained from the FNIH OA Biomarkers Consortium.

2.5. Prediction Models

As described earlier, the reference model involved the use of baseline clinical covariates
(CLIN: age, sex, and BMI), radiological readings (KL and JSNM), and TBT descriptors,
whereas the proposed model involved, in addition, the use of longitudinal variations in TBT
(∆TBT) parameters. All models were developed using nested logistic regression [5,7,10,21]
to evaluate their prediction performance based on the TBT parameters of the complete
tibial subchondral bone structure (Models 1–5), or those of the medial tibial plateau (TBTM)
(Model 6), lateral tibial plateau (TBTL) (Model 7), or central tibial plateau (TBTC) (Model 8).
Figure 1 shows the location of these regions. All prediction models were evaluated using a
10-fold cross-validation, repeated 300 times, to avoid overfitting.

• Model 1: TBT← CLIN + KL + JSNM (Reference model)
• Model 2: ∆TBT← CLIN + KL + JSNM
• Model 3: TBT + ∆TBT← CLIN + KL + JSNM
• Model 4: TBT + ∆TBT
• Model 5: TBT + ∆TBT← BIO + CLIN + KL + JSNM
• Model 6: TBTM + ∆TBTM← CLIN + KL + JSNM
• Model 7: TBTL + ∆TBTL← CLIN + KL + JSNM
• Model 8: TBTC + ∆TBTC← CLIN + KL + JSNM

The model with the descriptor on the left of (←) is adjusted for the descriptor(s) on
the right of (←).

2.6. Statistical Analysis

AUC was used as the preferred metric to determine the most predictive model [22,23].
Other statistical metrics (positive predictive value (PPV), negative predictive value (NPV),
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and balanced accuracy (BACC)) were also used to further evaluate the performance of the
different models studied [6,24].

The Akaike Information Criterion (AIC) method was employed to select the most ap-
propriate set of TBT parameters, ensuring the maintenance of good predictive performance
in the proposed prediction models while reducing the risk of overfitting. Furthermore, the
DeLong method was used to assess whether the difference in AUC between the proposed
models and the reference model was statistically significant. Specifically, the test statistic
derived from DeLong’s method facilitated the computation of the p-value [25]. In this study,
a given model is deemed statistically significant compared to the reference model if the
p-value is less than 0.05.

Inspired by [7], the primary analysis evaluated the ability of the 64 TBT parameters
and their variations over 24 months to predict KOA radio-symptomatic progression (knees
with both radiographic and symptomatic progression (Group 1; 193 progressors) compared
to knees without both radiographic and symptomatic progression (Groups 2, 3 and 4;
406 controls). The secondary analyses included 4 different scenarios:

• Scenario 1 evaluated the proposed models to predict any progression (knees with either
radiographic or symptomatic progression, or both (Groups 1, 2, and 3; 397 progressors)
compared to knees without any progression (Group 4; 200 controls).

• Scenario 2 evaluated the proposed models to predict all progression (knees with either
radiographic or symptomatic progression (Groups 2 and 3; 205 progressors) compared
to knees without any progression (Group 4; 200 controls).

• Scenario 3 evaluated the proposed models to predict radiographic progression (knees
with radiographic-only progression (Group 2; 102 progressors) compared to knees
without radiographic progression (Groups 3 and 4; 303 controls).

• Scenario 4 evaluated the proposed models to predict symptomatic progression (knees
with symptomatic-only progression (Group 3; 102 progressors) compared to knees
without radiographic progression (Groups 2 and 4; 303 controls).

3. Results

Table 1 represents the characteristics of the knees included in the current study for the
three FNIH sub-datasets: radio-symptomatic, radiographic-only, and symptomatic-only
progressors, as well as the non-progressor sub-dataset.

Table 1. Characteristics of the knees included in the current study.

