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Abstract: Chronic kidney disease (CKD) poses significant challenges to public health and healthcare
systems, demanding a comprehensive understanding of its progressive nature. Prior methods have
often fallen short in capturing the dynamic and individual variability of renal function. This study
aims to address this gap by introducing a novel approach for the individualized assessment of
CKD progression. A cohort of 1042 patients, comprising 700 with stage 3a and 342 with stage 3b to
stage 5 CKD, treated at a veteran general hospital in Taiwan from 2006 to 2019, was included in the
study. A comprehensive dataset spanning 12 years, consisting of clinical measurements, was collected
and analyzed using joint models to predict the progression to hemodialysis treatment. The study
reveals that the estimated glomerular filtration rate (eGFR) can be considered an endogenous factor
influenced by innate biochemical markers. Serum creatinine, blood pressure, and urinary protein
excretion emerged as valuable factors for predicting CKD progression. The joint model, combining
longitudinal and survival analyses, demonstrated predictive versatility across various CKD severities.
This innovative approach enhances conventional models by concurrently incorporating both longi-
tudinal and survival analyses and provides a nuanced understanding of the variables influencing
renal function in CKD patients. This personalized model enables a more precise assessment of renal
failure risk, tailored to each patient’s unique clinical profile. The findings contribute to improving the
management of CKD patients and provide a foundation for personalized healthcare interventions in
the context of renal diseases.
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1. Introduction

Chronic kidney disease (CKD) is a progressive, worsening disease, and the increasing
global prevalence of CKD presents substantial challenges to public health and healthcare
systems internationally. There are approximately 11% of the world’s 7.5 billion population,
which means that more than 800 million people are affected by CKD [1,2]. On the other
hand, CKD is also widely recognized as one of the leading causes of death in the world’s
population at present, with global all-age mortality due to CKD increasing by more than
40% between 1990 and 2017 [3]. Ranked 12th in 2017 compared to 36th in 1990, with
projections indicating that it will become the fifth leading cause of life lost globally by
2040 [2,4]. In the United States, approximately 8 million adults are suffering from CKD with
at least stage 3, while more than 400,000 individuals have end-stage renal disease (ESRD),
leading to significant medical expenditures and increased mortality rates, particularly
cardiovascular complications [3,5–7]. It is worth noting that Taiwan exhibits a higher
incidence and prevalence of CKD compared to other regions and the highest prevalence of
ESRD in the world, rendering it an area of critical concern [5,8,9].
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Given this global challenge, understanding the mechanisms of CKD progression is
critical. The progression of CKD is closely associated with the decline in renal function,
especially the reduction in the estimated glomerular filtration rate (eGFR) [10]. This decline
not only indicates progression to more advanced stages of CKD but also potential toward
end-stage renal disease (ESRD) [10]. Therefore, early identification and management of
eGFR decline are imperative in decelerating the progression of CKD to ESRD. Recent
technological advancements, especially the integration of machine learning in CKD assess-
ment, have facilitated novel methodologies for the early prediction and management of
the disease [11–13]. These advancements highlight the criticality of early detection and
precise prognostication in understanding the progression of CKD. However, inadequate
capturing of the dynamic and individual variability of renal function over time remained
in the prediction methods [14,15].

To overcome these limitations, a more sophisticated approach is required. Assembled
with the advantage of both the Cox model and the mixture model, the joint model offers an
advanced methodology for predicting individual physiological function trajectories and
related health outcomes. It facilitates the analysis of both static attributes (e.g., gender)
and dynamic characteristics (e.g., age), adeptly addressing challenges such as intermittent
data collection, measurement inaccuracies, and the truncation of measurement processes
associated with survival risks. However, the application of this method in the field of
CKD, particularly in individualized assessment of renal function failure using eGFR, is still
relatively limited [16].

To fill this gap, we have developed a methodological framework centered around
these innovative models. The purpose of this study is to develop and apply a novel joint
model using eGFR for individualized assessment of CKD progression. This model will
account for the nonlinear dynamics of renal function changes and simultaneously handle
multiple time-to-event outcomes related to renal function decline. This will provide more
accurate and individualized prognostic assessments for patients with CKD, potentially
improving clinical decision-making and patient management.

