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Abstract: Cardiovascular thromboembolic diseases and cancer continue to be a leading cause of death
and disability worldwide. Therefore, it is crucial to advance their diagnoses and treatment in the
context of individualized medicine. However, the disease specificity of the currently available markers
is limited. Based on analyses of a subset of peptides and matching proteins in disease vs. healthy
platelets, scientists have recently shown that focused platelet proteomics enables the quantification
of disease-specific biomarkers in humans. In this review, we explored the potential of accurate
platelet proteomic research, which is required to identify novel diagnostic and pharmaceutical targets
by comprehending the proteome variety of healthy individuals and patients for personalized and
precision medicine.
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1. Introduction

Platelets are small anucleated cell fragments that play a central role in regulating
thrombosis and hemostasis in the body. They contain more than 1500 proteins, including
those involved in platelet activity, and are composed of alpha granules, dense granules,
lysosomal granules, and glycogen [1]. Due to platelets’ high granular content of growth
factors (GFs), cytokines, and other biological modulators that can respond to a variety
of signals and regulate a wide variety of biological processes, including inflammation,
angiogenesis, stem cell migration, and cell proliferation, scientific research and technology
have recently offered a new perspective on platelets and their functions.

Recently, the objective identification and quantification of the protein profile, the
so-called proteome of cells, tissues, or organs, has drawn interest from several sectors as
it provides extra useful information for research problems. This tool has been utilized to
comprehend disease and to find biomarkers for the prognosis and diagnosis of diseases
with various etiologies. Proteomics and platelet biology are sciences that are growing
quickly and have great promise. Platelets are thought to act as biosensors for both health
and diseases, and their proteome may be used to recognize the telltale signs of both [1]. It
is known that platelet production is affected by one’s health status and that they can even
take up molecules from nearby cells and release microvesicles into the bloodstream [2–4].
Therefore, the clinical management of some pathologies in which platelets play a significant
role necessitates the development of alternative therapies, as is the case in patients whose
thrombosis–bleeding balance is disturbed, and a proteomics approach may help in the
identification of novel targets in such cases.

It may be possible to find biomarkers that might be employed in early diagnosis,
illness prediction, or therapy response by understanding how the platelet protein functions
physiologically and how this may be changed in the case of disease. Additionally, because
platelets are naturally lacking in a nucleus, proteomics can be one of the most intriguing
methods for studying them. Moreover, studying platelet proteomics could make it possible
to find new targets for developing individualized treatment plans. On the other hand,
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platelet proteomics could offer a substantial biomarker-finding tool in other disorders,
outside those primarily connected to platelets, given the varied and diversified activities of
platelets throughout ontogeny or in inflammation.

2. The Principal Role of Platelet: Hemostasis and Thrombosis

Platelets are tiny (2–3 µM in diameter) cell fragments that are the second-most preva-
lent component of blood circulation, after red blood cells (RBCs). They originate from the
cytoplasm of megakaryocytes (MK) present in the lungs and bone marrow. After they
become senile, they circulate for 7–10 days in the circulatory system before being eliminated
in the spleen or liver [5]. Platelets execute many tasks from primary hemostasis to inflam-
mation depending on their activation. Platelets have various receptors on their surface and
biological components kept in various granules that play a role in their activation. Upon
platelet activation, the platelet secretes a milieu of physiologically active metabolites and
proteins from its granules in a well-regulated manner, and these are effectively transported
to their sites of action, which strengthens the coagulative response in a positive-feedback
loop [6]. There are three distinct types of granules in platelets: α-granules that consist of
a variety of proteins, cytokines, chemokines, and GFs; dense-granules that house small
molecules, such as serotonin, adenosine diphosphate (ADP), polyphosphates, and calcium;
and lysosomes that house deteriorating enzymes (Table 1) [7]. These contents are secreted
through an open canalicular system (OCS), a unique surface-connected network of chan-
nels. Toll-like receptor 9 (TLR9), protein disulfide isomerase (PDI), and vesicle-associated
membrane protein 8 (VAMP-8) are present in T-granules, and it has been hypothesized that
these molecules are attracted to the cell surface and aid in secretion [8].

Table 1. Various proteins present in platelet granules.

Granule Type Contents Role

α-granules

Adhesive proteins

P-selectin, Fibrinogen, von Willebrand
factor, Fibronectin,
Thrombospondin-1/2, Laminin-8,
Vitronectin

• Promoting adherence of WBCs to activated platelets
and endothelium. Promotion of leukocyte
adherence to activated platelets and endothelium

• Binding to GpIIb/IIIa receptors, factor VIII, integrin
α5β1, αvβ3, β1, αIIβ3, αvβ3, α3β1, and α6β1,
and uPAR

Growth factors

Epidermal-growth factor,
Insulin-like-growth factor,
Hepatocyte-growth factor,
Platelet-derived-growth factor

• Stimulating/inhibiting the proliferation of
fibroblasts, epithelial cells, and smooth muscle cells.

