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Abstract: The use of artificial intelligence (AI) in healthcare is transforming a number of medical 
fields, including nephrology. The integration of various AI techniques in nephrology facilitates the 
prediction of the early detection, diagnosis, prognosis, and treatment of kidney disease. Neverthe-
less, recent reports have demonstrated that the majority of published clinical AI studies lack uniform 
AI reporting standards, which poses significant challenges in interpreting, replicating, and translat-
ing the studies into routine clinical use. In response to these issues, worldwide initiatives have cre-
ated guidelines for publishing AI-related studies that outline the minimal necessary information 
that researchers should include. By following standardized reporting frameworks, researchers and 
clinicians can ensure the reproducibility, reliability, and ethical use of AI models. This will ulti-
mately lead to improved research outcomes, enhanced clinical decision-making, and better patient 
management. This review article highlights the importance of adhering to AI reporting guidelines 
in medical research, with a focus on nephrology and urology, and clinical practice for advancing the 
field and optimizing patient care. 
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1. Introduction 
The rapid development of computing technology and the increase in digital data for 

subsequent analysis has led to an unprecedented increase in research activity in the field 
of artificial intelligence (AI) and its use in healthcare. Health authorities and medical so-
cieties have emphasized the need for predictive models of renal diseases that adapt to 
routine clinical practice and improve decision-making and patient management. Tradi-
tional statistical methods are commonly used in analyzing medical datasets. However, the 
integrative analyses of heterogeneous medical datasets, which include histological im-
ages, time series data in electronic health records, and complex omics data (collectively 
known as big medical data), have paved the way for novel, advanced AI algorithms to 
investigate examination findings in a more effective manner [1,2]. Various AI-based stud-
ies have demonstrated that the disease diagnostic and prognostic potential of AI tools is 
promising, especially in histology, to detect cancer tissues (e.g., renal cancer) [3–6] (Table 
1).  
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Table 1. Key Box. 

2. Methods 
Guidelines, studies, and research articles on the keywords “artificial intelligence”, 

“artificial intelligence in the medical field”, “artificial intelligence guidelines”, and “artifi-
cial intelligence in nephrology” were searched in PubMed, Google Scholar, and Scopus 
databases. Manual searching for the reference lists of eligible studies was performed and 
only guidelines, studies, and research articles written in English were included. The crite-
ria for exclusion were as follows: (i) non-English written studies; (ii) conference abstracts, 
notes, letters, case reports, or animal studies; and (iii) duplicate studies. 

3. Common Ground for AI-Based Clinical Guidelines via FAIR Common Data Models 
Since high quality datasets are, overall, still sparse in the medical domain, large scale 

efforts to collect and anonymously share medical data are in high demand. One prominent 
development in this direction can be attributed to the OMOP, which stands for Observa-
tional Medical Outcomes Partnership [9]. The OMOP was created to develop and promote 
the use of common data models (CDMs) for observational research in healthcare, thus a 
CDM is essentially a standardized way of organizing and representing healthcare data 
from various sources (e.g., electronic health records, claims data, etc.) and multiple sites 
across institutions, so that it can be used for broader research and analysis applications, 
including nephrology [6]. 

One of the key benefits of using the OMOP CDM for cancer research and beyond is 
that it allows for the more efficient and standardized AI-based analyses of healthcare data 
[5]. Likewise, this supports computational researchers and clinicians to more easily com-
bine and investigate highly individual patient data, because it can create more diverse and 
comprehensive datasets. For example, researchers can use an OMOP CDM to conduct 
studies that examine the effectiveness of different cancer treatments, the factors that con-
tribute to cancer progression or recurrence, and the impact of comorbidities on cancer 
outcomes [10]. They can also utilize an OMOP CDM to identify patient subgroups that 
may be at a higher risk for certain types of cancer or that may benefit from specific treat-
ments [11]. In addition, an OMOP CDM can help to support the development and valida-
tion of predictive AI models for cancer outcomes [12]. By integrating data from multiple 
sources into a standardized format, researchers can build and test models that can be used 
to identify patients who are at a higher risk for cancer or who may benefit from personal-
ized treatment plans. Moreover, the Radiology Common Data Model (R-CDM) for the 
standardization of Digital Imaging Communications in Medicine (DICOM) was published 