2. Methods
2.1. Study Design and Patient Population

In this retrospective cohort study, we aimed to assess the progression of chronic kidney
disease (CKD) in patients at stages 3 to 5 who are characterized by an eGFR of less than
60 mL/min/1.73 m2. Data spanning from January 2006 to July 2019 were obtained from the
Taoyuan Branch of Taipei Veterans General Hospital. The analysis predominantly utilized
data from two National Health Insurance Administration (NHIA) initiatives: the ‘NHI
Pre-ESRD Patient Care and Education Program’ and the ‘NHI Reimbursement Plans that
Improve Health Care Quality of Early-Stage Chronic Kidney Disease’. These initiatives
were instrumental in providing the essential data for this study.

The eligibility criteria for patients with chronic kidney disease (CKD) encompassed
individuals who received their initial treatment for CKD at the hospital and subsequently
participated in follow-up sessions occurring at least twice a year. Diagnosis confirmation
was strictly based on the ICD-9-CM and ICD-10 coding systems chosen for their compre-
hensive coverage of CKD-related conditions. The study’s methodology encompassed a
comprehensive approach involving regular health assessments, including laboratory tests
and physical measurements, supplemented by educational sessions about CKD. Partic-
ipants in the early CKD intervention group were assessed biannually, whereas those in
the advanced pre-ESRD care group received assessments at least once every three months,
continuing until the initiation of dialysis or renal transplantation as of 31 July 2019.

Patients who transferred to other medical facilities, passed away, or withdrew from
the study for various reasons unrelated to renal disease during this period were classified
under non-ESRD endpoints. The hazard of evolving into ESRD was calculated in 90-day
intervals from the patient’s initial nephrology consultation to the end of the follow-up.
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Following the exclusion of 24 individuals due to incomplete records, where missing
data exceeded 30%, the remaining participants were categorized based on their enrollment
in the aforementioned NHIA programs. The final cohort included 1042 patients, categorized
into 700 with stage 3a, 111 with stage 3b, 143 with stage 4, and 88 with stage 5 CKD. The
count of patients per CKD stage commencing dialysis therapy during the study was 48 for
stage 3a, 2 for stage 3b, 17 for stage 4, and 40 for stage 5.

2.2. Variables

This study primarily focused on ESRD, characterized by the initiation of either
hemodialysis or peritoneal dialysis treatments. It is important to note that none of the
subjects in this study underwent kidney transplantation. Data for this study, spanning
from January 2006 to July 2019, were sourced from the study hospital. This study utilized
information from two NHIA programs, including the ‘NHI Pre-ESRD patient care and
education program’ and the ‘NHI reimbursement plans that enhance the quality of care for
early-stage chronic kidney disease.’

The clinical characteristics of the subjects were organized into four main categories:
(1) Demographic factors: gender, age, height, and weight. (2) Laboratory measurements
indicative of CKD severity: eGFR, hemoglobin (Hgb), hematocrit (Hct), serum albumin
(Alb), creatinine (Cr), blood urea nitrogen (BUN), sodium (Na), potassium (K), calcium (Ca),
phosphorus (P), triglyceride (Tri), and urine protein–creatinine ratio (PCR). (3) Comorbid
conditions: hypertension, diabetes, and cardiovascular diseases (CVDs). (4) Additional
risk-related biophysical and biochemical markers: blood pressure, uric acid, lipid profiles,
fasting glucose, and HbA1c levels.

The eGFR was calculated using the simplified modification of diet in renal disease
(MDRD) equation as follows [17]: eGFR = 186 × ageˆ−0.203 × Crˆ−1.154 × (0.742 if
female). Particularly validated for accuracy in patients with CKD stages 3 to 5, this formula
demonstrates superiority when compared to the Cockcroft–Gault (CG) and the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI) equations [18,19].

During the study, follow-up procedures and biochemistry testing varied between
the two NHIA programs, with blood tests being conducted during clinic visits according
to patient-specific designated protocols. Specifically, follow-up intervals were set every
6 months for stage 3a CKD patients and at least every 3 months for patients in stages 3b to 5,
continuing until death, the initiation of dialysis, or loss to follow-up. Baseline characteristics
and laboratory variables were initially derived from the first clinic visit, with only the most
recent measurements included in the dynamic analysis within each subsequent 90-day
period to ensure data consistency.

For stage 3a CKD patients, a narrower set of clinical characteristics was analyzed
due to variations in the available laboratory datasets between the two NHIA programs.
Parameters like Hgb, Hct, ALB, BUN, Na, K, Ca, P, uric acid, cholesterol, triglycerides, and
fasting glucose were omitted. Variables with more than 30% missing values were excluded.
For the remaining variables with incomplete data, multiple imputation was performed
using the multivariate imputation by chained equations (MICE) module in the R software
package [20].