N◦ of Knees Females
(%)

Left Knee
(%)

KL 1 = 1
(%)

KL = 2
(%)

KL = 3
(%)

Complete dataset 597 59.0 46.2 12.6 51.1 36.3

Radio-symptomatic
progressors 192 56.8 48.4 12.5 43.2 44.3

Radiographic
progressors 102 45.1 47.1 13.7 46.1 40.2

Symptomatic
progressors 103 65.0 42.7 12.6 59.2 28.2

Non-progressors 200 65.0 45.5 12.0 57.0 31.0
1 Kellgren–Lawrence.

3.1. Primary Analysis: Radio-Symptomatic Progression

We first evaluated the performance of the different models for the prediction of radio-
symptomatic progression using data from Group 1 (192 progressors) and Groups 2, 3,
and 4 (405 controls). In this scenario, using solely TBT and ∆TBT (Model 4) statistically
significantly improved the performance of the prediction of radio-symptomatic progression
with an AUC = 0.658, compared to the reference model using baseline-only TBT (Model 1),
which achieved an AUC of 0.613 (p-value = 0.03; see Figure 2). In addition, as shown in
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Table 2, adding BIO parameters to Model 4 very slightly improved the balanced accuracy
(BACC = 0.59), positive predictive value (PPV = 0.52), and negative predictive value
(NPV = 0.73) values. However, they both achieved the same AUC.

Biomedicines 2024, 12, x FOR PEER REVIEW 5 of 11 
 

7: AUC = 0.577), or central-only (Model 8: AUC = 0.572) ROIs (Table 2). More details are 
reported in Table S1 of the Supplementary File. 

 
Figure 2. ROC curves obtained by the different models for the prediction of radio-symptomatic pro-
gression using TBT parameters of the complete tibial subchondral bone structure, adjusted for clin-
ical, biochemical, and radiological parameters. 

Table 2. Primary analysis: radio-symptomatic progression on trabecular bone texture parameters 
adjusted for clinical, biochemical, and radiographic parameters. 

N° Model BACC PPV NPV AUC (95%CI) p-Value 
Model 1 TBT ← CLIN + KL + JSNM * 0.55 0.50 0.70 0.613 (0.565–0.662) - 
Model 2 ∆TBT ← CLIN + KL + JSNM 0.53 0.45 0.70 0.606 (0.558–0.653) 0.777 
Model 3 TBT + ∆TBT ← CLIN + KL + JSNM 0.59 0.52 0.73 0.650 (0.603–0.697) 0.044 
Model 4 TBT + ∆TBT 0.58 0.51 0.72 0.658 (0.612–0.705) 0.030 
Model 5 TBT + ∆TBT ← BIO + CLIN + KL + JSNM 0.59 0.52 0.73 0.649 (0.601–0.696) 0.054 
Model 6 TBTM + ∆TBTM ← CLIN + KL + JSNM 0.53 0.52 0.69 0.594 (0.545–0.643) 0.456 
Model 7 TBTL + ∆TBTL ← CLIN + KL + JSNM 0.51 0.46 0.68 0.577 (0.527–0.627) 0.173 
Model 8 TBTC + ∆TBTC ← CLIN + KL + JSNM 0.51 0.46 0.68 0.572 (0.524–0.620) 0.131 

* refers to the reference model. BACC, PPV, and NPV refer to balanced accuracy, positive predictive 
value, and negative predictive value. TBT refers to the baseline trabecular bone texture parameters 
while ∆TBT refers to the variations in TBT over 24 months. CLIN and BIO refer to the baseline clin-
ical (age, sex, and BMI) and biochemical (urine CTXII, Serum NTXI, and Serum HA) parameters, 
respectively. KL refers to the baseline Kellgren–Lawrence scores. JSNM refers to the baseline joint 
space narrowing scores in the medial tibial plateau. The model with the descriptor on the left of (←) 
is adjusted for the descriptor(s) on the right of (←). TBTM, TBTC, and TBTL refer to the TBT param-
eters extracted from the medial, central, and lateral plateaus, respectively. 

