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Abstract: Differences/Disorders of sex development (DSDs) are conditions in which the development
of chromosomal, gonadal, and anatomical sexes is atypical. DSDs are relatively rare, but their inci-
dence is becoming alarmingly common in sub-Saharan Africa (SSA). Their etiologies and mechanisms
are poorly understood. Therefore, we have investigated cytogenetic profiles, including telomere
dysfunction, in a retrospective cohort of Senegalese DSD patients. Materials and methods: Peripheral
blood lymphocytes were sampled from 35 DSD patients (mean age: 3.3 years; range 0–18 years)
admitted to two hospital centers in Dakar. Peripheral blood lymphocytes from 150 healthy donors
were used as a control. Conventional cytogenetics, telomere, and centromere staining followed by
multiplex FISH, as well as FISH with SRY-specific probes, were employed. Results: Cytogenetic anal-
ysis identified 19 male and 13 female patients with apparently normal karyotypes, two patients with
Turner syndrome, and one patient with Klinefelter syndrome. Additional structural chromosome
aberrations were detected in 22% of the patients (8/35). Telomere analysis revealed a reduction in
mean telomere lengths of DSD patients compared to those of healthy donors of similar age. This
reduction in telomere length was associated with an increased rate of telomere aberrations (telomere
loss and the formation of telomere doublets) and the presence of additional chromosomal aberrations.
Conclusions: To the best of our knowledge, this study is the first to demonstrate a correlation between
telomere dysfunction and DSDs. Further studies may reveal the link between telomere dysfunction
and possible mechanisms involved in the disease itself, such as DNA repair deficiency or specific
gene mutations. The present study demonstrates the relevance of implementing telomere analysis in
prenatal tests as well as in diagnosed genetic DSD disorders.
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1. Introduction

Differences/Disorders of sex development (DSDs) are congenital anomalies charac-
terized by atypical chromosomal, gonadal, and anatomical sex development resulting in
ambiguous external and internal genitalia and hormonal dysfunction [1,2]. The term “disor-
ders of sexual development” is currently used to replace terms such as “sexual ambiguity”,
“intersex”, “hermaphroditism”, or “pseudo hermaphroditism”. This new terminology was
related essentially not only to the potential pejorative of the old [3] but also associated
with the new classification during the Pediatric Endocrine Society and European Society
for Pediatric Endocrinology (LWEPS-ESPE) conference [1,4]. This classification is based
on the chromosomal analysis and clinical features [5,6]. Nevertheless, DSD classification
remains very difficult because similar phenotypes can have multiple etiologies [4,7]. Cur-
rently, the management of patients is multidisciplinary, involving imaging, genetics, and
hormonology [8].

DSDs are rare genetic disorders with incidences varying between 1/4500 and 1/5500
live births worldwide [9–12]. DSD 46,XX is the most represented variant [13] (1/14,000
to 1/15,000 vs. 1/20,000 for DSD 46,XY) [14–16]. However, DSD incidence is becoming
alarmingly common in Africa in general (1/3000 in Egypt) and in sub-Saharan Africa (SSA)
(1/357 in Ghana), in particular [12,17]. This increased incidence could be related not only
to a highly endogenous and inbred population, to the efficacy of prenatal diagnosis in
these countries but also to environmental factors. The lack of epidemiological studies and
specific structures, as well as cultural barriers, make the treatment and follow-up of these
diseases in Africa very difficult.

Unfortunately, major challenges with the diagnosis and management of DSD patients
persist in this part of the world. In addition, the etiologies and specific biomarkers related
to DSDs remain poorly understood.

DSD patients exhibit a very high risk of gonadal cancers [18], hypogonadism [19,20],
lung and breast cancers [21,22], as well as various fertility complications and hormonal
insufficiency [23]. Chromosomal instability, a driving force of the progression of malignancy,
has been previously described in DSD patients [24]. Previous studies have shown that cells
derived from patients with trisomy 13 (Patau syndrome), trisomy 18 (Edwards syndrome),
trisomy 21 (Down syndrome), or monosomy X (Turner syndrome) exhibit a significantly
higher frequency of sporadically acquired non-specific whole chromosome losses and gains
compared to control cases [25,26]. It has also been reported that patients with DSDs have
chromosomal aberrations that are often related to the Y chromosome [27].