• The major mediator of growth hormone-stimulated
somatic growth and growth hormone-independent
anabolic responses. The primary mediator of
growth hormone (GH)-stimulated somatic growth
and GH-independent anabolic responses

• Metabolic flux of glucose in different
insulin-sensitive cell types; plays a key role in β-cell
homeostasis. Metabolic flux of glucose in various
types of insulin-sensitive cells; plays a key role in
the homeostasis of beta cells

Angiogenic factors
Growth factor from vascular
endothelium, Platelet-derived growth
factor, Fibroblast

• Enhance the proliferation, migration, survival, and
invasion of endothelial cells

• Enhance permeability of existing vessels, forming a
lattice network for endothelial cell migration,
chemotaxis, and homing of bone marrow-derived
vascular precursor cells. Improvement of the
permeability of existing vessels, formation of a
lattice network for the migration of endothelial cells,
chemotaxis, and homing of vascular progenitor cells
derived from the bone marrow

• Modulating the proliferation and recruitment of
perivascular cells

• Activation of a serine-rich protein or serine-rich
phosphorylating kinase network regulating
alternative splicing of vascular endothelial growth
factor receptor 1 (VEGFR1) in endothelial cells.
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Table 1. Cont.

Granule Type Contents Role

Chemokines

CXCL8/7/1/5/2/6/12 • Activating and recruiting neutrophils

CCL5/3/2/7
• Helps in the recruitment of basophils, macrophages,

monocytes, eosinophils, polymorph nuclear WBCs,
and neutrophils

IL1β • Recruitment and activation of WBCs

Clotting factors

Factor V • Cleavage of prothrombin to thrombin

Protein S • Anticoagulant by inhibition of factor IXa

Factor XI • Hemostasis by activating factor IX

Factor XIII • Fibrin network stabilization

Kininogens • Activating factor XI

Plasminogen • Fibrinolysis by means of binding to the fibrin clot

Integral membrane proteins Integrin αIIbβ3, GPIba-IX-V, GPVI,
TLT-1, P-selectin

• Activation of platelets, adjacent platelets
aggregation, formation of thrombus. Plays a role in
inflammatory insult-induced bleeding. Promotes
the adhesion of WBCs to activated platelets and
endothelium

Immune mediators
Complement C3/C4 precursor
Factor D/H, C1 inhibitor,
Immunoglobulins

• Triggers inflammation, phagocytosis, cell lysis, and
cell activation by cleaving to C3a and C3b by
intruders

• Inhibition of activation of early clotting proteins and
the classical complement pathway

• Antigenic binding and neutralization

Protease inhibitors α2-antiplasmin, PAI-1, α2-antitrypsin,
α2-macroglobulin, TFPI, C1-inhibitor

• Inhibition of plasminogen binding to fibrin and
fibrin cross-linking

• Binding to and inhibition of tissue-type
plasminogen activator and urokinase-type
plasminogen activator

• Anti-inflammatory properties through the
destruction of major proteases

• Binding of foreign peptides, acting as a humoral
barrier against pathogens

• Blocks the initial steps of the extrinsic coagulation
pathway by inhibiting Factor Xa and Factor VIIa

• Inhibits activation of early coagulation proteins and
the classical complement pathway

Proteoglycans MMP2/9
• Degradation of collagen, elastin, fibronectin, gelatin,

and laminin and remodeling of the extracellular
matrix

Dense granules

Amines Serotonin, Histamine

• Minimize blood loss by inducing constriction of
injured blood vessels and enhancing platelet
aggregation

• Provides aggregation and immunological stimuli

Bivalent cations Ca2+ , Mg2+

Nucleotides ATP, ADP, GTP, GDP

Lysosome granules
Acid proteases Cathepsin D and E, Carboxypeptidases (A, B), Prolinecarboxypeptidase, Collagenase, Acid

phosphatase, Arylsulphatase

Glycohydrolases Heparinase, β-N-acetyl-glucosaminidase

3. Activation of Platelets

Platelets become activated upon exposure to extracellular matrix proteins including
collagen, von Willebrand factor (vWF), or fibronectin when there is any endothelial damage
(Figure 1). Normally, endothelial cells help to keep them inactive by secreting prostaglandin
I2 (prostacyclin, PGI2) and nitric oxide (NO), and by expressing CD39 (ectonucleotidase
that cleaves ADP/ATP). Platelets react fast to damage to the vessel wall; they adhere to
the affected regions and become activated to close the wound [9]. vWF, which is generated
from plasma, alters the shape of platelets in high-shear circumstances and enables their
binding to the exposed collagen via glycoprotein (GP) VI and αIIbβ3 integrin at the injured
region [10]. In addition, the GPIb-V-IX complex is necessary to maintain platelet adherence
to the vascular surface under high-shear circumstances [11]. Collagen binding by the
integrin α2β1 at low-shear circumstances also plays a significant part in platelet adherence
to the damaged endothelium.
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Figure 1. Overall signaling mechanism of platelet activation.

Through GPVI, a member of the immunoglobulin family that is connected to the Fc
receptor (FcR), collagen starts the activation of platelets. Immune receptor tyrosine-based
activation motif (ITAM), which is present in the cytoplasmic tail of FcR, is phosphorylated
by Src kinases [12]. Upon activation, platelets undergo a shapeshift from discoid to a more
spherical shape, develop filopodia, and completely expand into lamellipodia. Activated
platelets function in a paracrine and autocrine manner to recruit more circulating platelets
and further activate after adhesion. Thromboxane A2 (TxA2) synthesis and the ADP release
from dense granules stimulate TxA2 and P2Y(1 and 12) receptors, respectively, by coupling
to G-protein to facilitate the activation process.