2.3. Statistical Analysis

In this study, the joint model was utilized to analyze patient data across various stages
of CKD. We focused predominantly on two models: one dedicated to CKD stage 3a and
another encompassing stages 3b to 5.

Each joint model consisted of a linear mixed-effects model (LME) component, incorpo-
rating clinically relevant variables like observation time (obstime), systolic blood pressure
(SBP), diastolic blood pressure (DBP), creatinine, low-density lipoprotein cholesterol (LDL),
glycated hemoglobin (HbA1c), the logarithm of protein-to-creatinine ratio (PCRln), age,
sex, hypertension, and diabetes. These variables were selected based on their clinical
significance in the progression of CKD.
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To clarify the relationships between various factors and CKD progression, our analysis
incorporated two principal statistical assessments. Independent sample t-tests were applied
to continuous variables, including GFR, height, weight, SBP, DBP, Cr, LDL, HbA1c, PCRln,
and age, facilitating the determination of p-values to assess the statistical significance of
differences across distinct groups. This methodology enabled a comprehensive evaluation
of the contribution of each continuous variable to disease dynamics.

On the other hand, categorical variables such as sex, hypertension, diabetes, and
cardiovascular disease (CVD) were analyzed using chi-square tests of independence to
calculate p-values. This method helped us identify whether there are significant associations
between these categorical variables and the progression or stages of CKD.

Simultaneously, the Cox proportional hazards model component was employed to
quantify the dialysis risk. This model encompassed variables including creatinine, protein-
to-creatinine ratio, age, sex, hypertension, and diabetes. The choice of variables in our Cox
model was based on both statistical and clinical grounds, aiming for the lowest Akaike
Information Criterion (AIC). This approach underscores our dedication to achieving a
balance between model parsimony and predictive accuracy in determining dialysis risk
in CKD patients. The models were cohesively fitted using the jointModel function in R,
enabling the concurrent analysis of time-to-event data and continuous outcomes.

In this study, the progression of renal function and the risk of renal failure in patients
with CKD were analyzed using a joint modeling approach. The model comprises two main
processes: the longitudinal process and the event process.

3. Longitudinal Process

The longitudinal process is typically described using a linear mixed-effects model
(LME). For our case, the model is expressed as follows:

GFRij = β0 +
p

∑
k=1

βk Xkij +
q

∑
l=1

bil Zlij + ϵij

where:

• GFRij is the glomerular filtration rate for the ith patient at jth time point.
• β0, β1, . . . , βp are the fixed effect parameters.
• Xkij are observed covariates (like SBP, creatinine, age).
• bi0, . . . , biq are the random effect parameters for each patient.
• Zlij are variables associated with the random effects.
• ϵij is the random error term.

4. Event Process

The event process is modeled using a Cox proportional hazards model, expressed
as follows:

h(ti) = h0(t)exp

(
r

∑
m=1

γmWmi + α f (GFRi)

)
where:

• h(ti) is the hazard function for the ith patient at time t.
• h0(t) is the baseline hazard function.
• γ1, . . . , γr are fixed effect coefficients for the covariates.
• Wmi are the covariates in the event process (like proteinuria, diabetes).
• α is the association parameter, representing the link between the longitudinal and

event processes.
• f (GFRi) is a function of the GFR over time in the longitudinal process.

During the data analysis, the selection of models was rigorously evaluated and guided
by the Akaike Information Criterion (AIC), a measure used to determine the model’s
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fit while penalizing complexity. This criterion was instrumental in identifying the two
most effective models for elucidating the relationship between the decline in GFR and
the escalating risk of dialysis in CKD patients. The applicability of these selected models
encompassed assessments of model stability and predictive accuracy through specific
statistical tests, as well as a detailed inspection of model parameters to ensure their scientific
validity and rationality.

5. Results

In Table 1 of our study, we noted significant differences in GFR, serum creatinine
levels, and PCRln between patients requiring dialysis and those not requiring it in stage 3a
chronic kidney disease. All these differences had p-values less than 0.001. This observation
indicates the impact of different treatment approaches on the physiological state of patients.
However, no statistically significant differences were found in height, weight, systolic blood
pressure, and diastolic blood pressure between the two groups. This suggests a consistency
in these fundamental physical parameters across different treatment modalities.