Key Box 
Artificial intelligence: Artificial intelligence (AI) is a general term that implies the use of 
a computer to model intelligent behavior with minimal human intervention. 
Machine learning: Machine learning is one of the branches of artificial intelligence (AI), 
which focuses on the use of data and algorithms to imitate the way that humans learn, 
gradually improving its accuracy. 
Deep learning: Deep Learning is one type of machine learning algorithm that uses 
artificial neural networks that can learn extremely complex relationships between 
features and labels and have been shown to exceed human abilities in performing 
complex tasks [7]. 
Ground truth: This refers to the correct or “true” answer to a specific problem or 
question. In the biomedical field, it is a “gold standard” guideline, expert opinion, or 
clinically proven outcome that can be used to compare and evaluate model results. 
Black box algorithms: These are not used to explain or justify obtained results, i.e., 
neural network-trained and identified outcomes are mostly hard to explain even with a 
high accuracy prediction [8].  
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in 2022 [13]. The R-CDM contains 75,000 radiology terms to harmonize DICOM imaging 
data into two extended tables, radiology occurrence and radiology image, on the OMOP 
CDM. This is one of many attempts to combine the high potential of an OMOP CDM con-
taining tabular data and the broadly available sets of medical image data. Besides the 
OMOP, other CDMs exist that can be utilized for the same tasks, like i2b2 [14], the Patient-
Centered Outcomes Research Network (PCORnet) CDM [15] or the CDISC SDTM [16], in 
which the latter is designed for clinical trials. 

In particular, medical image analysis of polycystic kidney disease’s progression al-
ready shows essential findings [17,18]. Here, it can be seen that AI is actively penetrating 
into various fields of medicine, including nephrology and transplant fields. One of the 
prime examples is that AI-powered donor and recipient data analysis can improve pre-
dictions of both short- and long-term graft survival [19–21]. These novel algorithms enable 
the generation of computational models that can learn automatically, generate predictions 
from prior knowledge and experience on a given topic, and improve information pro-
cessing without the need to explicitly and manually investigate all possible cases. Moreo-
ver, algorithms can often improve their abilities by gaining new experiences that refine 
and improve the system by providing more knowledge about the problem they are trying 
to solve, such as image data augmentation [22] or the oversampling of tabular data [23]. 

However, recent research shows that the majority of AI-powered clinical trials are 
poorly reported [24,25]. This may raise research concerns about their successful transla-
tion and use in clinical settings. In response to these issues, worldwide initiatives have 
created guidelines for publishing AI-related studies that outline the minimum necessary 
information that researchers should include. 

In addition, research, as well as clinical data are increasing and are collected by ad-
hering to the FAIR data principles, which are a set of guidelines for making data Findable, 
Accessible, Interoperable, and Reusable (FAIR). These principles are essential for ensuring 
that data can be used effectively in clinical research and practice [26]. In this light, a CDM 
should also be designed to be FAIR, as follows: (i) “Findable” by providing a standardized 
way of organizing and representing healthcare data that can be easily shared and accessed 
by researchers across different organizations and countries; (ii) “Accessible” by providing 
open-source tools and documentation to support the use of the CDM in research; (iii) “In-
teroperable” by providing a common data model that can be used to integrate data from 
multiple sources and to support standardized analysis and research; and finally (iv) “Re-
usable” by providing a flexible and adaptable framework that can be used for a wide 
range of research questions and applications. Taken together, CDMs are designed to sup-
port the FAIR principles for scientific data management and stewardship and they have 
been widely adopted by the research community for their ability to promote open and 
collaborative research in medicine [27]. In particular, for clinical AI models, adhering to 
the FAIR principles is of the utmost importance, to allow for a transparent, trustworthy, 
and reliable development of tools that can help advance clinical research and practice in 
a responsible and ethical manner [28]. 

In essence, the main goals of reporting guidelines are to ensure that findings can be 
understood by readers and reviewers, replicated by other researchers, utilized by 
healthcare practitioners to make clinical decisions, and included in systematic reviews 
and meta-analyses [29]. This review article highlights an overview of AI reporting guide-
lines and their application in healthcare research to support researchers in biomedical do-
mains, including nephrology and transplantation, to improve the overall design, report-
ing, and, ultimately, the quality of their underlying AI studies. 

