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Abstract: Defined as systemic hypotension caused by intense vasodilation due to the loss of systemic
vascular resistance, vasoplegic syndrome (VS) is associated with elevated morbidity and mortality in
humans. Although vasopressors such as norepinephrine and vasopressin are the first-choice drugs
for VS treatment, several other drugs such as methylene blue (MB) can be used as adjuvant therapy
including rescue therapy. To develop new pharmacological strategies to reduce the risk of VS, we
investigated the effects of treatments with MB (2 mg/kg/IV), omeprazole (OME, 10 mg/kg/IV),
and their combination in an animal model of cardiac ischemia–reperfusion (CIR). The ventricular
arrhythmia (VA), atrioventricular block (AVB), and lethality (LET) incidence rates caused by CIR
(evaluated via ECG) and serum levels of the cardiac lesion biomarkers creatine kinase–MB (CK-MB)
and troponin I (TnI) in adult rats pretreated with saline solution 0.9% and submitted to CIR (SS + CIR
group) were compared to those pretreated with MB (MB + CIR group), OME (OME + CIR group),
or the MB + OME combination (MB + OME + CIR group). The AVB and LET incidence rates in
the MB + CIR (100%), OME + CIR (100%), and MB + OME + CIR (100%) groups were significantly
higher compared to the SS + CIR group (60%). The serum level of CK-MB in these groups were
also significantly higher compared to the SS + CIR group, demonstrating that the treatments before
CIR with MB, OME, and MB + OME produced similar effects in relation to cardiac function and
the occurrence of lesions. These results demonstrate that the treatment of animals subjected to the
CIR protocol with OME produced the same effects promoted by the treatment with MB, which may
suggest the possibility of using OME alone or in combination with MB in medical clinics in treatment
of VS.
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1. Introduction

A well-known complication following cardiac surgery, either with or without car-
diopulmonary bypass (CPB), is vasoplegic syndrome (VS), which carries a high risk of
perioperative morbidity and death. Its occurrence range in cardiac surgery patients follow-
ing CPB has been reported by some authors to be between 9% and 44% in the subset of
patients with predisposing characteristics [1,2]. VS is manifested by significant systemic
hypotension associated with continuously high cardiac output and low systemic vascular
resistance, yet poor quality organ perfusion, although vasopressors are needed to sustain
the blood pressure for end-organ perfusion [1,2].

The mechanism linking cardiac surgery with CPB to VS is complex and depends on
the type of surgery performed and several patient-specific factors. The broad base immune
response, complement activation elicited by surgical trauma, ischemia–reperfusion injuries
to the heart and lungs, blood transfusions, and blood exposure to the foreign surfaces of
the CPB circuit are most likely linked to post-CPB vasoplegia. Increased levels of oxygen-
free radicals, endothelins, nitric oxide (NO), platelet-activating factors, thromboxane A2,
prostaglandins, various cytokines, and other vasoactive substances are the outcomes of
these events. Vascular relaxation is determined by the relative plasma concentrations of
the endogenous mediators described above. Furthermore, these variables contribute to the
emergence of a systemic inflammatory response syndrome (SIRS), which exacerbates the
dilatation of the generalized arteries [3–6].

Uncontrolled vasodilation and vascular hyporesponsiveness to fluid resuscitation and
endogenous vasoconstrictors are the precursors of refractory VS, which results in a break-
down of the physiological regulating mechanics of vascular tone. Non-catecholaminergic
vasopressors such as thiamine, ascorbic acid, corticosteroid, terlipressin, angiotensin II,
hydroxocobalamin, vasopressin, and methylene blue (MB) have been utilized recently to
improve VS and restore vascular tone. Their impact on the mortality benefits, however, is
currently unclear. Despite recent improvements in treatment, the mortality rates are still
very high, mainly due to multiple organ failure, particularly acute kidney injury [3–6].