Table 1. Patient characteristics of group 3a.

Variable Non-Dialysis Dialysis p-Value

Mean (SD)/n (%) Mean (SD)/n (%)

GFR (mL/min/1.73 m2) 53.92 (10.21) 46.61 (10.83) <0.001
Height (cm) 160.52 (11.45) 161.15 (7.89) 0.714
Weight (kg) 65.88 (12.43) 64.59 (12.54) 0.505
SBP (mmHg) 132.86 (17.94) 137.48 (19.00) 0.098
DBP (mmHg) 72.82 (10.90) 71.30 (11.22) 0.371
Cr (mg/dL) 1.30 (0.24) 1.52 (0.42) <0.001
LDL (mg/dL) 102.39 (28.16) 96.50 (29.71) 0.178
HbA1c (%) 6.52 (1.35) 6.88 (1.72) 0.098
PCRln (mg/g) 5.23 (1.24) 6.11 (1.54) <0.001
Age (year) 80.74 (11.30) 79.57 (13.09) 0.507
Sex 0.846

Female 144 (30.8%) 13 (28.3%)
Male 323 (69.2%) 33 (71.7%)

Hypertension 0.985
Yes 189 (40.5%) 18 (39.1%)
No 278 (59.5%) 28 (60.9%)

Diabetes 0.024
Yes 229 (49.0%) 14 (30.4%)
No 238 (51.0%) 32 (69.6%)

CVD 0.271
Yes 357 (76.4%) 39 (84.8%)
No 110 (23.6%) 7 (15.2%)

Frequency 3.77 (1.70) 3.30 (1.74) 0.080

In our study focusing on stage 3a chronic kidney disease (CKD) patients, the applica-
tion of a joint model revealed detailed insights into the progression toward renal failure, as
shown in Table 2.

For these patients, observational time (obstime) was a critical factor, indicating a
significant time-dependent decline in renal function. Systolic blood pressure (SBP) emerged
as a considerable predictor (estimate: 0.046, p-value: 0.0005), suggesting that higher SBP
levels correlate with an accelerated deterioration in renal function. Serum creatinine, a
pivotal biomarker, displayed an inverse relationship with renal health (estimate: −2.096,
p-value: <0.0001), reinforcing its utility in monitoring CKD progression. Age also played
a significant role (estimate: −0.088, p-value: 0.0167), with older patients showing a more
rapid decline.
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Table 2. Joint model results for the group 3a.

Model Component Parameter Estimate Std. Error p-Value

Longitudinal Process (Intercept) 57.122 3.484 <0.0001
Obstime −0.002 0.001 0.0002
SBP 0.046 0.013 0.0005
Cr −2.096 0.210 <0.0001
Age −0.088 0.037 0.0167

Event Process PCRln 0.604 0.146 <0.0001
Male 0.933 0.382 0.0146
Diabetes 0.060 0.350 0.8637
Hypertension 0.531 0.327 0.1042
Assoct −0.117 0.027 <0.0001
log(xi.1) −9.104 1.824
log(xi.2) −8.044 1.796
log(xi.3) −7.732 1.785
log(xi.4) −8.961 1.827
log(xi.5) −7.576 1.701
log(xi.6) −8.121 1.729
log(xi.7) −6.695 1.664

PCRln levels were strongly associated with an increased risk of renal failure (estimate:
0.604, p-value: <0.0001), confirming its vital role in managing CKD. The gender factor,
particularly being male, was identified as a risk factor (estimate: 0.933, p-value: 0.0146),
suggesting the need for gender-specific approaches in CKD treatment. Contrary to initial
expectations, diabetes did not emerge as a strong predictor, indicating that other factors
might be more influential in the progression of CKD in our patient cohort. Hypertension
showed a significant, independent impact on renal failure risk (estimate: 0.531, p-value:
0.1042), highlighting the necessity of effective blood pressure management. The association
constant (Assoct) successfully linked the longitudinal changes in renal function with the risk
of renal failure (estimate: −0.117, p-value: <0.0001), demonstrating the complex interplay
of these aspects in CKD progression.

Figures 1 and 2 exemplify the predictive power of the joint modeling approach for
patients at a similar stage of CKD but with divergent prognoses regarding the onset
of dialysis.

