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Abstract: The human knee is a complex joint that comprises several ligaments, including the medial
collateral ligament (MCL). The MCL provides stability to the knee and helps prevent its excessive
inward movement. The MCL also has a thin layer of connective tissue known as the epiligament
(EL), which adheres to the ligament. This unique feature has drawn attention in the field of ligament
healing research, as it may have implications for the recovery process of MCL injuries. According
to the EL theory, ligament regeneration relies heavily on the provision of cells, blood vessels, and
molecules. The present study sought to compare the expression of vascular endothelial growth
factor (VEGF), CD34, and α-smooth muscle actin (α-SMA) in healthy knees’ proximal and distal
MCL segments to better understand how these proteins affect ligament healing. By improving
the EL theory, the current results could lead to more effective treatments for ligament injury. To
conduct the present analysis, monoclonal antibodies were used against CD34, α-SMA, and VEGF to
examine samples from 12 fresh knee joints’ midsubstance MCLs. We identified a higher cell density
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in the EL than in the ligament connective tissue, with higher cell counts in the distal than in the
proximal EL part. CD34 immunostaining was weak or absent in blood vessels and the EL, while
α-SMA immunostaining was strongest in smooth muscle cells and the EL superficial layer. VEGF
expression was mainly in the blood vessels’ tunica media. The distal part showed more SMA-positive
microscopy fields and higher cell density than the proximal part (4735 vs. 2680 cells/mm2). Our
study identified CD34, α-SMA, and VEGF expression in the MCL EL, highlighting their critical role
in ligament healing. Differences in α-SMA expression and cell numbers between the ligament’s
proximal and distal parts may explain different healing capacities, supporting the validity of the EL
theory in ligament recovery.

Keywords: medial collateral ligament; epiligament; theory; knee joint

1. Introduction

The medial collateral ligament (MCL) plays a crucial role in stabilizing the knee joint.
It runs along the inner side of the knee, connecting the femur to the tibia. MCL injuries
are prevalent, accounting for approximately 90% of knee injuries. Along with the anterior
cruciate ligament (ACL), the MCL is one of the most frequently injured ligaments in the knee
joint [1,2]. In the last decade, the number of MCL sports injuries has risen [3–5]. Although
the MCL shows excellent healing capacities, a healed MCL has structural and mechanical
properties inferior to those of the uninjured ligament [6]. The Epiligament (EL) theory
provides a fascinating explanation for the process of ligament regeneration. The theory
suggests that the EL, which is a tissue layer surrounding the ligament, plays a crucial role
in this process. The EL is rich in fibroblasts, progenitor cells, blood vessels, and connective
tissue cells, which are essential components for the regeneration of ligaments. When a
ligament is injured, these cells migrate from the EL toward the injured area, targeting the
regeneration of the ligament. This unique mechanism highlights the importance of EL in
the process of ligament repair and regeneration [7–13].

Fibroblasts are specialized cells that play a vital role in the healing process of ligaments.
They produce a variety of proteins that contribute significantly to this process, including
collagen matrix metalloproteinases, fibromodulin, decorin, and fibronectin. These proteins
are responsible for breaking down and regenerating the injured ligament, making them
crucial for successful healing [7–15]. By gaining a deeper understanding of the EL molecular
properties, we can enrich our knowledge of the complex mechanisms involved in ligament
healing and potentially develop more effective treatments for this type of injury.

CD34 is a cell surface marker protein primarily linked with the endothelial progenitor
cells and is involved in repairing injured tissues [16,17]. Blood vessel walls are rich reser-
voirs of CD34-expressing stem cells [16,18]. The contractile α-smooth muscle actin (α-SMA)
protein is commonly used as a marker for smooth muscle cells [19] and myofibroblasts [20].
When exposed to inflammatory mediators post-injury, fibroblasts can undergo a transition
to proto-myofibroblasts and subsequently transform into typical myofibroblasts character-
ized by α-SMA de novo expression [21]. This expression significantly enhances contractile
myofibroblast activity [19]. Menetrey et al. [22] identified α-SMA-positive cells in the MCL,
migrating towards the lesion’s center three days post-injury. Vascular endothelial growth
factor (VEGF) is essential for angiogenesis [23] and ligament healing [24].