4. What Are AI Clinical Research Reporting Guidelines? 
An AI reporting guideline is a brief checklist or structured text using clear method-

ology for healthcare researchers to support authors in conducting a certain type of re-
search study [29]. In general, a reporting guideline provides a minimum set of information 
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needed to ensure that a manuscript or underlying application can be, for example (i) un-
derstood by a broad or more specific readership (e.g., layman or novice readers, domain 
experts of a related field, domain experts of a different field, computational experts, and/or 
biomedical experts), (ii) replicated by a researcher of related expertise, (iii) used by a doc-
tor to assist with a clinical decision, and (iv) included in a systematic review or meta-
analysis [29]. Reporting guidelines enhance the study design, delivery, and, ultimately, 
the study quality by providing a concise set of the minimal information that should exist 
in a document, which can, of course, also be utilized by CDMs [30]. The enhanced com-
pleteness and transparency of a research study also contributes to the detection of more 
visible areas of potential bias and, thus, enables the more effective analysis of the studies. 
Recently, under the “umbrella” of EQUATOR (enhancing the quality and transparency of 
health research), a network was organized and developed for AI reporting guidelines ac-
cording to study types (i.e., separate guidelines for randomized clinical trials, diagnostic 
accuracy studies, observational studies, etc.) (Table 2). 

Table 2. AI reporting guidelines. 

Name Stage of Study Application in Nephrology or Other Healthcare Fields EQUATOR Reporting 
Guidelines 

TRIPOD-AI 
Pre and clinical 
development 

Extension of TRIPOD guideline used to report prediction 
models’ (diagnostic or prognostic) development, 
validation, and updates. 

Yes 

STARD-AI Pre and clinical 
development 

Extension of STARD guideline used to report diagnostic 
test accuracy studies or prediction model evaluation. 

Yes 

DECIDE-AI 
Early clinical study 
stage evaluation 

Used to report the early evaluation of AI systems as an 
intervention in live clinical settings (small-scale, 
formative evaluation), independently of the study design 
and AI system modality (diagnostic, prognostic, and/or 
therapeutic). 

Yes 

SPIRIT-AI 
Comparative 
prospective 
evaluation 

Extension of SPIRIT guideline and mainly uses 
randomized trials. 

Yes 

CONSORT-AI 
Comparative 
prospective 
evaluation 

Extension of CONSORT guideline and mainly uses 
clinical trial protocols. 

Yes 

PRISMA-AI 
Systemic review 
analysis 

Extension of PRISMA guideline, which are used for 
meta-analysis or systemic review analysis. Yes 

CLAIM 
Medical image 
analysis 

Extension of the STARD reporting guideline. CLAIM is 
used in AI medical imaging evaluations that include 
classification, image reconstruction, text analysis, and 
workflow optimization. The majority of autosomal 
dominant polycystic kidney disease and renal cancer CT 
or MRI images are used, but AI analysis studies did not 
adhere to the CLAIM guidelines. 

Yes 

MI-CLAIM 
Minimal clinical AI 
modeling research 

The guidelines are designed to inform readers and users 
about how the AI algorithm was developed, validated, 
and comprehensively reported. They are split into six 
parts: (1) study design; (2) separation of data into 
partitions for model training and model testing; (3) 
optimization and final model selection; (4) performance 
evaluation; (5) model examination; and (6) reproducible 
pipeline. 

Yes 
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MINIMAR 
Minimal healthcare 
AI modeling studies 

MINIMAR reporting guideline stand upon four essential 
components: (1) study population and setting; (2) patient 
demographics; (3) model architecture; and (4) model 
evaluation. This reporting guideline can be applied for 
almost all healthcare studies.  

No 

Abbreviations: CLAIM: Checklist for Artificial Intelligence in Medical Imaging; CONSORT-AI: 
Consolidated Standards of Reporting Trials–Artificial Intelligence; DECIDE-AI: Developmental and 
Exploratory Clinical Investigations of Decision support systems driven by Artificial Intelligence; MI-
CLAIM: Minimum Information about Clinical Artificial Intelligence Modeling; MINIMAR: Mini-
mum Information for Medical AI Reporting; PRISMA-AI: Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses–Artificial Intelligence; SPIRIT-AI: Standard Protocol Items: Recom-
mendations for Interventional Trials–Artificial Intelligence; STARD-AI: Standards for Reporting of 
Diagnostic Accuracy Studies-AI; TRIPOD-AI: The Transparent Reporting of a multivariable predic-
tion model of Individual Prognosis Or Diagnosis-AI. 

5. Why Do We Need an AI Reporting Guideline in General? 
Research related to algorithm development and the clinical application of AI has also 

introduced new challenges and obstacles in how such studies are reported, assessed, and 
compared, in terms of factors that are not specified in traditional reporting guidelines. 
This could result in missing data and an increased risk of hidden bias. If these actual or 
potential limitations are not identified, it may lead to implicit approval through publica-
tion, which, in turn, may support the premature adoption of new technologies [31]. Con-
versely, well-designed, well-delivered studies that are poorly reported may be judged un-
favorably due to being adjudged to have a high risk of bias, simply due to a lack of infor-
mation. 