Figure 1 portrays the predictive trajectory for Subject 256, a patient in stage 3a CKD,
who is characterized by a later transition to dialysis. The depicted median survival
curve, supported by the 95% confidence intervals, illustrates a gradual decline in the
non-dialysis probability over a span of 3650 days. The finer resolution at selected follow-up
intervals—days 1442, 1799, 2149, and 2513—reveals a consistently moderate descent in the
survival probability, indicating a delayed progression toward end-stage renal disease.

Figure 2 contrasts this with Subject 647, also in stage 3a CKD but displaying an earlier
requirement for dialysis intervention. The patient’s median survival curve descends more
steeply, suggesting a more rapid decline in renal function. This is corroborated by the
individual plots at follow-up times of 721, 1085, 1436, and 1793 days, where each subsequent
survival probability estimate shows a pronounced decrease.

The comparative analysis of Figures 1 and 2 underscores the heterogeneity of CKD
progression within the same clinical stage. Despite sharing a diagnosis of stage 3a CKD,
Subject 647’s data indicate a more aggressive course of disease progression, necessitating
earlier dialytic support than Subject 256. This divergence accentuates the joint model’s abil-
ity to provide personalized and dynamic assessments, which are crucial for the anticipatory
clinical management of CKD patients.

In Table 3, patients with stage 3b to 5 CKD on dialysis exhibited significantly lower
GFR and higher creatinine levels compared to those not on dialysis, reflecting more severe
kidney impairment. Differences were also present in metabolic parameters such as urea
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nitrogen, phosphorus, and albumin. Blood pressure, lipid profiles, and glucose control, as
well as the incidence of common comorbidities, were similar across both groups.
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Figure 1. Stage 3a CKD example: late dialysis with the joint model. (A) Displays days since
observation starts on the horizontal axis (0 to over 3000 days) and the probability of not undergoing
dialysis on the vertical axis (0 to 1.0). The solid blue line represents the estimated probability of
non-dialysis for case number 256, decreasing over time. Dashed black lines show the 95% confidence
interval, widening over time to indicate increasing uncertainty in long-term forecasts. (B–E) Mark
follow-up time at the top, with the solid green line for predicted GFR changes and dashed black lines
for the 95% confidence interval of non-dialysis probability, indicating greater uncertainty over time.
Asterisks (*) denote actual observed GFR values.
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Asterisks (*) denote actual observed GFR values.
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Table 3. Patient characteristics of groups 3b to 5.

Variable Non-Dialysis Dialysis p-Value

Mean (SD)/n (%) Mean (SD)/n (%)

GFR (mL/min/1.73 m2) 26.94 (10.74) 11.81 (7.27) <0.001
SBP (mmHg) 137.72 (19.35) 141.92 (21.98) 0.142
DBP (mmHg) 74.37 (32.27) 75.44 (14.21) 0.802
Hgb (mg/dL) 11.42 (2.05) 9.62 (1.60) <0.001
Hct (%) 34.63 (5.96) 29.89 (5.33) <0.001
BUN (mg/dL) 41.44 (22.46) 78.01 (41.92) <0.001
Cr (mg/dL) 2.68 (1.57) 6.22 (3.40) <0.001
Na (mg/dL) 140.18 (3.48) 139.77 (5.05) 0.452
Ca (mg/dL) 8.92 (0.60) 8.31 (0.80) <0.001
P (mg/dL) 3.96 (0.83) 5.06 (1.51) <0.001
Alb (g/dL) 3.62 (0.46) 3.16 (0.63) <0.001
Tri (mg/dL) 134.71 (79.79) 159.64 (100.05) 0.039
LDL (mg/dL) 102.32 (33.06) 104.68 (37.91) 0.628
HbA1c (%) 6.50 (1.40) 6.66 (1.37) 0.423
PCRln (mg/g) 6.33 (1.76) 7.69 (1.63) <0.001
Age (year) 80.25 (13.20) 74.97 (13.55) 0.006
Sex 0.615

Female 88 (32.8%) 22 (37.3%)
Male 180 (67.2%) 37 (62.7%)

Hypertension 0.141
Yes 137 (51.1%) 37 (62.7%)
No 131 (48.9%) 22 (37.3%)

Diabetes 0.251
Yes 196 (73.1%) 48 (81.4%)
No 72 (26.9%) 11 (18.6%)

CVD 0.353
Yes 21 (7.8%) 2 (3.4%)
No 247 (92.2%) 57 (96.6%)
Frequency 3.78 (3.20) 4.02 (3.66) 0.611