The current study aims to enhance the understanding of the EL theory by examining
the expression of crucial molecules (VEGF, CD34, and α-SMA) in ligament healing, follow-
ing an immunohistochemical (IHC) analysis of the MCL EL. This research seeks to establish
whether there are any discrepancies in cell count and molecule expression between the
ligament’s proximal and distal parts, and how these alterations could impact the ligament’s
ability to heal. Ultimately, this study will provide valuable insights into the role the EL
plays in the healing process.
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2. Materials and Methods
2.1. Tissue Preparation

This study involved histological and IHC assessments of samples from the proximal
and distal parts of the MCL in 12 fresh European cadavers. These cadavers were chosen
based on their age, with a mean age of 55 years (range 49–62), and gender, including
7 females and 5 males. None of the cadavers had any clinical data indicating knee os-
teoarthritis or any scars from previous knee surgery. A skin incision was made to collect
the samples, and the underlying subcutaneous tissue was carefully dissected to expose
the MCL and the EL outer surface. This ensured that the samples were taken from the
intended area with precision and accuracy. The collected samples were then subjected to
further analysis. Samples were taken from the ligament’s proximal and distal thirds and
underwent a standard fixation procedure [25].

2.2. Light Microscopy

The specimens were meticulously prepared for light microscopy using a Leica micro-
tome (Wetzlar, Germany). By cutting 5 µm thick sections, the samples were mounted on
microscope slides and stained with hematoxylin and eosin, following established methods.
These steps were taken to ensure the highest level of accuracy and precision in the resulting
images, allowing for a thorough analysis of the specimens under examination [11,12].

2.3. Immunohistochemistry (IHC)

Several specimens were 10% formalin-fixed, embedded in paraffin, and then sliced to
4 µm thickness. This study employed a set of antibodies from DAKO Cytomation, Agilent
(Glostrup, Hovedstaden, Denmark) which included monoclonal mouse anti-human α-SMA
(M0851), monoclonal mouse anti-human VEGF antibody (M7273), and monoclonal mouse
anti-human CD34 (M7165). These antibodies were diluted to a ratio of 1:100 for better
specificity and sensitivity. For the detection of these antibodies, the EnVision™ FLEX+,
Mouse, and High pH (Link) detection system (K8002) (DAKO Agilent) was utilized. The
experiment involved the implementation of controls in eighteen (18) sections. To capture
representative IHC staining fields, an Olympus CX21 microscope was used, which was
fitted with an Olympus C5050Z digital camera manufactured by Olympus Optical Co.,
Ltd., Tokyo, Japan. The combination of these two devices was instrumental in ensuring
accurate and reliable results.

2.4. Semiquantitative Analysis

The expressions of CD34, VEGF, and α-SMA were semiquantitatively analyzed using
ImageJ 1.53f51 software, which is a widely used open-source image processing program
that can be downloaded for free from the official website (http://imagej.nih.gov/ij/) [13].
This software allows for the measurement of pixel intensities, which can be used to quantify
the expression levels of different proteins in IHC-stained samples. To assess the staining
intensity, we utilized the IHC Profiler plugin, which is a free download available from the
official ImageJ website (https://sourceforge.net/projects/ihcprofiler/) [14]. This plugin
allows for the automatic and objective scoring of IHC-stained samples based on a four-tier
system, which includes high positive (3+), positive (2+), low positive (1+), and negative (0)
classifications. The scoring is based on the intensity and proportion of stained cells in each
visual field. To ensure accuracy, our study involved analyzing at least ten random visual
fields on each of the five slides. The final score was determined by calculating the average
score of all visual fields. This approach allowed us to obtain a more comprehensive and
representative assessment of the staining intensity and expression levels of CD34, VEGF,
and α-SMA in our samples.

2.5. Cell Numbers

We determined the density of cells using a sophisticated method based on supervised
machine learning in Ilastik software (stable release 1.3.3/2019) [26]. A pixel classifier was

http://imagej.nih.gov/ij/
https://sourceforge.net/projects/ihcprofiler/
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trained to accurately identify the tissue area, background, and nuclei in the image. We then
processed the segmentation masks of the nuclei to identify particles, filtered out any noise
and debris, and normalized the cell counts to the tissue area masks of the same image. The
resulting cell counts were stated as the number of cells present in each square millimeter
(mm2) of the tissue. This technique allowed us to obtain precise and reliable information
on cell density, which is crucial for understanding cellular- and tissue-level processes.

2.6. Statistical Analysis

To analyze the image count data in a detailed manner, the statistical programming
language R v4.2.2 [26] was utilized along with the integrated development environment R
Studio v2023.03.0 + 386 [27]. For comparing groups, a t-test was employed, assuming simi-
lar dispersions. To ensure the reliability and accuracy of the findings, statistical significance
was considered when p < 0.05. To make the data more visually understandable, the ggplot2
v3.4.0 package [28] was used to generate graphic representations that effectively convey
the analysis results.