The lack of AI clinical study reporting is becoming more widely acknowledged in 
recent reports. Liu et al. [32] conducted a systematic review including 20,500 articles re-
lated to AI. According to independent reviewers who evaluated the confidence in their 
reported claims, fewer than 1% of these articles were found to be sufficiently robust in 
their design and reporting. The authors also highlighted the controversy concerning the 
performance being validated using internal versus external validation, in which internal 
validation overestimates diagnostic accuracy for both healthcare professionals and deep 
learning algorithms [32]. In another investigation, only 6% of 516 eligible radiological-AI 
research publications conducted any form of external validation of their models, and none 
used multicenter or prospective data collection methods [33]. Similarly, most studies us-
ing machine learning (ML) models for medical diagnosis lacked adequate detail on how 
these were evaluated and they did not provide sufficient information for reproducibility 
[34]. Inconsistencies have also been reported in how ML models are derived from elec-
tronic health records, with details regarding the race and ethnicity of participants omitted 
in 64% of studies, and only 12% of models being externally validated [35]. Moreover, 
Nagendran et al. [24] identified high levels of bias in the field, along with a limited avail-
ability of datasets and code, which limits the reproducibility of deep learning research to 
a considerable extent. Descriptions of the hardware used, if present at all, were also brief 
and this vagueness might affect external validity and re-implementation. All of the above-
mentioned concerns arise due to the improper reporting of study design, methodology or 
algorithms, as well as the fact that most studies do not publicly share the underlying com-
putational scripts in a FAIR manner or provide the underlying CDM data. Taking this 
together, proper adherence to AI-based reporting guidelines has the potential to minimize 
possible bias and facilitate reproducibility in research. 

6. Which AI Reporting Guideline Should I Use for Nephrological Study? 
The adherence to a specific AI reporting standard is primarily determined by the pri-

mary research or clinical trial task, including whether it is preclinical or clinical, prospec-
tive or retrospective, or prognostic or diagnostic, among others [36]. In the last decade, the 
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number of published AI-based clinical studies in medicine, including nephrology, has 
steadily increased, and the majority of them did not adequately report or comply to the 
existing AI reporting requirements [24,37,38]. The lack of comprehensive reporting may 
increase bias and may also have a large influence regarding the reproducibility of the de-
veloped model and its final application to the clinical data, along with proper assistance 
to clinicians for decision making. In each stage of the study, the EQUATOR Network de-
veloped specific AI guidelines as an extension of the previous version to standardize AI-
based studies, as shown in Table 2. Below, we discuss each developed EQUATOR Net-
work specific AI guideline application based on the study stage. 

Diagnostic accuracy study: The application of diagnostic and prognostic AI algo-
rithms is becoming more popular in nephrology and urology, such as in kidney transplant 
pathology [39–41], delayed graft function prediction [42–44], kidney transplant survival 
[45], and medical image analysis to detect glomerulosclerosis [46–48]. Interestingly, AI-
provided diagnostic accuracies are similar to those provided by expert clinicians, which 
might significantly save healthcare resource use [32,49]. Currently, a vast proportion of 
potential AI/ML-powered healthcare applications are diagnostic AI algorithms; however, 
the majority of them have been disseminated in the absence of AI-specific reporting guide-
lines [49]. In terms of study design and data analysis methods, the diagnostic test accuracy 
studies that are extensively used in nephrology might be reported according to the STARD 
[50] guideline, if a traditional statistical data analysis method is used. However, for diag-
nostic studies with AI-intervention, STARD-AI [51] is well suited (Figure 1). Furthermore, 
besides the comprehensive reporting of research that uses AI algorithms to assess diag-
nostic test accuracy and performance, STARD-AI may also be used within studies that 
report on image segmentation and other relevant data classification techniques [49]. The 
TRIPOD-AI reporting standards may be more applicable, if the emphasis of the study is 
on establishing, validating, or updating a multivariable prediction model that generates 
an individualized chance of acquiring a disease (e.g., time-to-event prediction). 