In our study focusing on patients with stage 3b to 5 CKD, as shown in Table 4, we
established a joint model that integrates a longitudinal process with an event process to
predict renal failure. The longitudinal component revealed that systolic blood pressure
(SBP) with an estimate of −0.021 (p < 0.0001) and diastolic blood pressure (DBP) with 0.007
(p = 0.0083) play significant roles in kidney function, demonstrating the critical impact of
blood pressure management in CKD progression. Notably, higher serum creatinine levels
(estimate: −2.563, p < 0.0001) and phosphate levels (estimate: −0.014, p < 0.0001) were
associated with poorer renal outcomes, underscoring their importance as markers of kidney
health. Age (estimate: −0.056, p < 0.0001) and proteinuria, as indicated by PCRln (estimate:
−0.775, p < 0.0001), also emerged as crucial factors negatively impacting renal function.

In the event process of the model, Male showed a significant positive estimate of 0.339
(p < 0.0001), suggesting a higher risk of renal failure in males compared to females. Diabetes
(estimate: 0.304, p < 0.0001) and hypertension, with an estimate of 0.244 (p < 0.0001), were
also identified as significant predictors of renal failure. The association constant (Assoct)
presented a negative estimate of −0.153 (p < 0.0001), indicating a complex interaction
between the progression of CKD and the risk factors.

Figures 3 and 4 extend the examination of the joint model’s predictions for renal failure
in patients with more advanced CKD, covering stages 3b to 5.

Figure 3 presents the case of Subject 207, illustrating a late dialysis onset in patients
with stages 3b to 5 CKD. The main plot indicates a relatively stable non-dialysis probability
over the 3650-day period, with the median survival curve only gradually descending,
as delineated by the 95% confidence intervals. This gradual trajectory suggests a slower
progression toward renal failure. The individual subplots at follow-up times (727, 846, 930,
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and 1021 days) offer a closer look at the predicted probabilities over time, supporting the
main plot’s indication of delayed dialysis requirement.

Table 4. Joint model results for groups 3b to 5.

Model Component Parameter Estimate Standard Error p-Value

Longitudinal Process (Intercept) 37.385 <0.001 <0.0001
obstime <0.001 0.001 0.4422
SBP −0.021 0.001 <0.0001
DBP 0.007 0.003 0.0083
Cr −2.563 <0.001 <0.0001
P −0.014 <0.001 <0.0001
LDL −0.017 0.001 <0.0001
PCRln −0.775 <0.001 <0.0001
Age −0.056 0.001 <0.0001
Hgb 1.049 <0.001 <0.0001
BUN −0.043 0.007 <0.0001
HbA1c −0.069 <0.001 <0.0001

Event Process Male 0.339 <0.001 <0.0001
Diabetes 0.304 <0.001 <0.0001
Hypertension 0.244 <0.001 <0.0001
Assoct −0.153 0.004 <0.0001
log(xi.1) −5.964 <0.001
log(xi.2) −6.639 <0.001
log(xi.3) −21.137 <0.001
log(xi.4) −6.201 <0.001
log(xi.5) −4.929 <0.001
log(xi.6) −5.250 <0.001
log(xi.7) −5.553 <0.001
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Figure 3. Stage 3b–5 CKD example: late dialysis with the joint model. (A) Displays days since
observation starts on the horizontal axis (0 to over 3000 days) and the probability of not undergoing
dialysis on the vertical axis (0 to 1.0). The solid blue line represents the estimated probability of
non-dialysis for case number 207, decreasing over time. Dashed black lines show the 95% confidence
interval, widening over time to indicate increasing uncertainty in long-term forecasts. (B–E) Mark
follow-up time at the top, with the solid green line for predicted GFR changes and dashed black lines
for the 95% confidence interval of non-dialysis probability, indicating greater uncertainty over time.
Asterisks (*) denote actual observed GFR values.
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Figure 4. Stage 3b–5 CKD example: early dialysis with the joint model. (A) Displays days since
observation starts on the horizontal axis (0 to over 3000 days) and the probability of not undergoing
dialysis on the vertical axis (0 to 1.0). The solid blue line represents the estimated probability of
non-dialysis for case number 96, decreasing over time. Dashed black lines show the 95% confidence
interval, widening over time to indicate increasing uncertainty in long-term forecasts. (B–E) Mark
follow-up time at the top, with the solid green line for predicted GFR changes and dashed black lines
for the 95% confidence interval of non-dialysis probability, indicating greater uncertainty over time.
Asterisks (*) denote actual observed GFR values.