3. Results
3.1. Light Microscopic Observations

The EL was identified as similar proximally (Figure 1a,b) and distally (Figure 2a,b).
It consisted of active and non-active fibroblasts, adipose cells, and extracellular collagen
fibers, either alone or in groups. Most of the neurovascular bundles of the EL–ligament
complex were located in the EL. The EL had more fibroblasts at both ends than in the
middle. The morphology of the EL was remarkably similar to that of the synovium.
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Figure 1. Typical morphology of the proximal part of the medial collateral ligament (MCL) epiliga-
ment (EL), (L)-ligament (a,b). Black arrowheads—EL blood vessels; black arrows—sensory nerve
endings. Hematoxylin and eosin stain. Scale bar 100 µm; (b) Scale bar 50 µm.
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Figure 2. Typical morphology of the distal part of the medial collateral ligament (MCL) epiligament
(EL) (a,b). Black arrowheads—EL blood vessels; black asterisks—adipocytes; and black arrows—
sensory nerve endings. Hematoxylin and eosin stain. Scale bar 100 µm.

3.2. Expression of CD34, α-SMA, and VEGF in the MCL EL

Immunostaining for CD34 in the endothelial layers of blood vessels was weak or
absent in the MCL proximal and distal parts. This was observed in the EL, in contrast to
the midsubstance (Figures 3a,b and 4a,b). Immunostaining for α-SMA was strongest in
the smooth muscle cells of the blood vessels tunica media, and in the EL superficial layer
(Figures 3c,d and 4c,d), as compared to the midsubstance. Positive VEGF IHC staining
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was localized mostly in the blood vessels’ tunica media (Figures 3e,f and 4e,f), in contrast
to the midsubstance, where a positive reaction was detected only in the blood vessels
endothelial layer.
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Figure 4. Immunohistochemical (IHC) staining for CD34, α-SMA, and VEGF in the epiligament
(EL) of the distal part of the medial collateral ligament (MCL) of the knee. (a,b): CD34 IHC staining.
(c,d): α-SMA IHC staining. (e,f): VEGF IHC staining. Scale bar 100 µm.

To gain insight into the intensities of CD34, α-SMA, and VEGF IHC reactions in the
proximal and distal sections of the MCL, Table 1 presents an overview. Our analysis relied
on two key parameters: the proportion of images with a specific overall score (as visualized
in Figure 5) and the average percentage of image areas with corresponding scores across all
experimental group images.
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Table 1. Semiquantitative analysis of the immunohistochemical (IHC) expression of VEGF, CD34, and
α-SMA in the proximal and the distal parts of the epiligament (EL) of the medial collateral ligament
(MCL). The percentage for each score represents the percentage of visual fields that the IHC Profiler
assigned this score to.

IHC Marker
Distal Part of the MCL EL Proximal Part of the MCL EL

Score % Score %

VEGF

High Positive (3+) 0.1 High Positive (3+) 0.1

Positive (2+) 2.3 Positive (2+) 2.1

Low Positive (1+) 14.5 Low Positive (1+) 14.6

Negative (0) 83.1 Negative (0) 83.2

CD34

High Positive (3+) (0.0%) 0.0 High Positive (3+) 0.1

Positive (2+) 0.4 Positive (2+) 0.7

Low Positive (1+) 3.8 Low Positive (1+) 6.1

Negative (0) 95.9 Negative (0) 93.0

α-SMA

High Positive (3+) 2.5 High Positive (3+) 0.2

Positive (2+) 12.8 Positive (2+) 5.1

Low Positive (1+) 23.0 Low Positive (1+) 21.0

Negative (0) 61.8 Negative (0) 73.6
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Upon examination of the images, it was observed that the distribution of CD34 staining
with DAB showed similar patterns in both the proximal and distal sections of the MCL EL.
The majority of fields, approximately 95%, were negative. Conversely, VEGF DAB staining
showed no significant differences between the proximal and distal regions. Although
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approximately 85% of the microscopy fields were negative, the percentages of low positive
and positive fields were several-fold higher than those of the images stained with plate
number 1. The overall score of all images stained with VEGF DAB was negative. In
contrast, α-SMA DAB staining revealed the highest percentage of positive microscopy
fields overall, with 39.2% for the distal and 26.4% for the proximal parts (excluding 0),
compared to VEGF (less than 20%) and CD34 (less than 10%) DAB staining. Additionally,
α-SMA DAB staining showed the most pronounced differences between the proximal and
distal parts. The number of positive microscopy fields overall was greater in the distal part,
where the number of negative fields was lowest (about 60%). This was confirmed by the
image distribution with overall IHC scores, which were negative in the proximal part and
all low positive in the distal part (Figure 5). The mean cell counts in the EL MCL distal
part were significantly higher than those in the proximal part (4735 vs. 2680 cells/mm2,
p 1.3 × 10−6) (Figure 6). In conclusion, based on the analysis of the images, the distribution
of CD34, VEGF, and α-SMA staining varied in different regions of the MCL EL. While
CD34 exhibited similar distributions between the proximal and distal parts, VEGF showed
no marked differences, and α-SMA showed the highest percentage of positive microscopy
fields overall, with the most pronounced differences between the proximal and distal parts.
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4. Discussion