Telomeres are nucleoprotein complexes located at the ends of eukaryotic chromosomes,
and they have a critical role in preserving chromosomal integrity and stability [28,29].
Telomere length is used as a biomarker of biological age [30] and an aging-disease risk fac-
tor [31–33]. Telomere dysfunction is related to chromosomal instability, either through pro-
gressive telomere shortening or telomere aggregation and telomere loss and deletion [34,35].
The loss of telomere functionalities is considered the one major mechanism for the progres-
sion of genomic instability [36]. Significant shortening of telomere length and significantly
higher frequencies of telomere loss and deletion have been found in peripheral lympho-
cytes of patients with cancer and genetic diseases compared to healthy donors of the same
age [37]. Chromosomal instability is also associated with telomere shortening and loss
of telomere functionality that ultimately leads to end-to-end chromosomal fusions, thus
contributing to the initiation and progression of cancer [38–40].

In this study, cytogenetic analysis has been conducted to evaluate not only structural
and numerical chromosomal aberrations but also telomere profiles of DSD patients from
SSA. We demonstrate for the first time that telomere instability is a common characteristic
of SSA DSD patients. Telomere instability could indeed be playing a role in the formation
of additional chromosomal aberrations. To our knowledge, this is the first study to address
telomere profiles in a cohort of DSD patients. We hypothesize that chromosomal aberrations
in these patients are related to telomere dysfunction.
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2. Materials and Methods
2.1. Declaration of Ethics

This study and research protocol were approved by the ethics committee of the Cheikh
Anta Diop University of Dakar (Protocol 041512019/CER/UCAD). Patients and their
guardians or family members were included in the study only after receiving detailed
information about the study and signing an informed consent form. Data were collected
and processed in a confidential manner.

2.2. Pediatric Patients

We conducted a retrospective study of 35 pediatric patients with DSD admitted to
clinical consultation from November to December 2021 at the Diamniadio Children’s
Hospital and the Albert Royer Pediatric Surgery Department of FANN. These are two large
hospitals in Dakar that cover the entire Dakar region and surrounding areas. The patients
were initially received for clinical examination in the two above-mentioned hospitals
and referred to the National Centre of Blood Transfusion (NCBT) in Dakar. Sampling
and cytogenetic analyses were performed at the NCBT. All patients had disorders of
sexual development ranging from mild hypospadias pubertal delay to overt external
genitalia ambiguity.

2.3. Culture of Lymphocytes, Preparation of Metaphases, and Analysis of Karyotypes after
G-Banding (GTG-Banding)

Peripheral blood lymphocytes were cultured for 72 h, and standard GTG-Banding
was performed according to a previous publication [41]. A total of 50 metaphases from
each sample were analyzed at the resolution level of 550 bands. Karyotypes are presented
according to ISCN2020 [42].

2.4. Detection of SRY by Fluorescence In Situ Hybridization (FISH)

Fluorescence in situ hybridization (FISH) was performed on interphase cells harvested
from freshly collected whole blood and on cultured PHA-stimulated cells. The slide
was washed in 2x standard citrate saline (2x SSC) at 37 ◦C for 30 min. The slides were
dehydrated in three alcohol gradients, 70%, 90%, and 100%, for 2 min each and then air
dried. In total, 10 µL of the probe was deposited on the slides and then covered with a
coverslip. The slides with coverslips were placed on a thermobrite (ThermoFisher, Illkirch,
France) for denaturation at 76 ◦C for 7 min and then hybridized at 37 ◦C for 24 h. After
24 h, the slides were washed in 1xPBS solution to loosen the coverslips, then immersed
in a solution of 0.4x SSC with 0.3% NP-40 for 2 min at 73 ◦C and in a solution of 2x
SSC with 0.1% NP-40 at room temperature for 2 min. Cells were counterstained with
4′,6-diamidino-2-phenylindole (DAPI) solution and then rinsed in PBS before mounting
the slides with vectashield orp-phenylenediamine (PPD). Two specific probes for the SRY
gene were used: the Vysis AneuVysion probe (Vysis LSI SRY/CEP X FISH Probe Kit,
Abbott, Des Plaines, IL 60018, USA) and the Cytocell probe (SRY Probe, Cytocell Aquarius,
Symex, Bremerhaven, Germany). The Vysis probe consists of two parts: The Xp11.1-q11.1
CEP X (DXZ1) Spectrum Green part specific for the X chromosome and the Yp11.3 LSI
SRY Spectrum Orange part specific for the SRY gene. The Cytocell probe is a mixture
of three probes: One probe (SRY), Yp11.31, in red (Texas Red), a control probe for the Y
chromosome (DYZ1), Yq12 (heterochromatic block) in green (Green) and a control probe
for the X centromere (DXZ1), Xp11.1-q11.1 in blue (Aqua). Images were captured using an
automated acquisition module Autocapt software (MetaSystems, version 3.9.1) using an
automated ZEISS Plan-Apochromat 63×/1.40 oil and CoolCube 4 Digital High-Resolution
CCD camera. The analysis was performed on 200 cells for each sample [25].
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2.5. Staining of Telomere and Centromere Sequences