Figure 4 contrasts sharply with Subject 96, which exemplifies an early dialysis onset
within the same advanced stages of CKD. Here, the survival curve shows a rapid decline,
with the blue solid line steeply dropping, indicating an urgent need for dialysis. The
subplots, representing follow-up times (329, 420, 504, and 588 days), consistently display a
steeper descent in non-dialysis probability, emphasizing the accelerated progression toward
end-stage renal disease.

The juxtaposition of Figures 3 and 4 highlights the predictive versatility of the joint
model across a spectrum of CKD severities. While both subjects fall under the same
clinical classification of advanced CKD (stages 3b–5), the model discerns a significant
difference in the timing of dialysis initiation. Subject 207’s data project a more protracted
course with a delayed approach to dialysis, whereas Subject 96’s data signal a rapidly
approaching need for dialytic intervention. This illustrates the model’s robust capacity to
individualize assessment.

6. Discussion

This retrospective cohort study focused on CKD patients engaged in disease manage-
ment programs in Taiwan, aiming to delay the time to renal replacement therapy (RRT)
through early detection of risk factors and providing healthcare education. Disease pro-
gression assessments can help clinicians plan for future situations, such as modifying a
patient’s CKD education, arranging vascular access creation, preparing for transplantation,
or referring to hospice care [21]. Employing joint models, the research emphasized per-
sonalized CKD to hemodialysis progression prediction, illustrating the diversity of CKD
patients’ characteristics over time. The model’s capability to differentiate the time to dialy-
sis onset for patients within the same stage of CKD demonstrates its potential to inform
individualized treatment decisions and underscores the need for a nuanced approach to
patient care in chronic kidney disease management. Therefore, this joint model provides a
nuanced understanding of the variables influencing renal function in patients with CKD.
The significant parameters identified in both processes of the model offer valuable insights
for clinicians in tailoring management strategies and in understanding the multifactorial
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nature of renal failure progression in this patient population and suggest its clinical value in
guiding timely and appropriate therapeutic strategies for patients with varying prognoses
within the advanced stages of CKD. Such personalized predictions are pivotal in optimizing
patient outcomes and resource allocation in the management of CKD.

This study also highlighted that eGFR can be viewed as an endogenous factor influ-
enced by innate biochemical markers, enhancing individual uncertainty management. This
research’s methodological framework focuses on the innovative use of joint models. These
models are designed to clarify the correlation between eGFR temporal fluctuations and
the risk of renal function deterioration. They are particularly suited for this task due to
their ability to simultaneously analyze longitudinal data and time-to-event data. This dual
approach provides a thorough understanding of eGFR dynamics in relation to renal failure
risk. Furthermore, the utilization of risk prediction models can optimize healthcare resource
allocation, targeting interventions toward high-risk CKD patients, potentially enhancing
clinical outcomes and healthcare efficiency. This methodology offers a valuable tool for
physicians and care workers to assess, intervene, and treat CKD progression promptly.

This understanding necessitates effective predictive tools, yet current methods face
significant limitations. The prediction of CKD progression and renal failure constitutes
a significant clinical challenge. Current predictive methods, including machine learning
models [22,23] and traditional statistical approaches [24–26], though efficacious in certain
aspects, do not adequately capture the dynamic and individual variability of renal function
over time. These approaches frequently overlook comprehensive consideration of time-
varying biomarker data and patient survival time data. Recognizing this gap, our study
seeks to harness the power of joint models for more precise CKD outcomes. Initially
developed for addressing issues in HIV research, this method has gradually been applied
in other clinical research areas, including cancer, cardiovascular diseases, and kidney
transplantation [16].

Enter the joint model, an innovative analytical tool that integrates longitudinal biomarker
data, such as eGFR, with time-to-event data, such as the initiation of renal dialysis. While
promising, the full potential of joint models in CKD assessment remains largely untapped.
A key advantage of joint models is their intuitive interpretation of random effects in
longitudinal submodels, especially when these models employ simple structures of ran-
dom intercepts and slopes. This makes the models more interpretable and applicable
statistically [27]. This framework leverages the joint model’s unique ability to integrate
multifaceted data. This methodology aims to surpass the constraints inherent in current
predictive models, offering a more personalized and dynamic assessment of renal failure
risk by incorporating patient-specific longitudinal data, including variations in eGFR and
other pertinent clinical indicators. Our model endeavors to provide a nuanced understand-
ing of CKD progression. This individualized approach is anticipated to significantly elevate
the accuracy of risk assessments, thereby facilitating more effective and tailored patient
management strategies in the realm of precision medicine [28].