The current study seeks to examine the expressions of CD34, α-SMA, and VEGF in
the MCL concerning EL theory and to explore their implications for ligament healing.
Given that the ligament is an avascular structure, it is believed to have limited to no
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potential for healing. In contrast, the EL is vascularized and contains a diverse range of
cells, including fibroblasts, fibrocytes, adipocytes, and mast cells. These cells produce
vital compounds, such as collagens, matrix metalloproteinases, and fibronectin, which
are essential for maintaining ligament homeostasis. The present findings are relevant
as they provide valuable insights into the mechanisms underlying ligament healing. By
elucidating the role of specific cells and compounds in this process, this study contributes to
the development of more effective treatment strategies for ligament injuries. Furthermore,
it highlights the importance of the EL in the context of ligament healing, suggesting that this
structure may hold the key to unlocking the full healing potential of the ligament [8–13,15].

The enlisted cells are involved in the complex mechanisms of degradation, remodeling,
and proliferation that occur in an injured ligament. Fibroblasts are implicated in phagocy-
tosis, differentiation, and collagen synthesis [8–10,13]. Countless collagen fibers, dispersed
in all directions, were also observed in the EL. One hypothesis suggests that single or
grouped collagen fibers respond to ligament tension [13]. The adipocytes located within
the extracellular matrix (ECM) function as exceptional packing material [13]. Notably, the
principal neurovascular bundles are mainly situated in the EL of the MCL [8–13,15]. The
EL is paramount in maintaining normal ligamental growth and homeostasis.

Georgiev and colleagues [10] conducted a rodent study on MCL injury healing, re-
vealing that EL cells migrate into the gap caused by torn ligaments, connecting the injured
ends and promoting the healing process. The authors additionally proved that the essential
collagens needed for ligament repair primarily reside within the MCL EL [11,15].

CD34 expression within the EL suggests the presence of stem/progenitor cells that are
essential for the regenerative processes involved in ligament recovery and repair [16,17].
Mifune et al. [29] demonstrated in a rat model that cells positive for CD34 lead to enhanced
collagen II production and increased angiogenesis, thus improving healing. The blood
vessel walls provide a substantial source of stem/progenitor cells expressing CD34 surface
markers [16,18]. CD34 cells circulating in the bloodstream exhibit robust vasculogenic
activity in the MCL injury, significantly contributing to the ligament’s healing. Preclinical
findings illustrate morphological changes during healing accompanied by concurrent
vasculogenesis. Tei and colleagues [30] revealed that circulating CD34+ cells have shown
potential for future clinical applications in the healing and remodeling of ligaments. This
finding sheds light on the possibility of using these cells to optimize the recovery process
and improve the outcomes of ligament-related injuries in patients. Our results revealed
that in the EL of the MCL, CD34 was expressed very weakly or not at all in the blood
vessels’ endothelial layers and the EL. The analyzed images showed similar distributions of
microscopy fields overall, with most of them (about 95%) being negative in both proximal
and distal parts. The EL in the MCL midpart is considered to be the primary donor of
CD34+ cells, with a low positive expression of CD34. The EL in the MCL midpart is
involved in fostering enhanced healing potential. The MCL proximal and distal parts have
worse healing capacity regarding CD34 expression [25].

Myofibroblasts have diverse origins, yet their development follows a consistent se-
quence [20]. Following injury, they are exposed to inflammatory stimuli, and mechanical
microenvironment forces are reported to adopt the ‘proto myofibroblast’ phenotype, sub-
sequently transforming into typical myofibroblasts, which are characterized by α-SMA
de novo expression [21]. Increased α-SMA expression facilitates a substantial enhance-
ment of myofibroblast contractile activity [20]. Menetrey et al. [22] have reported that
α-SMA-positive cells emerged in the MCL, within three days post-injury, and subsequently
migrated towards the lesion’s center. The restoration of the MCL’s original length and in
situ strain is accomplished by myofibroblasts [31]. Our research has shown that α-SMA-
positive reactions are mainly present in the smooth muscle cells of blood vessels in the
tunica media and the superficial layer of the MCL EL.