The second messengers inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG),
which are derived from the membrane phospholipid phosphatidylinositol 4,5-bisphosphate
(PIP2), are produced when the G-protein and ITAM-coupled receptors are activated. While
DAG will activate several protein kinase C (PKC) isoforms, IP3 will cause the release of
Ca2+ from intracellular reserves [13]. Several platelet reactions, including cytoskeletal
modifications, integrin activation, and degranulation, are triggered by an increase in Ca2+.
The guanine nucleotide exchange factor CalDAG-GEFI, in turn, activates the small GTPase
Rap1 in response to an increase in Ca2+ [14]. Rap1 then attracts talin to the plasma mem-
brane, further activating integrin αIIβ3 as a result. To regulate the additional cytoskeletal
remodeling required for complete platelet spreading and clot retraction, active αIIβ3 will
convey outside-in signaling upon binding to its ligands (such as fibrinogen, vWF, etc.) [15].
By attaching platelets to one another, this binding also helps to stabilize aggregates. Last but
not least, exposed injured tissue releases tissue factor, which encourages the production of
thrombin. Thrombin cleaves fibrinogen into fibrin, which will further strengthen aggrega-
tion [16]. As a result of secondary hemostasis, actin-myosin platelet retraction mediates the
clot’s ultimate stability. However, unbalanced clot formation (thrombosis) could result in
the occlusion of the vessels in certain pathological conditions when the balance between the
platelet stimulatory and inhibitory pathways is disrupted. This could result in myocardial
infarction, stroke, or venous thromboembolism [17]. In conclusion, it is critical to tightly
control platelet activation to guarantee a correct platelet functional response and avoid the
development of unintended thrombi that might have serious pathological consequences.

4. Platelet Proteomics

A proteome is the complete set of proteins expressed within a defined sample under
specific conditions that may be highly complex, as the composition depends on the phase,
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fate, and environment of a cell, as well being modulated by metabolic pathways and
post-translational modifications (PTM). In nucleated cells, there are thought to be about
10,000 distinct proteins, among which 2000–6000 proteins have been shown to be analyzed
by proteomic assays. Although platelets are anucleated cells, they retain a large portion
of their cytoplasmic content from MKs and thus contain RNA, which carries messages for
several platelet proteins including chemokines, FcRs, plasminogen activator inhibitor-1
(PAI-1), and PKC (Table 1). Combining proteomics with platelets will help us to analyze
the total protein components of platelets under certain conditions.

Theoretically, the total expression of protein-coding genes in platelets is now predicted
to be 1400 proteins based on data from the genome-wide platelet transcriptome. As far
as we now understand, mitochondrial, metabolic, signaling/adaptor and transcription
proteins are notably prevalent in the discovered platelet proteome [18]. A lot of progress
has been achieved in the last 10 years in determining the protein makeup of platelets
which are newly separated from human blood samples. The number of proteins has grown
from 1300 proteins discovered by mass spectrometry and label-free analysis in 2011 to
5400 proteins, of which 3700 have estimated copy numbers [19–21]. The 500 proteins with
the greatest copy numbers were analyzed, and it was found that proteins involved in
signaling, small GTPases, the actin and microtubule cytoskeletons, and α-granules were
the most abundant [22]. Numerous virtually intact 20 S and 26 S proteasomes were also
found, supporting normal protein degradation in platelets [23]. A study also showed
that 80 proteins (9%) associated with plasma proteins and signaling proteins had different
abundances in small and big platelets generated from single healthy donors [24].

5. Methods of Platelet Proteomic Analysis

Platelet isolation without contamination is a challenging procedure and is performed
by the centrifugation of whole blood. Indeed, various factors including the recent admin-
istration of a drug (aspirin, prednisolone), quick isolation after blood collection, age, and
platelet suspension temperature may modify the protein of platelets [23,25–27]. Therefore,
various methods are used to prepare the proteomics sample depending upon the purpose
of the experiments [28]. The most widely used method is the lysis of platelets to extract the
protein in them, and several lysis methods have been used, among which glycerol lysis
appeared to be the most reproducible and efficient [29].

Protein separation can be done by two processes: Sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS–PAGE) and two-dimensional gel electrophoresis (2-DE). In SDS-
PAGE, proteins are separated according to polypeptide size using polyacrylamide gel in
which low to medium-size separation occurs [30]. In the high-resolution 2-DE process of
protein separation, proteins are separated by their two distinct properties: initially by their
isoelectric point and then according to their relative molecular mass [31]. The composition
of platelets’ subcellular organelles, such as lipid rafts, membranes, secretory granules, and
platelet microparticles, as well as the identification of proteins and the mapping protein
phosphorylation of resting and active platelets, have all been studied using this technique.
The rough relative measurement and monitoring of platelet differences under various
physiological and pathological situations were made possible by further protein comparison
staining or pre-labeling of the proteins from various biological samples and mixing them
before separation. Mass spectrometry (MS) has increasingly become the method of choice
for the analysis of complex protein samples and is currently proteomics’ most important
tool, as it measures the femtoliter concentration of protein [32]. For the digestion of
protein to generate peptides in MS, enzymatic digestion by trypsin is known to be the best
method used [33]. To minimize the complexity of the mixture, high-performance liquid
chromatography (HPLC) is used in combination with electrospray ionization coupled to MS.
The mass analysis and detection of peptide ions are performed by the MS. MS analysis of the
peptides is divided into peptide mass fingerprinting and tandem MS (MS/MS) [34]. MS/MS
allows for the sequencing of proteins and peptides, which is why it is an indispensable
tool for the recognition of proteins, detection of the site of phosphorylation, structure
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illustration, and characterization of PTMs [35]. In MS/MS, labeling leucine is performed in
protein identification [36]. The advantages and disadvantages of each method of platelet
proteomics analysis are listed in Table 2.