It is well established that the vascular tone and systemic arterial pressure are phys-
iologically regulated by several vasoconstrictor and vasodilator factors, including nore-
pinephrine released from sympathetic nerves and NO released from endothelial cells.
Endothelial NO exerts a crucial role in the control of vascular tone and vasodilation. NO is
synthesized by the enzymatic action of NO synthase (NOS) on the amino acid L-arginine.
NO-mediated vasodilation is resultant from the activation of guanylate cyclase (GC) and
consequent increase in intracellular levels of cGMP in vascular cells, which inhibits Ca2+

influx and activates K+ channels, reducing vascular tone. MB has been used in the treatment
of VS due its vasodilatory actions mediated by the inhibition of inducible NOS (iNOS)
and consequent reduction in NO synthesis [7–10]. Additionally, it has been observed
that the proton pump inhibitor (PPI) agents, such as omeprazole (OME), decrease the
phosphorylation of endothelial NOS (eNOS) brought on by bradykinin (BK) [7–10]. This
implies that PPIs decrease the availability of NO, most likely through a mechanism that has
already been proposed (such as a decrease in eNOS expression or an increase in intracellular
asymmetrical dimethylarginine levels) [11,12]. However, the effects of MB and OME in
reducing the risk of VS are still little known.

To develop new pharmacological strategies to reduce the risk of VS associated with car-
diac surgery and reduce its morbidity and mortality in humans, we investigated the effects
of treatments with MB (2 mg/kg/IV), omeprazole (OME, 10 mg/kg/IV), and their combina-
tion in an animal model of cardiac ischemia–reperfusion (CIR). The ventricular arrhythmia
(VA), atrioventricular block (AVB), and lethality (LET) incidence rates caused by CIR (eval-
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uated by ECG) and serum levels of cardiac lesion biomarkers creatine kinase–MB (CK-MB)
and troponin I (TnI) in adult rats pretreated with a saline solution (0.9%) and submitted to
CIR (SS + CIR group) were compared to those pretreated with MB (MB + CIR group), OME
(OME + CIR group), and the MB + OME combination (MB + OME + CIR group).

2. Materials and Methods
2.1. Animals

The animals utilized in this study (Wistar rats, male, weighing from 280 to 320 g) were
maintained under standard conditions of nutrition, hydration, temperature (21 ± 2 ◦C),
light (12:12 h light/dark cycle), and humidity, and in accordance with normalization proto-
cols approved by the Ethics Committee of the Escola Paulista de Medicina EPM)/Universid-
ade Federal de São Paulo (UNIFESP). All experimental protocols used in this study
were approved by the Ethics Committee of the EPM/UNIFESP (UNIFESP #9447210317
and 7323080822).

2.2. Induction of Cardiac Ischemia and Reperfusion (CIR)

To replicate an animal model of AMI in the lab, rats underwent surgical procedures
following the protocol that our research group had previously published [13,14]. To
induce unconsciousness, the rats were initially given intraperitoneal injections of xylazine
(10 mg/kg), ketamine (100 mg/kg), and tramadol (2 mg/kg). The rats were placed in the
supine position on a surgical platform that was heated by a thermal blanket after being
given anesthesia. A rectal thermometer was used to regularly check the temperature,
which was kept at 37.5 ◦C. Using a respiratory pump from Insight® (EFF 312—Insight
Equipamentos Cientificos, Ribeirão Preto, Brazil), the animals were kept on mechanical
ventilation. Initially, a venous access procedure was carried out via the femoral vein,
involving the implantation of a catheter to deliver the medication at the suitable moment.
The animals were then put through mechanical ventilation using room air with a tidal
volume of roughly 6 mL/kg of body weight and a respiratory frequency of 90 cycles per
minute, after orotracheal intubation.

A left thoracotomy was carried out between the fourth and fifth intercostal spaces
following the trichotomy. A 4-0 suture (4/0 braided silk suture coupled to a 10-mm microp-
oint reverse cutting needle; Ethicon K-890H, Raritan, NJ, USA) was passed approximately
2 mm from the origin, between the edge of the left atrium and the sulcus of the pulmonary
artery, after the pericardium was broken. This allowed the heart to be externalized through
lateral compression of the chest. The chest was then promptly reopened, and the heart
was swiftly returned to the thoracic cavity. The two ends of the nylon thread were fed
into a cylindrical polypropylene tube, which was utilized to create ischemia, in order to
accomplish the coronary ligation [15,16].