Expression of α-SMA-positive cells, including myofibroblasts within the MCL, high-
lights the crucial significance of the EL in ligament healing. SMA DAB staining showed the
most pronounced differences between the proximal and distal parts of the MCL EL. There
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were more positive microscopy fields in the distal part, where the number of negative fields
was lowest. The α-SMA expression in the distal part of the MCL EL and the higher number
of cells in this part suggest that, according to the EL theory, the distal part has a greater
healing capacity.

EGF plays a critical role in the activation, migration, and proliferation of endothelial
cells in various pathologies [32]. It is especially important during the early phases of
proliferation and remodeling, where it acts as a powerful angiogenic stimulator [33]. VEGF
receptors are located exclusively on endothelial cells and are expressed in developing blood
vessels [34]. VEGF is recognized as the most significant promoter of vascular growth, and
it directly regulates endothelial cell behaviors like migration, proliferation, and differen-
tiation [35]. By stimulating angiogenesis, VEGF helps to facilitate access to the healing
site, although the benefits of increased neovascularization for clinical outcomes remain
unclear [36]. Acting as an endogenous stimulator, VEGF contributes to both angiogenesis
and heightened vascular permeability [37]. Various studies have shown that VEGF produc-
tion peaks after the inflammatory phase during the natural healing of injured ligaments
and tendons [38–40]. Reports indicate that VEGF and blood vessel formation reach their
peak between five- and nine days post-injury [14,33]. Elevated levels of angiogenic growth
factors, including VEGF, at the injury site, are associated with a well-defined pattern of
vascular ingrowth from both the epi- and intra-tendinous blood supplies to the repair
site. This neovascularization progresses along the epitenon’s surface through a typically
avascular region, supplying extrinsic cells, nutrients, and growth factors to the injured
area [33]. As an endothelial mitogen, VEGF promotes angiogenesis, enhances capillary
permeability, and contributes to fibrous integration between the tendon and bone during
the early postoperative stage [41].

Wei et al. proposed that VEGF plays a crucial role in ligament healing by promoting
angiogenesis and accelerating remodeling [24]. In our study, we found that VEGF was
mostly expressed in the tunica media of the blood vessels. Therefore, we confirm the
validity of the EL theory and reiterate that EL is the primary supplier of blood vessels while
VEGF contributes to ligament healing. Our analysis of VEGF DAB staining showed no
significant differences between the proximal and distal parts of the MCL EL.

Following injury, ligaments heal through the formation of scar tissue rather than
regeneration [42–44]. Several studies indicated that the EL serves as a primary source
of connective tissue cells that contribute to scar tissue formation during ligament heal-
ing [13,42,45–48]. It is established that fibroblasts, which are critical in scar formation,
are mobile cells capable of migrating from the EL to the injured ligament [13,45,47,49,50].
Ligament injuries prompt the release of various cell types from the EL, including neu-
trophils and mitotic cells, up to the fifth day after injury [14]. This suggests a bilateral
interaction between the EL and ligament, indicating that they collaborate in facilitating
effective healing. The MCL proximal injury tends to heal with less remaining laxity and a
higher likelihood of stiffness than injury at the distal end [51,52].

Study Strengths: The findings of the current study demonstrate slightly higher expres-
sion of CD34 and VEGF in the MCL EL distal part and a higher α-SMA expression in the
proximal part. Such discrepancies could explain the disparity in healing between the MCL
EL proximal and distal parts.

The present study has several limitations.

1. The cadavers’ age could potentially introduce bias due to age-related changes [53].
In response, recently deceased cadavers with a mean age of 55 years, free from
osteoarthritis or trauma, were used.

2. The subjective nature of visual quantification of IHC images exposes them to consid-
erable inter- and intra-observer variability. The IHC Profiler plugin integrated with
ImageJ software was implemented to mitigate this problem.

3. Only healthy MCL EL was investigated.



Biomedicines 2024, 12, 659 11 of 13

5. Conclusions

The present study delves into the expression of CD34, α-SMA, and VEGF in the
human MCL EL and its critical role in ligament healing. The EL serves as a crucial source
of blood vessels to the MCL–EL complex, which is vital for ligament nutrition and recovery.
The distal part of the ligament shows a higher number of cells and α-SMA expression,
which could explain its superior healing potential. CD34 expression reveals that the MCL’s
proximal and distal parts have a lower capacity for stem cell migration into the ruptured
site, according to the EL theory. VEGF expression in both the distal and proximal parts
confirms that the EL is the primary blood vessel donor and is involved in ligament healing.
These findings extend the existing EL theory and provide insights into the intricate healing
processes of the MCL. Further research is needed to explore the EL’s significant role in
MCL healing.
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