Table 2. Advantages and disadvantages of gel-based and gel-free platelet proteomics analysis.

Gel-Based (2D) Gel-Free (LCMS/MS)

Advantages 1. Detection of isoforms on protein level
2. Relative quantification

1. High sensitivity
2. High throughput
3. High dynamic range
4. PTMs site location
5. Precise quantification
6. Application in clinics

Disadvantages

1. Low throughput
2. Low sensitivity
3. Low protein coverage
4. Time-consuming sample processing
5. Limited detection of hydrophobic proteins

1. Expensive analytical equipment
2. Sophisticated data analysis

To determine the quality of protein, quantitative proteomics can be performed. There
are two different approaches for the quantification of protein which are label-free and
isobaric labeling (tandem mass taqs or isobaric tags for relative and absolute quantifica-
tion; iTRAQ). The label-free quantification approach has been the most popular and is
the simpler technique, and measures the absolute concentrations of all proteins based on
summarized ion counts. After protein biosynthesis, PTM is performed to control multiple
biological functions of protein: protein folding, localization, and interaction with other
biomolecules [37]. In the case of platelets, PMTs are studied for the phosphorylation sites,
ubiquitylation, and proteolysis of proteins, as well as some special interest in platelet activa-
tion [34]. Additionally, pathway and network analysis techniques have become increasingly
popular, as these aim to identify activated pathways and pathway modules from functional
proteomic data [38]. Pathway analysis also helps to organize a long list of proteins in a short
list of pathway knowledge maps, which makes the interpretation of molecular mechanisms
easier when they are involved in protein alteration and their expression.

Validation of the proteomics analysis is a crucial step to confirm the data and can
be performed by several methods including western blot, ELISA, immunoblotting, and
immunoprecipitation [39].

6. Platelet Proteome in Health and Diseases

When platelets are activated, they release a variety of chemicals that can have an
impact on various pathophysiological processes, such as inflammation, tissue regenera-
tion and repair, cancer growth, and cardiovascular diseases (CVDs) (Figure 2). Earlier
studies on platelet proteomics, phosphorylation, and other PTMs are done in resting and
activated states where the composition and copy numbers of human and mouse platelets
are thoroughly described [20,21,40]. Additionally, the “platelet release”, the term for the
proteomic composition of the granules released by activated platelets, is described and
characterized [6]. A thorough map of human platelets and an examination of inter- and
intra-donor variation also revealed that 85% of the platelet proteome is stable [21,41]. Since
the fundamentals are already established, this can be used to investigate how various
illnesses change platelets and, hopefully, to understand how to target those signaling
pathways with drugs.
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CVDs are the primary cause of death in developed countries, and it is well-known that
platelets play a significant role in their development. Methods for the detection and prog-
nostication of CVD progression are urgently needed, but the underlying signal transduction
is still poorly understood. Acute coronary syndrome and stable coronary artery disease
may now be distinguished using comparative proteomics of “platelet releasates” [42]. A
study showed that 6 out of 400 proteins that were tested had distinct expression patterns
in individuals with acute and chronic coronary syndromes [43]. In a small cohort of
10–30 participants that compared acute vs. chronic coronary syndromes in individuals,
it was established that the differently regulated proteins have a role in the cell structure,
morphology, and cell assembly processes, all of which are crucial for platelet activation [34].
In particular, signaling, glycolysis, and cytoskeletal-related platelet proteins were shown to
be differentially altered in two groups of patients with acute coronary syndrome [44,45].

Likewise, in contrast to circulating platelets, gel-based proteomics found a change
in 16 platelet proteins including integrin αIIb and thrombospondin-1 collected from the
intracoronary culprit site in patients with ST-elevation myocardial infarction (STEMI) [46].
Furthermore, a platelet phosphoproteomic study of STEMI patients showed an elevation in
critical tyrosine phosphorylation upon GPVI activation, raising the idea that GPVI might be
used as an antithrombotic target in STEMI [46,47]. Platelet releasate from individuals with
stable angina pectoris and whole platelets from patients with lupus anticoagulant-related
thrombosis showed that only a small number of proteins are changed [48].

According to targeted mass spectrometry, the difference in integrin αIIbβ3 was found
to be only 5% for platelets from control participants compared to patients with type I Glanz-
mann thrombasthenia, a severe bleeding disease [49]. In addition, as compared to control
platelets, plasma proteins endocytosed by integrin αIIbβ3 seemed to be downregulated,
including fibrinogen, factor XIII, plasminogen, and carboxypeptidase 2B. Quantitative
proteomics analysis on platelets from a patient with Scott syndrome, a rare moderate
bleeding condition, showed that 134 (6%) proteins were either up- or down-regulated,
including the full absence of the phospholipid scramblase anoctamin-6 and low levels
of the platelet-morphology-regulating calpain-1 protease [50]. Likewise, in patients with
the severe bleeding condition X-linked thrombocytopenia with thalassemia, 83 changed
proteins along with cyclooxygenase 1 (COX1) and a number of the cytoskeleton and protea-
some proteins were discovered by quantitative proteomics [51]. Additionally, 123 platelet
proteins were primarily downregulated in 5 out of 47 gray platelet syndrome patients
(a milder bleeding condition) with novel variations in NBEAL2, with the majority being
granule-associated and cargo proteins at unchanged mRNA expression levels [52].
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Although several studies have looked at the platelets from individuals with cardio-
vascular conditions, complete platelet proteomic evidence is still lacking. Large-scale
validation studies are necessary to determine whether platelet proteomics may be a valu-
able tool in cardiology treatment and clinical practice, even though prior research has
shown that platelet activation varies across certain cardiovascular illnesses. With the most
recent technology, it is possible to monitor the protein abundance in “platelet releasates” to
assess uneven platelet reactivity and probable future thrombus development.