Following a stabilization period of fifteen minutes, the coronary artery was covered
by the tube, the nylon thread was removed, and the tube and nylon thread were secured
using Kelly forceps. All that needed to be done to accomplish reperfusion was to separate
this arrangement and take out the nylon thread and tube. The tourniquet was withdrawn
to allow for 75 min of coronary after 10 min of myocardial ischemia. The procedures for the
sham group were the same as those previously described, although instead of performing
a coronary ligation the nylon thread was only slipped under the left coronary artery. As
a result, ischemia and reperfusion were not caused. ECG monitoring was continued
throughout the duration of the experiment following surgery. As outlined below, various
experimental protocols were used [17–19].

2.3. Evaluation of Cardiac Activity during CIR

Using a procedure that our research group had previously published [17–19], an
electrocardiogram (ECG) analysis was utilized to analyze the cardiac activity during CIR.
Using this high-resolution methodology, several researchers evaluated the cardioprotective
effects of calcium channel blockers and other drugs on the incidence rates of cardiac
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arrhythmias (VA and AVB) and lethality (LET) owing to CIR. Prior to the stabilization phase
the ECG was first recorded for 15 min, then during the 75 min ischemia and reperfusion
protocols it was recorded for 10 min. The ECG was recorded using a biopotential amplifier
and needle electrodes that were subcutaneously placed into the limbs. Changes in the ECG
caused by CIR (increases in the R wave and ST segment) were used to confirm the effective
coronary artery [17–19].

The ECG was recorded using a biopotential amplifier and needle electrodes that
were subcutaneously implanted into the limbs. The coronary artery had been successfully
blocked via surgery, as demonstrated by the ECG anomalies (increases in R wave and ST
segment) caused by CIR. The body temperature was maintained at 37.5 ◦C using a heated
operating table and the appropriate heating lamps, and the temperature was frequently
checked with a rectal thermometer. The ECG data were processed using a computer system
that included AqDAnalysis 7 software and AqDados 7.02 hardware (Lynx Tecnologia Ltd.,
São Paulo, Brazil) [17–19]. With this method, we were able to track not only the incidence
rates of CIR-induced VA, AVB, and LET but also heart rates. VA was the classification given
to torsades, atrial fibrillation, and ventricular fibrillation [17–19].

2.4. Biochemical Determination of Serum Levels of Cardiac Lesions Biomarkers

After the experiment had been carried out or the animal had died, the serum CK-
MB and TnI levels were determined using the methodology described in our previous
studies [20]. The rats that made it through the entire 75-min CIR therapy provided the blood
samples. After being extracted from the abdominal aorta and placed in siliconized tubes,
these 4–5 mL samples were centrifuged for 40 min at 2500 rpm and 5 ◦C. The supernatant
was removed and stored at −20 ◦C for the enzymatic detection of CK-MB and TnI at
340 nm. For this, a kinetic UV test kit was obtained from Vida Biotecnologia, located in
Belo Horizonte, Brazil [20].

2.5. Drugs Used in the Study

The MB and OME utilized in the study were obtained from Sigma-Aldrich, Brazil. The
animals were treated via intravenous (IV) administration through the left femoral vein with
MB (Sigma Aldrich, Saint Louis, MO, United States) at 2 mg/kg and OME (Sigma Aldrich,
Saint Louis, MO, United States) at 10 mg/kg before CIR to evaluate the incidence rates
of VA, AVB, and LET caused by CIR using an ECG analysis. The following experimental
groups were created from the animals used in this study:

(1) SS + CIR group (n = 20): Rats treated with a saline solution (SS) and submitted to CIR;
(2) MB + CIR group (n = 12): Rats treated with MB (2 mg/kg, IV) and submitted to CIR;
(3) OME + CIR group (n = 12): Rats treated with OME (10 mg/kg, IV) and submitted

to CIR;
(4) MB + OME + CIR group (n = 12): Rats treated with MB (2 mg/kg, IV) plus OME

(10 mg/kg, IV) and submitted to CIR.