3.2. Secondary Analysis 
3.2.1. Any Progression 

In this scenario, the performance of the different models was evaluated for the pre-
diction of radiographic, symptomatic, or both progressions using data from Groups 1, 2, 
and 3 (397 progressors) and Group 4 (200 controls). The AUC score of Model 3, based on 
baseline TBT and its 24-month variation, was significantly higher (AUC = 0.679; p-value = 

Figure 2. ROC curves obtained by the different models for the prediction of radio-symptomatic
progression using TBT parameters of the complete tibial subchondral bone structure, adjusted for
clinical, biochemical, and radiological parameters.

Table 2. Primary analysis: radio-symptomatic progression on trabecular bone texture parameters
adjusted for clinical, biochemical, and radiographic parameters.

N◦ Model BACC PPV NPV AUC (95%CI) p-Value

Model 1 TBT← CLIN + KL + JSNM * 0.55 0.50 0.70 0.613 (0.565–0.662) -

Model 2 ∆TBT← CLIN + KL + JSNM 0.53 0.45 0.70 0.606 (0.558–0.653) 0.777

Model 3 TBT + ∆TBT← CLIN + KL + JSNM 0.59 0.52 0.73 0.650 (0.603–0.697) 0.044

Model 4 TBT + ∆TBT 0.58 0.51 0.72 0.658 (0.612–0.705) 0.030

Model 5 TBT + ∆TBT← BIO + CLIN + KL + JSNM 0.59 0.52 0.73 0.649 (0.601–0.696) 0.054

Model 6 TBTM + ∆TBTM← CLIN + KL + JSNM 0.53 0.52 0.69 0.594 (0.545–0.643) 0.456

Model 7 TBTL + ∆TBTL← CLIN + KL + JSNM 0.51 0.46 0.68 0.577 (0.527–0.627) 0.173

Model 8 TBTC + ∆TBTC← CLIN + KL + JSNM 0.51 0.46 0.68 0.572 (0.524–0.620) 0.131

* refers to the reference model. BACC, PPV, and NPV refer to balanced accuracy, positive predictive value, and
negative predictive value. TBT refers to the baseline trabecular bone texture parameters while ∆TBT refers to the
variations in TBT over 24 months. CLIN and BIO refer to the baseline clinical (age, sex, and BMI) and biochemical
(urine CTXII, Serum NTXI, and Serum HA) parameters, respectively. KL refers to the baseline Kellgren–Lawrence
scores. JSNM refers to the baseline joint space narrowing scores in the medial tibial plateau. The model with the
descriptor on the left of (←) is adjusted for the descriptor(s) on the right of (←). TBTM, TBTC, and TBTL refer to
the TBT parameters extracted from the medial, central, and lateral plateaus, respectively.

Regarding the influence of the regions of interest (ROIs) selected for the calculation of
TBT, the use of the complete subchondral zone (Model 3) provided higher performance
(AUC = 0.650) compared to using medial-only (Model 6: AUC = 0.594), lateral-only (Model
7: AUC = 0.577), or central-only (Model 8: AUC = 0.572) ROIs (Table 2). More details are
reported in Table S1 of the Supplementary File.
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3.2. Secondary Analysis
3.2.1. Any Progression

In this scenario, the performance of the different models was evaluated for the predic-
tion of radiographic, symptomatic, or both progressions using data from Groups 1, 2, and 3
(397 progressors) and Group 4 (200 controls). The AUC score of Model 3, based on baseline
TBT and its 24-month variation, was significantly higher (AUC = 0.679; p-value = 0.009)
than the one obtained by Model 1, based solely on baseline TBT (AUC = 0.628). Model
3 furthermore achieved the best BACC (0.60) and PPV (0.72) values, while Model 5 with
biochemical parameters, in addition, achieved slightly higher NPV (0.53) values (Table 3).
In this scenario, we noticed that using the whole subchondral zone (Model 3) provided
better performance than using medial-only (AUC = 0.614), lateral-only (AUC = 0.596), or
central-only ROI (AUC = 0.580) compartments. Further information can be found in Table
S2 of the Supplementary File.