 

Figure 1. Artificial intelligence reporting guidelines and their application within clinical study 
stages. The colorful lines reflect reporting guidelines, some of which are specific to research designs 
(TRIPOD-AI, STARD-AI, SPIRIT/CONSORT, and SPIRIT/CONSORT-AI), while others are stage 
specific (DECIDE-AI and IDEAL). As a starting point for a broader AI-study application, the MI-
CLAIM and MINIMAR standards were utilized. Depending on the circumstances, many research 
designs may be applicable for each step. Abbreviations: AI: Artificial intelligence; CLAIM: Checklist 
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for Artificial Intelligence in Medical Imaging; CONSORT-AI: Consolidated Standards of Reporting 
Trials–Artificial Intelligence; DECIDE-AI: Developmental and Exploratory Clinical Investigations 
of Decision support systems driven by Artificial Intelligence; MI-CLAIM: Minimum Information 
about Clinical Artificial Intelligence Modeling; MINIMAR: Minimum Information for Medical AI 
Reporting; PRISMA-AI: Preferred Reporting Items for Systematic Reviews and Meta-Analyses–Ar-
tificial Intelligence; SPIRIT-AI: Standard Protocol Items: Recommendations for Interventional Tri-
als–Artificial Intelligence; STARD-AI: Standards for Reporting of Diagnostic Accuracy Studies-AI; 
SWiM: Synthesis Without Meta-analysis; TRIPOD-AI: The Transparent Reporting of a multivariable 
prediction model of Individual Prognosis Or Diagnosis-AI. 

Early stage clinical evaluation (small-scale study) (ESCE): ESCE is important for the 
validation of the performance and safety, similar to phase 1 and phase 2 pharmaceutical 
trials, prior to phase 3 efficacy evaluation. The best example is the consensus-based re-
porting guideline for the Developmental and Exploratory Clinical Investigations of Deci-
sion support systems driven by Artificial Intelligence (DECIDE-AI) [52]. The guideline is 
intended to be used in early stage, small-scale clinical studies of AI interventions, when 
the intervention itself and the human–machine interaction are still refined prior to full 
evaluation (Figure 1). DECIDE-AI places emphasis on the evaluation study stage and does 
not prescribe a fixed study design, while STARD-AI [51] and TRIPOD-AI [53,54] are spe-
cific to particular study designs. Adherence to these guidelines might be important to pre-
vent a dataset shift, which occurs when an ML-based system underperforms due to an 
interoperability error or mismatch between the data it was trained on and the data the 
system encounters after deployment [55,56]. This might cause substantial variation in clin-
ical performance and expose patients to potential unexpected harm. 

Comparative prospective evaluation (randomized controlled clinical trials [RCTs, 
Phase 3]): The SPIRIT (Standard Protocol Items: Recommendations for Interventional Tri-
als) and the latest version of the CONSORT (Consolidated Standards Of Reporting Trials) 
statements were published more than a decade ago and provide evidence-based recom-
mendations to improve the completeness of the reporting of randomized controlled clin-
ical trials (RCTs) [57]. While AI systems have been researched for some time, recent ad-
vances in deep learning approaches have garnered significant interest for their potential 
use in healthcare [58]. Consequently, interested parties, experts, and stakeholders have 
developed the SPIRIT and CONCORT reporting guidelines extensions [59]. These are new 
reporting guidelines for clinical trial protocols to evaluate interventions, developed in ac-
cordance with the EQUATOR Network’s methodological framework, including an AI 
component [59]. SPIRIT-AI and CONSORT-AI are well-suited for large-scale, randomized 
controlled clinical trials with AI intervention features (also known as phase 3 for efficacy 
evaluation) (Figure 1). One of the distinctions between SPIRIT-AI and CONCORD-AI is 
that the SPIRIT-AI guideline focuses on defining standard protocols for clinical trials, 
whereas CONSORT is aimed at primary reports of completed randomized trials, with 
two-group parallel designs. Lately, the SPIRIT group developed reporting guidelines for 
the molecular and cellular pathology content in clinical trial protocols as an extension [60]. 
A recent systematic review of RCTs for ML interventions by Plana et al. [25] demonstrated 
that almost all AI-RCTs follow neither SPIRIT-AI, nor CONCORT-AI, nor any other com-
mon AI reporting guidelines. Their initial search yielded 28,159 records and a subsequent, 
final inclusion resulted in only 41 eligible RCT studies for meta-analysis, indicating a 
translational gap between development and clinical impact. Among the 41 RCTs that were 
ultimately included in the analysis, none of them fully adhered to all CONSORT-AI stand-
ards. Common reasons for non-adherence included not assessing poor-quality or unavail-
able input data (38 out of 41 trials (93%)), not analyzing performance errors (38 out of 41 
(93%)), not including a statement regarding code or algorithm availability (37 out of 41 
(90%)), and enrolling only a small number of participants from underrepresented minor-
ity groups [25]. This may indicate that many FDA-approved, ML-enabled medical de-
vices, which are approved with only a limited amount of clinical data FAIRification during 
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an RCT [25]. To sum up, the quality of medical ML-centric RCTs, as well as their underly-
ing reporting transparency and inclusion, should be carefully addressed by adhering to 
one of the existing AI reporting guidelines when designing or publishing future trials. 