2.6. Analysis of Statistics

The incidence rates of VA, AVB, and LET expressed as percentages were analyzed
using the Prism 8.0 program (GraphPad, Boston, MA, USA) and statistically analyzed using
Fisher’s exact test [19]. The serum concentrations of the cardiac lesion biomarkers CK-MB
and TnI expressed as the mean ± the standard error of the mean (SEM) were submitted to
an analysis of variance (ANOVA) test followed by Tukey’s post-test using the Prism 8.0
program (GraphPad, USA) [19]. The results were considered statistically significant when
p < 0.05 [19].

3. Results
3.1. Effects of MB and OME on the Incidence Rates of VA, AVB, and LET Induced by CIR

Figure 1 shows that the AVB and LET incidence rates but not the VA rates in the
MB + CIR (100%) and OME + CIR (100%) groups were statistically different when compared
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to the SS + CIR group (60%), indicating that treatment with MB at 2 mg/kg/IV or OME
at 10 mg/kg/IV before CIR increased the AVB and LET incidence rates induced by CIR.
Similar results were obtained when MB at 2 mg/kg/IV and OME at 10 mg/kg/IV were
administrated before CIR. The AVB and LET incidence rates in the MB + OME CIR group
(100%) were statistically different when compared to the SS + CIR group (60%), indicating
that the treatment with MB at 2 mg/kg/IV plus OME at 10 mg/kg/IV before CIR increased
the AVB and LET incidence rates induced by CIR.
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Figure 1. Histograms representing the (A) incidence rates of ventricular arrhythmias (VA),
(B) atrioventricular block (AVB), and (C) lethality (LET) in the rats pretreated with methylene blue
(MB) at 2 mg/kg/IV (n = 12), omeprazole (OME) at 10 mg/kg/IV (n = 12), or saline solution 0.9%
(SS) (n = 20) and submitted to cardiac ischemia and reperfusion (CIR). The results are expressed as
ratios and the statistical analysis was performed using Fisher’s exact test. Note: * p < 0.05 statistically
different compared to the SS + CIR group.
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3.2. Effects of the Treatments with MB and OME on the Serum Levels of CK-MB and TnI in
Animals Submitted to CIR

Table 1 shows that the serum levels of CK-MB in the MB + CIR and OME + CIR groups
were statistically different when compared to the SS + CIR group, indicating that treatment
with MB at 2 mg/kg/IV or OME at 10 mg/kg/IV before CIR increased the serum levels of
CK-MB in rats submitted to CIR.

Table 1. Serum concentrations of the cardiac lesion biomarkers creatine kinase–MB (CK-MB) and
troponin I (TnI) in the rats pretreated with methylene blue (MB) at 2 mg/kg/IV, omeprazole (OME) at
10 mg/kg/IV, or saline solution 0.9% (SS) and submitted to cardiac ischemia and reperfusion (CIR).

Groups CK-MB
(U/L)

TnI I
(ng/mL)

SS + CIR 2037 ± 117 0.200 ± 0.01
MB + CIR 2760 ± 292 * 0.200 ± 0.01

OME + CIR 2610 ± 245 * 0.200 ± 0.01
The results are expressed as the mean ± standard error of the mean (SEM) as obtained from 3 to 5 rats. The
data were submitted to an analysis of variance (ANOVA) followed by Tukey’s post-test. SS + CIR group
(n = 5); MB + CIR group (n = 3): OME + CIR group (n = 3). Note: * p < 0.05 statistically different compared to the
SS + CIR group.

Table 1 also shows that the serum levels of TnI in the MB + CIR and OME + CIR
groups were not statistically different when compared to the SS + CIR group, indicating
that treatment with MB at 2 mg/kg/IV or OME at 10 mg/kg/IV before CIR did not change
the serum levels of TnI in the rats submitted to CIR.