Table 3. Secondary analysis based on TBT and ∆TBT adjusted for a set of symptomatic and radio-
graphic parameters.

Progression Model BACC PPV NPV AUC (95%CI) p-Value

Any
(Scenario 1)

TBT← CLIN + KL + JSNM * 0.55 0.69 0.46 0.628 (0.582–0.675) -

TBT + ∆TBT← CLIN + KL + JSNM 0.60 0.72 0.52 0.679 (0.634–0.724) 0.009

TBT + ∆TBT← BIO + CLIN + KL + JSNM 0.60 0.72 0.52 0.678 (0.633–0.723) 0.011

All
(Scenario 2)

TBT← CLIN + KL + JSNM * 0.59 0.59 0.58 0.628 (0.574–0.682) -

TBT + ∆TBT← CLIN + KL + JSNM 0.63 0.64 0.63 0.684 (0.632–0.736) 0.022

TBT + ∆TBT← BIO + CLIN + KL + JSNM 0.63 0.64 0.62 0.684 (0.632–0.735) 0.023

Radiographic
(Scenario 3)

TBT← CLIN + KL + JSNM * 0.57 0.45 0.78 0.709 (0.653–0.765) -

TBT + ∆TBT← CLIN + KL + JSNM 0.65 0.51 0.82 0.779 (0.731–0.827) 0.012

TBT + ∆TBT← BIO + CLIN + KL + JSNM 0.65 0.51 0.82 0.779 (0.731–0.828) 0.011

Symptomatic
(Scenario 4)

TBT← CLIN + KL + JSNM * 0.53 0.40 0.76 0.643 (0.583–0.703) -

TBT + ∆TBT← CLIN + KL + JSNM 0.60 0.49 0.79 0.710 (0.654–0.766) 0.027

TBT + ∆TBT← BIO + CLIN + KL + JSNM 0.60 0.49 0.79 0.710 (0.654–0.766) 0.027

* refers to the reference model. BACC, PPV, and NPV refer to balanced accuracy, positive predictive value, and
negative predictive value. The model with the descriptor on the left of (←) is adjusted for the descriptor(s) on the
right of (←).

3.2.2. All Progression

In this scenario, the performance of the aforementioned models was evaluated for the
prediction of radiographic or symptomatic progression using data from Groups 2 and 3
(205 progressors) and Group 4 (200 controls). Model 4, adjusted in addition to biochemical
parameters, obtained the best AUC score (AUC = 0.691, p-value = 0.018), significantly
higher than the one obtained by the reference model (AUC = 0.628). The best values were
obtained by Model 4, adjusted in addition to biochemical parameters and JSNM scores, for
the other statistical metrics (BACC = 0.64, PPV = 0.65, and NPV = 0.64). More details can be
found in Table S3 of the Supplementary File.

3.2.3. Radiographic Progression

In this scenario, the performance of the abovementioned models was evaluated for
the prediction of radiographic-only progression using data from Group 2 (102 progressors)
in addition to Groups 3 and 4 (303 controls). In this scenario, all knees with radiographic
and symptomatic progression were excluded. The best overall performance was achieved
by Model 4, adjusted in addition to clinical and biochemical parameters (Model 4B), with
an AUC of 0.783, BACC of 0.66, PPV of 0.52, and NPV of 0.82, while the reference model
achieved a significantly lower AUC of only 0.709 (p-value = 0.009), and lower values for
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BACC, PPV, and NPV (0.55, 0.47, 0.77, respectively). In line with the other scenarios,
higher performance was achieved using the TBT parameters extracted from the complete
subchondral bone, compared to using the TBT parameters extracted from the medial,
lateral, or central compartments. Further information can be found in Table S4 of the
Supplementary File.