Clinical image analysis: The Checklist for Artificial Intelligence in Medical Imaging 
(CLAIM) was developed in 2020 to assist scientists presenting research and to analyze 
previously published AI applications in medical imaging [61]. The CLAIM checklist, 
which was inspired by the Standards for Reporting of Diagnostic Accuracy Studies stand-
ards [50], was created specifically to address AI applications in medical imaging, includ-
ing classification, detection, reconstruction, and workflow optimization, among others 
[61]. The CLAIM checklist includes 42 criteria for presenting medical imaging AI research 
that should be regarded or viewed as best practice. Recently, Belue et al. demonstrated a 
low rate of adherence to the CLAIM reporting guideline among published prostate MRI 
applications [62]. Here, the authors analyzed 53 studies and most of them did not follow 
the CLAIM checklists. Among the unreported items from a total of 42 items contain de-
identification methods, as follows: item 13 (68% no): handling missing data; item 15 (47% 
no): rationale for choosing ground truth reference standard; item 18 (55% no): measure-
ments of inter- and intrareader variability; item 31 (60% no): inclusion of validated inter-
pretability maps; and item 37 (92% no): inclusion of failure analysis to elucidate AI model 
weaknesses. Moreover, an area under the curve (AUC) analysis of the CLAIM fulfillment 
quartile revealed a significant difference of the mean AUC scores between quartile 1 ver-
sus quartile 2 (p < 0.034) and quartile 1 versus quartile 4 (p < 0.003) scores [62]. This result 
may suggest that a higher adherence to the CLAIM may improve AI model performance. 

Systematic review or meta-analysis: Systematic reviews serve a variety of important 
purposes. They can provide summaries of the state-of-the-art in a field, allowing future 
research priorities to be identified; they can answer questions that individual studies 
would be unable to answer; they can identify problems in primary research that should 
be addressed in future studies; and, finally, they can generate or evaluate theories about 
how or why phenomena occur. The initial Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) statement was published in 2009 and the latest up-
date was made in 2020 to assist systematic reviewers in reporting why the review was 
conducted, what the authors conducted, and what was discovered [63]. The continuous 
increase in AI-related studies in medicine required an AI-extension of the PRISMA guide-
line to standardize AI-based systematic review and meta-analysis reports and interpreta-
tions. The development of the PRISMA-AI extension focuses on standardizing the report-
ing of methods and results for clinical studies using AI, reflecting the most relevant tech-
nical details required for future replicability, as well as the clinician’s ability to critically 
follow and ascertain the relevant outcomes of such studies [64]. In some cases, when con-
ducting systematic reviews examining the quantitative effects of interventions, for which 
meta-analysis of effect estimates is not possible or not appropriate for a least some out-
comes, the Synthesis Without Meta-analysis (SWiM) reporting guideline can be utilized 
[65]. 

7. What Are the Minimal Requirements for AI Reporting Guidelines? 
The American Medical Informatics Association published the MINIMAR (Minimum 

Information for Medical AI Reporting) guideline in June 2020, which is not part of the 
EQUATOR reporting guidelines [66]. The guidelines are intended for studies that describe 
the use of AI systems in healthcare. Their goal is to ensure that the minimum amount of 
information required to adequately understand an AI algorithm’s intended predictions, 
target populations, and potential biases is reported clearly and comprehensively. Unlike 
other reporting guidelines, which provide a checklist of items that must be reported by 
researchers, these guidelines offer recommendations for reporting information in four pri-
mary areas of clinical AI studies, as follows: (1) study population and setting; (2) patient 
demographic information; (3) model architecture; and (4) transparently reporting model 
evaluation, optimization, and validation to clarify how local model optimization can be 
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achieved while also allowing replication and resource sharing. There is an overlap be-
tween the MINIMAR [66] guidelines and the minimum information about clinical artifi-
cial intelligence modeling (MI-CLAIM) [67] guidelines, which both focus on AI algorithms 
and how they were developed and validated with regards to reproducibility via the FAIR 
principles. Both MINIMAR and MI-CLAIM emphasize the minimal essential information 
that should be disclosed in an article. The MI-CLAIM comprises six sections. In section 
one, it is essential to describe the study as a whole and can be broken down into four 
subsections, as follows: (a) clinical setting, (b) performance measures, (c) population com-
position, and (d) current baselines to measure performance against. In section two, it is 
essential to partition model training and model testing [67]. In section three, it is clearly 
specified how the data were cleaned and formatted, and, if relevant, what data were ad-
ditionally available but not used (also known as model optimization and selection). Per-
formance evaluation (F scores, Dice coefficient, or area under the curve (AUC)) is section 
four in the MI-CLAIM. This section will include typical results showing the performance 
of the baseline and new models tested, as well as appropriate statistics for significance. 
The results of the model examination have to be evaluated in light of the model’s perfor-
mance, indicating that the results of examining a model with excellent performance met-
rics for a specific clinical task should be regarded as more relevant than the results of ex-
amining a lower-performing model for the same task [67]. The final section is reproduci-
bility. The goal here is not for an independent researcher to reproduce the exact results, 
but rather to replicate the exact process by which the results were generated, giving that 
second investigator everything they need to rapidly validate the results in their own co-
horts [67]. 