4. Discussion

VS is a well-known complication following cardiac surgery, either with or without CPB,
which represents an important perioperative risk factor associated with elevated morbidity
and mortality rates in patients submitted to cardiac surgery. Although several classes
of vasopressor drugs have been proposed to restore vascular tone and systemic arterial
pressure in patients with VS, the pharmacological treatment of this syndrome remains
under investigation. In order to develop new pharmacological strategies to reduce the risk
of VS associated with cardiac surgery and reduce its morbidity and mortality in humans,
in the present work we investigated the effects of treatments with MB (2 mg/kg), OME
(10 mg/kg), and their combination in an animal model of cardiac ischemia–reperfusion
(CIR). The present study shows that the AVB and LET incidence rates in the MB + CIR
(100%), OME + CIR (100%), and MB + OME + CIR (100%) groups were significantly higher
compared to the SS + CIR group (60%). In addition, the serum levels of CK-MB and TnI in
these groups were also significantly higher compared to the SS + CIR group. These results
suggest that treatment with the isolated or combined use of MB and OME could be effective
and safe in patients with VS due to a reduction in NO bioavailability, which restores
vascular tone and systemic arterial pressure in patients with VS. This study supports the
notion that treatment with the isolated or combined use of MB and OME could be an
effective and safe way to reduce the risk of VS in patients undergoing cardiac surgery.

The goal of early postoperative VS therapy should be to identify the issue when
hypotension, poor SVR, normal or supranormal cardiac output, and fluid unresponsiveness
are present. The goal of caregiving for a patient at risk of postoperative ventilator-associated
pneumonia is to intervene before shock sets in. However, many risk variables, including
some that are intrinsic parts of the surgical procedure, cannot be changed in the immediate
preoperative period. Vasopressor therapy should ideally be started after cardiac function
optimization and fluid resuscitation have been completed. Next, the treatment of VS
involves the use of catecholaminergic drugs with alpha-adrenergic activity (phenylephrine,
norepinephrine (NE), dopamine, and epinephrine), non-catecholaminergic drugs (arginine-
vasopressin and angiotensin II), and moderators of NO (MB, hydroxocobalamin, vitamin
C, thiamine, and corticosteroids) [3–6,21–31].
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Additionally, due to neurohypophysis store depletion and release during extended
CPB and surgery, the plasma levels of arginine vasopressin (AVP) are low to normal.
Because AVP can reduce NO synthesis and mitigate its vasomotor effects, it plays a pivotal
role in the pathophysiology of VS. The length of CPB determines the relative or absolute
lack of AVP levels, as well as the elevated SIRS, and these factors are attributed to VS. Thus,
decreased vasopressin plasma levels, increased NO synthesis, and SIRS are implicated
as the leading causes of VS following cardiac surgery with prolonged CPB [21–29]. The
excessive complexity in the cellular mechanisms involved in VS following CPB and the
involvement of inflammatory cytokines and iNOS are probably the primary factors in
the improper vasodilation associated with vasoplegia. The amount of NO that iNOS
produces raises the level of vascular cyclic guanosine monophosphate (cGMP), which
causes vasodilation. The length of the CPB is directly correlated with the amount of iNOS
in the plasma and the severity of VS [21–31].

Another pathophysiologic role for NO in vasoplegia is as a K+ channel activator, espe-
cially in KATP channels [15]. Furthermore, even in the presence of elevated catecholamine
levels in these cells, vasoconstriction will not transpire due to the deactivation of voltage-
activated Ca2+ channels (VACC) during CPB caused by lactic acidosis, intracellular acidosis,
and reduced adenosine triphosphate (ATP) levels. Additionally, the cytoplasmic Ca2+ lev-
els are reduced and the vasoconstriction impact is blunted by opening the Ca2+-sensitive
K+ channels (KCa) and the channels of KATP, which is a potent intracellular vasodilator
mediator [1,15–17]. Hydrogen sulfide is another pathophysiologic mediator, which in some
conditions, such as inflammation, directly activates and hyperpolarizes KATP channels,
hence lowering vascular tone [32]. This mechanism has similarities to the previously known
NO-mediated pathway of vasoplegia. Its synergistic impact with NO may account for a
minor amount of its vasodilatory effects [25–33].