3.2.4. Symptomatic Progression

In this scenario, all knees with radiographic and symptomatic progression were also
excluded. The performance of the different models was evaluated for the prediction of
symptomatic-only progression using data from Group 3 (103 progressors) and Groups
2 and 4 (302 controls). As found in the previous scenario, the best overall performance
was achieved by Model 4B with an AUC of 0.718, BACC of 0.61, PPV of 0.51, and NPV
of 0.79. As for the previously mentioned scenarios, the models using the TBT parameters
extracted from the complete subchondral bone achieved a higher overall performance
than the models using the TBT parameters extracted from the medial, lateral, or central
compartments. Further information can be found in Table S5 of the Supplementary File.

4. Discussion

One of the main contributions of this study is the evaluation of predictive performance
gained from utilizing longitudinal variations in TBT parameters adjusted by a set of clinical,
biochemical, and radiological biomarkers for predicting KOA progression. The results in the
present study show that integrating both baseline and longitudinal changes in radiographic
TBT descriptors plays an important role in predicting radio-symptomatic progression (best
AUC = 0.658), any (radiographic, symptomatic, or both) progression (best AUC = 0.679), all
(radiographic or symptomatic) progression (best AUC = 0.691), radiographic progression
(best AUC = 0.718), and symptomatic progression (best AUC = 0.783).

KOA progression is often considered to be slow; 12% to 23% of knees with radiographic
KOA experience radiographic progression over 5 years [26]. Hence, the findings in the
current study would help in better selecting participants in future structure-modifying
KOA trials.

The use of baseline, 12-month, and 24-month TBT parameters was previously evalu-
ated [7] for the prediction of 48-month radiographic and symptomatic progression in the
FNIH cohort. In that study, the medial subchondral tibial region only was investigated to
extract TBT parameters computed using the fractal signature analysis (FSA) method [20].
Introducing the time-integrated values (TIVs) of the TBT parameters over 24 months pro-
vided a benefit to the prediction of KOA radio-symptomatic progression (primary analysis),
with an AUC of 0.649, compared to the use of clinical covariates alone (AUC = 0.608) [7].
While the authors in [7,27] investigated the use of the 24-month TIVs of TBT parameters,
equivalent to the area under the curve defined by the baseline and 24-month TBT values,
they did not investigate the use of time-longitudinal changes, quantified as the difference
between the baseline and 24-month TBT values. In addition, in their study [7,27], six TBT
parameters were employed, extracted from the medial tibial plateau only.

This study also highlights the importance of exploiting the whole subchondral bone
of the tibia, rather than only the medial plateau or a limited part of the medial and lateral
plateaus [5,7], to extract radiographic TBT parameters as the performance of the prediction
models was lower in all the different scenarios using TBT parameters extracted from the
medial, lateral or central tibial plateaus alone (Tables S1–S5 of the Supplementary File).

The best AUC score was obtained for the prediction of radiographic progression
(AUC = 0.783). It is more difficult to predict symptomatic (pain) progression since it
is related to changes in pain scores, which are subjective due to differences in patient
tolerance. In addition, it has been demonstrated that pain scores can only be considered
modest markers in the prediction of KOA-related outcomes [6,11].

The results obtained by the present study confirm the interest in using both baseline
TBT parameters and their variations over 24 months, allowing a better prediction of radio-
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symptomatic, radiographic, or symptomatic progression. When TBT descriptors were
excluded, all assessed models had failed (0.5 ≤ AUC < 0.6) to poor (0.6 ≤ AUC < 0.7)
values; however, when TBT descriptors were included, and their variations over 24 months
were taken into account, the evaluated models’ performances improved and they were able
to obtain acceptable (0.7 < AUC < 0.8) values [28,29].

Validated on the FNIH dataset, this research demonstrated the benefits of using
both baseline and longitudinal changes in TBT, calculated from standardized plain knee
radiographs, to improve the prediction of KOA progression within 48 months in patients
with mild KOA (knees with 1 ≤ KL ≤ 3) at baseline.