8. What Else Could Be Done for an Improved Guideline Adherence and the Use of AI 
Models in Nephrology? 

To allow for a more versatile use of AI approaches in clinics, high-quality AI models 
need to be developed for the particular end user, i.e., clinicians. This still points to the 
currently published challenges for nephrology [68] that need to be addressed, in addition 
to the already mentioned concepts of FAIR and the use of CDMs—data availability and 
usability. 
1. Synthetic data as a digital twin of real-world patient data: Synthetic data is computer-

generated data that mimics real-world data, while preserving its statistical properties 
[69,70]. Thus, it can enable researchers to share and collaborate on nephrology-re-
lated studies without risking the exposure of sensitive patient information. By shar-
ing synthetic data, researchers can access larger and more diverse datasets, leading 
to more robust and generalizable findings. This approach fosters collaboration be-
tween institutions and researchers, accelerating advancements in the understanding, 
diagnosis, and treatment of kidney diseases, among others, while maintaining pa-
tient privacy and adhering to regulatory requirements [70]. 

2. Predictive modeling: Synthetic data can be used to create large, diverse datasets that 
help to develop predictive models for various kidney diseases. These models can as-
sist clinicians in predicting which patients are at high risk for developing kidney dis-
ease or experiencing complications. In addition, this can enable researchers to iden-
tify patterns and trends that may not be evident in smaller, less diverse datasets. 

3. Development of software requiring patient data: Synthetic data can also be used to de-
velop software that requires patient data, like clinical decision support systems that 
assist clinicians in making treatment decisions for patients with specific kidney dis-
eases. For instance, a decision support system could utilize synthetic data for training 
purposes to recommend the best treatment options for patients based on their clinical 
characteristics. 
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Usability and technology acceptance to ultimately bring solutions for clinicians 
into their daily routine: For clinicians, both usability and technology acceptance are crit-
ical factors to consider when evaluating and implementing new clinical procedures [71]. 
A technology that is easy to use and fits seamlessly into their workflow is more likely to 
be adopted and used effectively [72]. 
1. User-centered design: The design of the AI system should be centered around the needs 

of the clinicians who will be using it. The system should be intuitive and easy to use, 
with a user interface that is easy to navigate. For example, AI-based support systems 
can be used to develop and implement clinical decision rules in nephrology [73]. 
These decision rules can support clinicians to obtain more timely decisions, such as 
when to initiate dialysis or refer a patient for a kidney transplant. 

2. Integration with clinical workflow: The AI system should be integrated into the clinical 
workflow in a way that minimizes disruption and maximizes efficiency [74]. This 
may involve integrating the system into existing EHR systems or other clinical tools 
already in place. In addition, diagnostic procedures in nephrology would depend on 
the ability to integrate data from various sources beyond EHR, such as laboratory test 
results, imaging data, or clinical trials. For example, these systems can predict the 
risk of related developing complications, such as the risk of progressing kidney fail-
ure [74]. 

3. Training and education: Clinicians need to be trained on how to use the AI system ef-
fectively [75]. This may involve providing training on the system itself, as well as on 
the underlying data and algorithms, because clinicians need to understand how the 
AI system works and how it arrives at its recommendations. The system should be 
transparent and provide clear explanations of its recommendations, so that clinicians 
can make informed decisions. 