Some proteomic studies have looked at platelets from individuals with somatic mu-
tations in cancer or genetically less well-defined disorders in addition to uncommon
congenital defects. Quantitative proteome analysis research revealed disease regulation
by a wide range of platelet proteins from 12 patients with early-stage malignancies, in
contrast to healthy participants [53]. The majority of these proteins returned to normal
following surgical resection. It has been suggested that the platelet proteome contains
variably expressed proteins linked to early-stage cancer, and as a result, platelet proteins
are identified as a novel source of potential biomarkers [53]. However, these findings were
supported by proof-of-concept research conducted only on a small cohort of patients with
lung or pancreatic cancer. Additional focus is required in this area as some of the proteins
that are controlled by platelets may serve as biomarkers for certain malignancies.

Platelet function issues also are linked to chronic kidney disease, which can result
in bleeding and thrombotic problems, leading to high morbidity and mortality [54,55].
Platelet glycoproteins GPIIb/IIIa, serotonin, and ADP release, as well as problems with the
metabolism of arachidonic acid and prostaglandins, are potential contributory factors [54].
Additionally, uremic toxins have been demonstrated to affect endothelial cells, vascular
smooth muscle cells, macrophages, and platelets, increasing inflammation and causing
platelet activation and aggregation [56]. Due to platelets’ multifactorial nature, disease
stage-associated variability, and interpatient variability, unraveling the factors that con-
tribute to platelet dysfunction through proteomics analysis for diagnostic and prognostic in-
terests would substantially aid in the recognition of risk factors and treatment alternatives.

Significantly, the amounts of plasma proteins involved in immunological responses
and inflammation were increased, which showed that these patients may also have an
immune deficiency. Plasma proteins including fibrinogen and 2-macroglobulin, which
are associated with enhanced endocytosis or stickiness of the patient’s platelets, were
shown to be raised in the platelet proteome of individuals with progressive multiple
sclerosis [57]. Platelet quantitative proteomics found roughly 300 regulated proteins in
dengue virus-infected individuals [58]. A total of 360 differently regulated proteins were
discovered, among which four of them, PHB, UQCRH, GP1BA, and FINC, were effective in
differentiating between patients and healthy controls during the platelet proteomic analysis
of patients with mild and severe cognitive impairment in the search for an Alzheimer’s
disease biomarker [59].

Neutrophil Extracellular Traps (NETs) are formed by neutrophils during the immune
response by a controlled cell death process called NETosis and are web-like structures
composed of DNA and histones [60]. TLR2 and TLR4 are involved in the activation
of neutrophils [61]. Histones within NETs can also activate platelets directly via TLR2
and TLR4, enhancing platelet aggregation and thrombin production [62]. Histones also
stimulate the release of vWF from vascular endothelial cells, mediating further platelet
adhesion and aggregation. Importantly, platelet activation can cause the dysregulation of
NETosis, which can result in immune-mediated scattered microthrombi, hypercoagulability,
and tissue damage through the vWF–NETs axis, leading to multiple organ failure and
death [63,64]. For example, the vWF–NET axis has been noted to contribute to thrombotic
complications in acute ischemic stroke and COVID-19 [65]. It has been observed that NETs
cause patients with gastric cancer to have hypercoagulable platelets by upregulating the
cell-surface expression of P-selectin and phosphatidylserine [66,67]. Malignant tumors
may also trigger immunothrombosis by stimulating neutrophils and/or platelets, which
is followed by the formation of a NET [68]. Furthermore, Guglietta et al. provided a link
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between NETs and platelets in an animal model of small intestinal tumors [69]. There is
evidence that the interaction between platelets and NET causes autoimmune diseases like
systemic lupus erythematosus by affecting coagulation [70]. It has now been demonstrated
that type 1 diabetes and the platelet–neutrophil interaction are related [71]. The pancreas of
non-obese diabetes mice showed a correlation between an increase in platelet–neutrophil
aggregates in the circulatory system and NET markers, indicating that platelets may
stimulate neutrophils for transmigration into islets, which is followed by NETosis and islet
destruction. The TLR4–ERK5 platelet axis has been shown to facilitate NET formation in
the lung and further promote metastasis [72]. Taken together, the TLR-mediated vWF–NET
signaling pathway plays an important role in immune response and is linked to the pro-
thrombotic state in various diseases. The detailed analysis of proteins involved in vWF–NET
axis-mediated thrombosis and inflammation may be a valuable tool in identifying novel
biomarkers and therapeutic targets in CVDs and other diseases associated with thrombosis.