Although pharmacological therapies have been proposed and used for the stabilization
and recovery of patients with VS, the morbidity and mortality rates remain very high.
Therefore, a new class of pharmacological agents used in isolation or combination appears
to hold promise in the treatment of VS. Pantoprazole and OME, known as PPIs, can be
administered intravenously to inhibit the vasodilatory response due to a reduction in NO
bioavailability, which restores the vascular tone and systemic arterial pressure in patients
with VS. PPIs have drawn a lot of attention for the anti-cancer effects they have through
apoptosis induction and anti-inflammatory actions [23–28]. Nevertheless, the dosages
of these PPIs used in basic and clinical research to investigate the anti-cancer effects are
higher than those used in clinical settings to treat gastroesophageal reflux disease [34–40].
The vascular physiology may be affected by high dosages of PPIs, as some basic research
studies have suggested [40,41], although no studies have looked at the impact of PPIs
on endothelial Ca2+ signaling or the generation of endothelium-derived relaxing factor
(EDRF) [41–43].

Recent advances in basic research have identified the pleiotropic effects of PPIs. Fako
et al. [44] demonstrated that PPIs are effective inhibitors of human fatty acid synthase’s
thioesterase activity, which is linked to treatment resistance, a poor prognosis, and cancer
cell survival. Indeed, OME inhibited thioesterase activity with a half-maximal inhibitory
dose of 29.6 µM, while Bx3PC-3 cell survival occurred at a half-maximal concentration of
14.8 µM [32]. Consequently, even though the peak plasma concentration range of OME
recorded during clinical usage is roughly 1–2 µM, the anti-cancer effects of high-dosage
PPIs (i.e., 100 µM OME) have been assessed in recent basic and clinical studies.

To maintain vascular homeostasis, which includes blood coagulation, vascular perme-
ability, and the synthesis of EDRF, endothelial cells are essential. Variations in intracellular
Ca2+ concentrations ([Ca2+]i) are required for a number of endothelial activities. In endothe-
lial cells, a crucial mechanism involved in [Ca2+]i regulation mediated by the endoplasmic
reticulum (ER), known as store-operated calcium entry (SOCE), is typified by the ER’s
Ca2+ mobilization and the extracellular space’s subsequent Ca2+ influx [45]. While a few



Biomedicines 2024, 12, 582 8 of 11

fundamental studies have indicated that PPIs may affect the vascular physiology [31,32],
very few have concentrated on how PPIs affect endothelial Ca2+ signaling.

The GPCR bradykinin receptor B2, which is found on the surfaces of endothelial
cells, is activated by bradykinin (BK). The GPCR/PLC/IP3 pathway is triggered when
BK stimulates the BK B2 receptor. This leads to an increase in Ca2+ release from the ER
and the activation of store-operated Ca2+ channels (SOCC) [46–48]. By inhibiting the ER’s
Ca2+-ATPase levels and passively reducing the ER’s Ca2+ levels, thapsigargin (TG) also
stimulates SOCE [36,37,49–51]. The OME is able to lower TG-induced SOCE in primary
cultured porcine aortic endothelial cells (PAECs), which is consistent with recent research
that found that 100 µM OME prevented TG-induced SOCE in rat basophilic leukemia
(RBL-1) mast cells [50].

Additionally, OME at a concentration of 100 µM lacks any pharmacological effects
on ER Ca2+-ATPase, despite the possibility that it may partially reduce BK-induced Ca2+

release from the ER. Therefore, it is plausible that the GPCR/PLC/IP3 pathway and
SOCC-related proteins were the two concurrent pathways by which OME inhibited the
intracellular Ca2+ response. According to earlier observations, the interaction between the
inhibitors and the protein known as Ca2+-release-activated Ca2+ modulator 1 is responsible
for the inhibitory effects of a few SOCE inhibitors [28–30]. The GPCR/PLC/IP3 pathway
may be impacted by OME or other PPIs, although this has not been mentioned in any
published publications. Therefore, more research is required to precisely define OME’s
inhibitory characteristics.