In the present study, adding molecular biomarkers into the model to the core set
of radiographic and clinical markers did not improve the performance of the reference
model. The AUC scores of the reference model (AUC = 0.709 and 0.779 using TBT and
TBT + ∆TBT, respectively) were similar to those obtained by including molecular biomark-
ers (AUC = 0.708 and 0.779 using TBT and TBT + ∆TBT, respectively) for the prediction
of radiological progression. This observation could be because the information given
by biochemical markers is already captured by data from subchondral bone (its texture),
osteophytes, and joint space width, which are known as strong predictors of KOA progres-
sion [4,10,11,28,30]. Similar results have been found for the other scenarios (Table 1). The
three molecular biomarkers used in the present study were selected based on their formerly
successful use in the literature concerning the prediction of KOA progression [8,13]. Other
relevant parameters might be used to improve KOA prediction models such as type II
collagen KOA formation [12] or inter-alpha trypsin inhibitor heavy chain 1 [31].

Our study has several strengths. The proposed prediction models are based on TBT
descriptors extracted from plain radiographs, widely used in clinical routine, while bio-
chemical parameters are not yet included in daily clinical routines and need much more time
to be extracted from blood or urine samples. Furthermore, data were selected in accordance
with each specific type of progression evaluated in the current study. For radiographic-only
progression, knees with symptomatic progression were not included, and vice versa; for
symptomatic-only progression, knees with radiographic progression were not included. In
addition, for radio-symptomatic progression, knees with symptomatic-only or radiographic-
only progression were not included. To avoid possible correlation between the TBT pa-
rameters of both the baseline and 24-month variations, which can lead to problems with
traditional logistic regression with respect to overfitting and convergence, the LASSO
method was used as an alternative regularization method [32].

A growing number of researchers are interested in evaluating the potential of imaging
biomarkers to enhance patient screening in phase III studies for KOA and determining
under which conditions they provide such enhancements [4,8]. From a clinical standpoint,
our model showed great precision in predicting false progressors. Incorporating such
progressors in a disease-modifying osteoarthritis drug (DMOAD) randomized clinical trial
could have counterproductive consequences.

5. Study Limitations

The limitations of this study include the absence of a femoral region of interest in our
TBT analysis. The femoral subchondral bone might also provide additional information [33].
In the current study, the included imaging-based biomarkers were limited to radiography.
Another limitation is the lack of investigation of the association between radiographic
KOA progression and 3D MRI bone texture [34] or shape [35], or other MRI-based features
such as bone marrow lesions [36]. Integrating such parameters into our model is worth
assessing. Conducting a comparative analysis of the results of prediction methods based
on logistic regression and those derived from alternative machine learning techniques may
provide valuable insights [37]. Lastly, combining descriptors extracted from both MRI and
XR images might help to improve the prediction of KOA progression [27,34].

Furthermore, there are several potentially interesting molecular markers for predicting
KOA progression [14]. Theoretically, there is no limit to the number of biochemical markers



Biomedicines 2024, 12, 666 9 of 11

that could be included in the model, although estimating their ability to enhance our
prediction model becomes increasingly challenging.

6. Conclusions

In conclusion, the combination of both baseline and 24-month radiographic TBT varia-
tions can increase modestly, but significantly, the ability to predict 48-month radiographic,
symptomatic, and radio-symptomatic KOA progressions. Adding the three aforementioned
studied molecular markers did not significantly improve the performance of the proposed
TBT∆TBT model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines12030666/s1, Table S1: Primary analysis: Prediction
of radio-symptomatic progression; Table S2: Secondary analysis: Prediction of any (knees with
either radiographic or symptomatic progression, or both) progression; Table S3: Secondary analysis:
Prediction of all (knees with either radiographic or symptomatic progression) progression; Table S4:
Secondary analysis: Prediction of radiographic progression; Table S5: Secondary analysis: Prediction
of symptomatic progression.
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