7. Platelet Proteomics in Transfusion Medicine

A long-standing problem is how to optimally store platelets to preserve their func-
tions after transfusion [73]. Proteomics is being actively used to describe temperature-
induced platelet changes. According to transcriptome-based research, freshly separated
platelets have a limited potential for protein synthesis and are continuously degrading
RNA species [74]. Frequently, platelet concentrates used in transfusions may be kept in
storage for a few days before the platelets begin to lose their functional characteristics, a
condition known as platelet storage lesion [75]. Numerous investigations on the protein
alterations of aging platelets have been conducted to determine the source of this lesion.
In an early study, the majority of the 2900 identified proteins were found to have new
N-termini, which showed that platelet storage included significant proteolytic process-
ing [76]. Endocytosis- and cytoskeleton-related proteins were shown to alter with platelet
age to enrich younger circulating platelets in a platelet apheresis intervention program [77].
According to two quantitative proteomic investigations, changed proteins in particular
had a role in degranulation as the storage duration increased [78,79]. Due to the stim-
ulation of glycoprotein shedding, platelets kept at 2–6 ◦C were shown to exhibit lower
levels of glycoproteins and higher amounts of surface activation indicators, although their
viability was unaffected [80]. In the wake of the transfusion of aging platelets, several
organizations are looking for proteins present in the platelet that might justify harmful
transfusion responses that harm the health of patients. In terms of pathogen inactivation,
the exposure of concentrated platelets to riboflavin and ultraviolet light for two days led
to the production of reactive oxygen species, which led to a slight increase in the number
of oxidized peptides when compared to the 18% of the 9400 identified platelet peptides
that were already oxidized [81,82]. Age-related upregulation of proinflammatory cytokines
(CCL5, PF4) and metabolic proteins (such as glycolysis and lactate synthesis) was seen in
proteomic investigations on extracellular vesicles produced by aging platelets [83].

As technology advanced, proteomic research using label-free quantification showed
that prolonged storage for 13–16 days decreased the levels of proteins involved in platelet
degranulation, secretion, and exocytosis while increasing the levels of 2-macroglobulin,
glycogenin, and Ig chain C region [78]. Wang et al. discovered that varied storage tem-
peratures resulted in various PSLs after comparing the proteomic signatures of platelets
kept at 22 ◦C, 10 ◦C, and 80 ◦C. While cold storage affects SNARE interactions in vesicu-
lar transport and vasopressin-regulated water reabsorption, the storage duration mostly
affects endocytosis, Fc gamma R-mediated phagocytosis, and actin rearrangement [79].
Concentrated platelets for customized transfusions may become available in the future of
precision medicine.

8. Hurdles in Accurate Platelet Proteome Research

While studying platelets by proteomics may appear simple and straightforward, there
are several issues, mostly with the quality control of samples used in this proteomics
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research. The use of high-throughput proteomics to study platelet biology raises several
issues, as accepted by all industry professionals. These range from the collection of blood
samples, such as the isolation method, use of anticoagulant, and sample processing, to
components of mass spectrometry technology and data analysis, such as protein detection
low-abundance, modifiable protein abundance, etc.

Washed platelets are often employed in platelet proteome studies today. Reliable
proteome analysis depends on the platelet purity, quantity, and activation state. Although
washed platelets have been isolated in most studies with a high purity (99–99.99%), the
presence of proteins from plasma, RBCs, and white blood cells (WBCs) cannot be totally
ruled out [18]. The platelet separation process is often built upon a series of low-speed
centrifugation stages that separate whole blood into distinct blood components depending
on their densities while leaving the tiny, light platelets floating in the liquid plasma [84,85].
However, because platelets in direct contact with blood plasma have a prolonged open
canicular system, leftover plasma proteins are always present in the majority of listed
platelet proteomes [18]. Although the ability to separate platelets from whole blood has
increased throughout the years, earlier studies with platelet proteomics demonstrated a
broad range of platelet purities, platelet concentrations, and protein use quantities per
sample under analysis. In the first proteomics investigation on mice, protein abundance
patterns were examined along several purification processes to separate real platelet pro-
teins from impurities in plasma, WBCs, and RBCs [40]. The study showed that there can be
the presence of more than 200 impurities (mostly RBC components or extremely abundant
plasma proteins such as apolipoproteins, and complement factors due to the clustering of
proteins at various purification stages) [40].

It was claimed that the OptiPrepTM density gradient centrifugation method could
recover more than half the population of platelets with a 99.99% platelet purity and little
WBC contamination, but it has not been used for proteomic investigations. Microfluidic
platelet preparation or a completely automated method that offers a high yield and pu-
rity (>99%) with the reduced activation of platelets are suggested to be used in place of
centrifugation methods for analyzing the platelet transcriptome [86].

For high-throughput research, additional controls should be created to guarantee
full platelet lysis and digestion, low peptide loss during the preparation of samples, and
automation for the analysis of a large number of samples. In the laboratories working
with platelets’ biological and translational applications, quality control methods of mass
spectrometry-based proteomics data acquisition must be established. For example, a cloud-
based quality control system or web-based apps can be applied [86–88]. Label-free analysis,
which allows for infinite numbers of samples to be compared at the level of the proteome,
can be done for greater throughput applications [78].

Searching known databases of fragmentation spectra is the most often utilized method
for proteomic data analysis. It provides a useful summary of current bioinformatics ap-
proaches for the identification and quantification of proteins [89]. Data normalization,
which involves applying adjustments in accordance with predetermined standards to
eliminate inconsistent data points followed by statistical testing/screening for false dis-
covery rates, is a crucial stage in the analysis. A changing protein abundance should
not be the reason for the apparent regulation of a phosphorylation site in phosphopro-
teomics [90]. Special methods must be used to determine a phosphorylated peptide’s site
of phosphorylation and the kinase that is involved with platelet function [91].