OME has also been reported to reduce the phosphorylation of eNOS caused by BK,
suggesting that PPIs reduce the availability of NO, most likely via a previously postulated
mechanism (such as an increase in intracellular asymmetrical dimethylarginine levels or a
decrease in eNOS expression) [20,24,33]. Numerous external cues, including sphingosine
1-phosphate, BK, insulin, vascular endothelial growth factor, estrogen, and shear stress,
might alter the activity of eNOS [35,36]. While BK-induced eNOS phosphorylation is
mediated by calmodulin-dependent protein kinase II in a [Ca2+]i-dependent manner [48],
insulin, estrogen, and vascular endothelial growth factor phosphorylate eNOS primarily
via protein kinase B in a [Ca2+]i-independent manner [37,38]. Kamiya et al. demonstrated
that OME inhibited BK-activated intracellular Ca2+ signaling, meaning the reduced eNOS
phosphorylation is corroborated by these earlier results.

The regulation of eNOS activity in endothelial cells via the reciprocal phosphorylation
of activator and inhibitor sites is one potential method [35]. Because Thr495 is constitu-
tively phosphorylated, calmodulin binding is inhibited, which reduces the eNOS activity.
Calmodulin’s binding to eNOS was enhanced by BK stimulation after phosphatase 1 de-
phosphorylated Thr495 [39]. According to a recent investigation, BK had no effect on the
phosphorylation of Thr495 [38]. Additionally, only a minor increase in enzyme activity
(less than a two-fold increase) is elicited by Ser1177 phosphorylation [27,31]. While the
effect of OME on Thr495 phosphorylation was not evaluated, BK-induced NO generation
may be influenced by the phosphorylation balance between Ser1177 and Thr495 after OME
therapy. Increases in [Ca2+]i control the synthesis of prostaglandin I2 (PGI2), a significant
vasodilator [32,33]. In endothelial cells, Ca2+-dependent phospholipase A2 must be acti-
vated by SOCE in order to convert membrane phospholipids into arachidonic acids, which
are the building blocks of proteinoids [44].

As per earlier studies demonstrating the Ca2+-dependent synthesis of prostagland-
ins [52–54], the results demonstrated by Kamiya et al. [55] suggest that OME tended to
reduce the production of 6-keto-PGF1α. Endothelial cells constantly generate PGI2 and NO.
Furthermore, Kamiya et al. [55] also demonstrated that without BK or OME, the production
rates of NO and PGI2 were 0.042 ± 0.032 µM/106 cells and 784.46 ± 212.45 pg/mL/106 cells,
respectively, showing that both NO and PGI2 were produced at steady rates. For NO
and PGI2, the effect of BK on these EDRF generation was increased by roughly 1.32 and
1.24 times, respectively, showing that the OME reduced the extra effect of BK on EDRF
synthesis by roughly 0.96 times for NO and 1.03 times for PGI2.
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Based on the results from this study, as well as the data found in several articles
published in respected and renowned scientific journals, we raise the possibility of using
injectable PPI in association with MB in the treatment of patients with VS or even the use of a
preventive approach in isolation from this class of drugs with the aim of attenuating or even
abolishing the occurrence of VS in patients undergoing cardiac surgery with extracorporeal
circulation. As a limitation of our study, we highlight that there was no extracorporeal
circulation, which would certainly make the model more reliable and more similar to what
happens in medical clinics, although we believe that the ischemia and reperfusion model
used in this study provided us with important information to support our hypothesis.

5. Conclusions

Our results suggest that the treatment of animals subjected to the CIR protocol with
OME produced the same effects promoted by treatment with MB, which may suggest
the possibility of using OME alone or in combination with MB in medical clinics in the
treatment of VS.
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