4. Healthcare regulators workplan: Aligned with the FDA’s enduring dedication to create 
and employ innovative strategies for overseeing medical device software and other 
digital health technologies, in April of 2019, the FDA released the “Proposed Regula-
tory Framework for Modifications to Artificial Intelligence/Machine Learning 
(AI/ML)-Based Software as a Medical Device (SaMD)-Discussion Paper and Request 
for Feedback”. This document outlined the FDA’s groundwork for a potential 
method of premarket evaluation for modifications to software driven by artificial in-
telligence and machine learning. However, the current challenges and rapid devel-
opments in the AI healthcare industry need more aggressive action from authorities 
to put them on one stream. Recently, the European Medicines Agency (EMA) and the 
Heads of Medicines Agencies (HMAs) have released a comprehensive artificial intel-
ligence (AI) roadmap through 2028, outlining a united and synchronized approach 
to optimize the advantages of AI for stakeholders, while mitigating the associated 
risks. Here, the Common European data spaces are a key initiative aimed at unleash-
ing the vast potential of data-driven innovation in the EU. They will facilitate the 
secure and trustworthy exchange of data across the EU, allowing businesses, public 
administrations, education, and individuals to maintain control over their own data 
while benefiting from a safe framework for sharing it for innovative purposes [76]. 
This initiative is crucial for enhancing the development of new data-driven products 
and services, thereby potentially forming an integral part of a connected and com-
petitive European data economy. Complementing these data spaces, the European 
Commission is also addressing the risks associated with specific AI uses through a 
set of complementary, proportionate, and flexible rules, aiming to establish Europe 
as a global leader in setting AI standards. This legal framework for AI, known as the 
AI Act, brings clarity to AI developers, deployers, and users by focusing on areas not 
covered by existing national and EU legislations [77]. It categorizes AI risks into four 
levels, as follows: minimal, high, unacceptable, and specific transparency risks; it in-
troduces dedicated rules for general purpose AI models. Together, these measures 
may represent a comprehensive approach to foster a safer, more trustworthy, and 
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innovative data and AI landscape in Europe. However, the current challenges and 
rapid developments in the AI healthcare industry need more aggressive action from 
authority organizations such as the FDA, EMA, and PMDA to develop unified regu-
latory guidelines. 

9. A Perspective of Generative Language Processing Utilization in Nephrology 
The field of nephrology is increasingly using advanced technologies to improve pa-

tient care, diagnosis, and research. Generative AI language processing, a subset of natural 
language processing (NLP), aimed at creating human-like text, has emerged as a useful 
instrument in this endeavor. Generative language processing, utilizing machine learning 
and linguistic analysis, provides novel solutions to medicine challenges such as data anal-
ysis, clinical documentation, patient communication, and medical education [78]. 

Generative AI in clinical documentation: One of the primary applications of generative 
language processing in medicine, including nephrology, is to improve clinical documen-
tation. Electronic health records (EHRs) store huge amounts of unstructured data, such as 
clinician notes, laboratory results, and imaging reports. Extracting useful data from these 
records can be time-consuming and error prone. Generative language models trained on 
medical text can automate the summarization and extraction of key clinical information, 
allowing nephrologists to document their cases more efficiently [78]. 

Improving Diagnostics and Patient Management. In the near future, generative language 
processing might improve patient care and diagnostics in medicine, including nephrol-
ogy. By analyzing patient data such as laboratory values, vital signs, and clinical notes, 
machine learning algorithms can help clinicians identify patterns and predict results. For 
example, generative models can assist nephrologists in identifying patients at high risk 
for acute kidney injury or the progression of chronic kidney disease, allowing for an early 
intervention and personalized treatment strategies. 

Despite its potential, using generative language processing in nephrology presents 
some challenges. Data privacy, algorithm bias, and clinical validation are all issues that 
must be carefully addressed to ensure that these technologies are used carefully and eth-
ically. Furthermore, additional research is required to optimize generative models for spe-
cific nephrology applications and assess their impact on patient outcomes and healthcare 
delivery. In near perspectives, generative language processing has the potential to signif-
icantly improve patient care, research, and education in nephrology. Clinicians and re-
searchers can use artificial intelligence and natural language understanding to gain new 
insights, streamline workflows, and improve the quality of care for patients with kidney 
diseases. 

10. Conclusions and Future Perspectives 
This publication aims to assist researchers across various medical specialties, espe-

cially in nephrology, in better understanding, selecting, and implementing AI reporting 
criteria for their studies. Finally, the impact of AI-specific reporting guidelines, along with 
the related upstream processes, such as CDMs and the FAIR principles, on improving the 
quality of AI healthcare research largely depends on the extent to which researchers utilize 
them when reporting studies; medical journal editors require authors to employ them 
when submitting studies and reviewers apply them when appraising studies. As demon-
strated in this study, the number of AI-powered clinical research studies in nephrology is 
steadily increasing; nevertheless, adherence to AI-specific standards and usability aspects 
can lead to improved adoption by clinicians, aiding them in clinical decision making. 
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