One of the major drawbacks that has been observed in several studies is the inclusion
of just a few platelet samples for comparison. Because of this, even when comparing healthy
individuals to those who are sick, it has become challenging to make conclusions about
inter-subject variances. Other technical drawbacks include inadequate protein abundance
that is associated with inadequate peptide coverage, difficult spectral data processing,
missing hydrophobic peptide sequences, and uncertain functions for several newly found
proteins [92]. Therefore, the quantity of samples is another aspect that cannot be overlooked
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in platelet proteomic research. Strategies must be established in the future that allow for
the use of only a few microliters of blood for platelets-based proteome study.

Since many studies only use a small number of samples and mass spectrometry
proteome analyses are still expensive, it is difficult for institutions to conduct research with
the ideal number of samples needed for careful data interpretation. Proteomics analysis
is complicated and needs educated employees, which prevents the widespread use of the
technology at diagnostic clinical laboratories. The equipment may not be inexpensive
for clinical institutions. This raises questions about how well platelet proteomics may be
applied in the therapeutic setting. It is recommended that standard protocols and areas of
concern need to be created for platelet preparation, sample processing, and data analysis in
order to increase the reproducibility of platelet research.

Most importantly, PTMs are another big hurdle in studying platelet biology. PTM
is defined as the addition, subtraction, exchange, or rearrangement of functional groups
to the side chains of amino acids and the N- and C-termini of proteins. After biosynthe-
sis, proteins are subjected to PTMs, which are known to regulate a variety of biological
processes, including protein activity, folding, localization, and interactions with other
biomolecules [93]. Although more than 400 PTMs have been characterized, the full extent
of their physiological functions is yet unknown. Phosphorylation, ubiquitylation, and
proteolysis are the PTMs for platelets that have been extensively researched, while glyco-
sylation, acetylation, and palmitoylation are given little consideration. The interaction of
platelet PTMs during activation is also particularly intriguing.

Although there will be a lot of difficulties in making this shift, the development of
proteomics as a basic tool for platelet research and moving this field from the discovery
stage into the biology and preclinical application stage is important. In summary, for the
field to advance, standardized criteria that enhance the repeatability of platelet preparation,
proteomic sample processing, and complicated data analysis across laboratories should
be implemented.

9. Is Clinical Translation between Mouse Platelet Proteome to Human Clinical
Studies Possible?

Preclinical models have enabled a wide range of clinical uses, including surgery,
vaccine development, illness detection, and therapy, among others. According to the
thorough understanding thus far drawn from interspecies investigations, conclusions
gained from animal research cannot be casually extrapolated to humans. Nevertheless,
some research topics need the use of animal preclinical models, where researchers may
phenocopy human illnesses, pathologies, or diseases in order to better understand the
process underlying these qualities and test possible innovative therapies.

Human and mouse platelets share a substantially conserved proteome, thus providing
evidence for the application of the proteomics technique in both intra- and inter-species
fields [94]. This is also supported by an increasing number of preclinical or clinically
applicable investigations in humans. Additionally, the similarity of the physiological,
anatomical, and genetic characteristics between mice and humans justifies the use of
mice as preclinical models, despite the evident differences between the two species [95].
Moreover, we have the ability to modify them genetically and physiologically. Therefore,
although there are differences between the platelet formation processes in humans and
mice, it is possible to study the megakaryopoiesis, thrombopoiesis, and platelet function of
humans using mice as a model [95,96]. Murine preclinical models can enable us to illustrate
how different proteins, including transcription factors, receptors, signaling molecules,
hormones, cytokines, etc., function pathophysiologically in humans [97,98].

10. Conclusions and Future Perspectives

Myocardial infarction, ischemic stroke, and pulmonary embolism are just a few ex-
amples of cardiovascular thromboembolic diseases that continue to be the leading causes
of death and disability in the world. Therefore, it is crucial to advance diagnoses and
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treatment in the context of individualized medicine. The disease specificity of currently
available indicators is restricted, despite the fact that traditional platelet-activation markers
are sensitive in detecting excessive or faulty activation states. Recent studies of platelet
proteomics signatures, in contrast, demonstrate an enhanced disease specificity. Based
on analyses of peptides and matching proteins in disease vs. healthy individuals, it has
recently been shown that focused human platelet proteomics enables the quantification of
CVD and other thrombotic disease biomarkers. In a customized and precision medicine
scenario, it will become more critical to analyze the individual diversities in the proteomes
of healthy people and patients.

Although the studies on the subject must be further validated by various independent
investigations, the recent advances in mass spectrometer technology have made it possible
to analyze numerous previously unidentified and newly discovered proteins quantitatively
and to reveal the intricate phosphorylation patterns of proteins, many of whose functions
are still unknown. The discovery of novel platelet proteins as possible biomarkers for
diseases would be another breakthrough in the proteomic discipline. Some of the altered
proteins that are indicative of an increased risk for CVDs and other platelet-associated
disease states, reflecting alternations in platelet function and signaling pathways, are listed
in Table 3.

Table 3. Various key platelet protein biomarkers involved in CVDs and other platelet-associated
disease conditions.

Biomarker Disease Conditions References

Podoplanin Tumor-induced platelet activation and tumor
metastasis and invasion. [99–104]

CD40 ligand
Acute coronary syndromes, coronary
revascularization procedures, atherosclerosis, and
inflammatory processes.

[105–107]

Platelet-derived growth factors (PDGFs) Gliomas, sarcomas, leukemias, and epithelial cancers. [108,109]

P-selectin
Coronary heart disease, hypertension, arterial
fibrillation, congestive heart failure,
stroke, atherosclerosis.