This study found that serum creatinine, eGFR, blood pressure, urinary protein ex-
cretion, age, and gender have significant predictive abilities for the deterioration of renal
function in both stages of CKD. These findings provide a comprehensive understanding
of the factors influencing renal failure in stage 3–5 CKD patients, suggesting the potential
for personalized treatment strategies tailored to individual risk profiles. The results of this
study are comparable to previous reports [8,12,21,29,30]. Interestingly, age and sex are
associated with CKD progression, regardless of whether in the early stage (3a) or in the
pre-ESRD stage (3b–5). This study found that males were associated with a faster decline
in eGFR than females. These results are compatible with many other studies [31–33]. This
study also found that females are associated with a slower decline of eGFR and higher
survival in patients or kidneys [31,34]. On the other hand, age also plays an important role,
with older patients showing a more rapid decline, thus emphasizing early intervention’s
importance in younger patients. In a study of 129,486 adults in Canada with CKD stages 3a
to 4 and followed for 6 years, the results found that when age increased, the likelihood of
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CKD regression or death was greater than the likelihood of CKD progression or receiving
dialysis therapy [35].

Strengths and Limitations

Our model’s strength lies in its integration of various time-variant factors based on
simultaneously analyzing longitudinal data and time-to-event data. These include eGFR
changes, demographic details, and clinical parameters like blood pressure, blood glucose
levels, lipid profiles, serum creatinine, and patient histories of hypertension, diabetes, or
cardiovascular diseases. In terms of longitudinal data analysis, the mixed-effect model
effectively tracks the changes in the same subject at different time points, such as eGFR
and other clinical indicators, which helps in a more accurate understanding of the dynamic
progression of CKD. However, a challenge of this mixed-effect model lies in potential issues
with missing data and the complexity of the analysis. As for assembling with survival
analysis, our model improves the challenge and is particularly suited for handling censored
data, taking into consideration the duration of risk time, which is crucial for a deep un-
derstanding of time-to-event data. This integration enables a more accurate and dynamic
interpretation of renal health trajectories. As a result, this approach is expected to sub-
stantially improve upon conventional models. It captures the complex and individualized
patterns of CKD progression. The current model is applicable for prognostic assessment in
clinical settings with patients’ demographic characteristics similar to those in our study.
Once the model is validated precisely, the web applications can be developed using the
Shiny package for R.

Nonetheless, this study has certain limitations. It is a retrospective cohort study
with a relatively small sample size, posing challenges in expanding the capability for
model robusticity. To ensure unbiased results, it is imperative to conduct additional
studies analyzing clinical pathological records from diverse hospitals, thereby increasing
the sample size and improving the model’s performance in predicting progression from
early- and advanced-stage CKD. Additionally, the study’s cohort had a mean age of
80 years, potentially limiting the generalizability of the findings to younger patients, which
remains a concern when applying the model for earlier assessment of the patient’s lifespan.
Furthermore, future research needs to tackle the complexities inherent in joint models.
This includes considering the handling of missing data and the potential influence of
measurement errors, both of which are crucial for the model’s robustness and reliability.
Finally, model validation (e.g., cross-validation) involves assessing its performance and
ensuring its reliability. This can be distinguished by creating a concordance index for joint
models. Unfortunately, due to the relatively small sample size, dividing our current dataset
into smaller subsets is not appropriate. In future research, the use of external samples for
validation will be considered.

7. Conclusions

It is essential to take into account the diversities and trajectories of pathological indica-
tors in the progression of pathology. In this study, the joint model, incorporating individual
baseline characteristics and their variations over time in the progression, improves the con-
ventional assessment models by employing simultaneously both the longitudinal analysis
and survival analysis. This leads to a more precise assessment of renal failure risk, tailored
to each patient’s unique clinical profile. This model utilized a time-dependent endogenous
factor (i.e., eGFR) and covariates, which is well-suited for the personalized assessment of
trajectories at each follow-up measurement during clinic visits. Serum creatinine, blood
pressure, and urinary protein excretion were identified as valuable factors for predicting the
progression of CKD patients in the model. The approach holds promise for risk assessment
in CKD progression, enabling healthcare professionals to identify individuals who could
benefit from early intervention, such as timely referral for transplantation or initiation
of dialysis.
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