[110–114]

Glycoprotein IIb/IIIa Platelet aggregation, thrombosis, hemostasis, carotid
atherosclerosis, and diabetes. [115–118]

Thrombospondin
Myocardial infarction, heart failure, coronary artery
disease, coronary heart disease, abdominal
aortic aneurysms.

[119–122]

Advanced glycation end products Peripheral artery disease increases thrombotic effect in
diabetes and coronary heart diseases. [123–125]

Troponin Myocardial infarction, heart failure, arterial fibrillation,
Takotsubo cardiomyopathy, stroke, atherosclerosis. [126–130],

Signal transducer and activator
of transcription

Chronic inflammation, osteosarcoma, and
prostate cancer. [131,132]

Vascular endothelial growth factor Breast cancer progression, invasion, and migration,
angiogenesis. [133–135]
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Table 3. Cont.

Biomarker Disease Conditions References

β2-Glycoprotein I Autoimmune condition antiphospholipid
syndrome, thrombosis. [136]

Oxidized LDL receptors Atherosclerosis. [137]

Vasodilator stimulated phosphoprotein Metastasis in colorectal cancer. [138]

Myeloperoxidase
Atherosclerosis, coronary artery disease, myocardial
infarction, heart failure, inflammation, colon cancer,
breast cancer.

[139–141]

RANTES

Acute coronary syndrome, atherosclerosis,
inflammation. Development and progression of
atherosclerosis, inflammation, thrombosis, diabetes,
myocardial infarction, and atherothrombosis.

[142–152]

Platelet factor 4
Liposarcoma, mammary adenocarcinoma, and
osteosarcoma, inflammation, atherosclerosis,
myocardial infraction.

[153–156]

VWF Atherosclerosis, hepatic carcinoma, hemostasis and
thrombus formation. [157–160]

Beta amyloid precursor protein II Alzheimer’s disease. [161–163]

IL-1B Atherosclerosis, inflammation, diabetes, coronary
heart disease, stroke, peripheral vascular disease. [164–167]

Autoantibody against platelet protein Immune thrombocytopenia. [168]

Facotor XII Coronary heart disease, atherosclerosis, ischemic and
hemorrhagic stroke, myocardial infraction. [169–172]

ADAMTS13

Thrombotic microangiopathies, Thrombotic
thrombocytopenic purpura, hepatocellular carcinoma,
peripheral arterial disease, coronary heart disease,
stroke, heart failure, myocardial infarction,
liver cirrhosis.

[158,173]

Neutrophil extracellular traps (NETs)
interacting protein

Autoimmune and inflammatory disorders,
atherosclerosis, thrombosis. [174–177]

Neutrophil elastase Colorectal cancer, gastric cancer, pulmonary
arterial hypertension. [178–180]

Citrullinated histones Thrombosis, inflammation, thromboembolism. [181,182]

ERK5 Inflammation, atherosclerosis, hypertension. [183–185]

Autotaxin Alzheimer’s disease, ischemic dilated cardiomyopathy,
calcified aortic valve stenosis. [186,187]

Cyclooxygenase Atherosclerosis, aneurysm [188,189]

Platelet-derived microvesicle
Development and progression of atherosclerosis,
inflammation, thrombosis, diabetes, myocardial
infarction, and atherothrombosis.

[145–152]

Despite wide variations in mass spectrometry and spectrum analysis techniques,
the exact composition of the ‘typical’ human platelet proteome is still unknown. The
attainable human platelet proteome will need to be defined through a coordinated multi-
laboratory effort. The manner and purity of sample preparation, including the platelet
concentration, activation state, and all sample processing, differ significantly between the
studies done to date. In order to compare new research results more effectively, inter-
laboratory standardization is expected to be required. Independent methods to confirm
conclusions about protein up- or down-regulation have led to the inconsistency and non-
repeatability of the research results.
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The physiological roles in platelets of many proteins of putative biomarker importance
remain unknown, and more complex protein function studies than general pathway studies
are needed (e.g., using Gene Ontology). This objective may be accomplished with the use
of a recent categorization scheme of all proteins predicted to be or present in platelets.
Mass spectrometry can be substituted by less expensive, immune-based, or flow-cytometry
techniques in bigger/clinical research if a biomarker is confirmed.

Low sample sizes have prevented published studies of patients from examining
common intersubject factors, including blood cell characteristics, gender, age, and health
history. The simultaneous comparison of several platelet samples is possible thanks to new
high-throughput analytic techniques that combine label-free quantification approaches with
data-independent acquisition, which is necessary for these clinically pertinent concerns.

Detailed information regarding protein distributions in healthy volunteers and pa-
tients will be provided by quantitative proteomics research. The phosphorylation patterns
of platelets will also be helpful in comprehending platelet activation and finding potential
new treatment approaches. Beyond the conventional depiction of linear pathways, a greater
knowledge of platelet signaling will be possible thanks, in particular, to quantitative phos-
phoproteomic research. Over the past decade, although these unique technical approaches
have and will continue to produce important discoveries, signaling has proven to be much
more dynamic than expected in comparison to existing techniques. To identify previously
unidentified post-translational changes, the unsupervised elucidation of platelet signaling
using artificial intelligence may become increasingly significant in the future. In order
to merge traditional biochemical knowledge with unexpected discoveries from big data
methods, fresh data analysis strategies are needed to handle the enormous quantity of data
generated by quantitative proteomics investigations.
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