Telomere and centromere staining were performed using a Cy-3-labelled PNA probe
specific for telomere sequences and a FITC-labelled PNA probe specific for centromere
sequences (Cell Environment, Evry, France), as previously described [37].

2.6. Telomeres Length Analysis

Telomere quantification was performed on interphase cells using TeloScore software
(Cell Environment, version 1.1.2, Evry, France). Quantitative image acquisition was per-
formed using MetaCyte software (MetaSystem, version 3.9.1, Altlussheim, Germany) and
a ZEISS Plan-Apochromat (Zeiss, Oberkochen, Germany) and CoolCube 1 Digital High-
Resolution CCD Camera (MetaSystems, Altlussheim, Germany). The exposure and gain
settings remained constant between captures. The mean fluorescence intensity (FI) of
telomeres was automatically quantified in 10,000 nuclei on each slide. The quantifications
were performed on triplicate slides. Telomere length, measured as the mean FI, correlates
strongly with telomere length measured by conventional Southern blot analysis using the
telomeric restriction fragment (TRF) (R2 = 0.721 and p = 2.128 × 10−8). The mean telomere
length is expressed in kb.

2.7. Scoring of Telomere Aberrations

Analysis of metaphase spreads allowed the detection of telomere abnormalities us-
ing ChromoScore Software (Cell Environment, version 1.1.2, Evry, France). The images
of metaphases were captured using the automated acquisition module Autocapt soft-
ware (MetaSystems, version 3.9.1) and a ZEISS Plan-Apochromat 63×/1.40 oil (Zeiss,
Oberkochen, Germany) and CoolCube 1 Digital High-Resolution CCD Camera (MetaSys-
tems, Altlussheim, Germany) with constant settings for exposure and gain.

Telomere abnormalities scored were (i) sister telomere loss, likely occurring in G2,
and defined as a telomere signal-free end at a single chromatid [27], (ii) telomere deletion
defined as the loss of two telomere signals on the same chromosome arm (likely resulting
from the loss of one telomere in G1/S), an aberration considered to represent double-strand
breaks, leading to the activation of DNA damage response. Automatic scoring of these
aberrations was performed using ChromoScore software (Cell Environment, version1.1.2,
Evry, France). An operator validated and excluded the falsely recorded aberrations.

2.8. Multicolor FISH (M-FISH Technique)

The M-FISH technique employs multicolor probes that make it possible to identify each
of the 22 pairs of autosomes as well as the X and Y chromosomes by “painting” them with
individual colors. Moreover, fragments of chromosomes translocated into non-homologous
chromosomes were also identified using M-FISH.

After telomere quantification and the automatic capture of metaphases with telomere
and centromere staining, the slides were washed in 2x SSC for 30 min at 70 ◦C. After rinsing
with 0.1x SSC, the slides were denatured using NaOH and subsequently washed with 0.1x
SCC and 2x SSC and sequentially dehydrated in 70%, 95%, and 100% ethanol and air-dried.
After denaturation of the M-FISH probe (M-FISH 24XCyte, Metasystems, Altlussheim,
Germany) for 5 min at 75 ◦C, the probe was added to the slides and incubated at 37 ◦C for
two days. The slides were subsequently rinsed with 0.4x SSC for 2 min at 72 ◦C and then
with 2x SSC/0.005% (Tween-20). The slides were counterstained with DAPI and mounted
in PPD.

2.9. Statistical Analysis

Data were analyzed using the Wilcoxon-Mann–Whitney rank sum test (compari-
son of two sub-groups) or the Kruskal–Wallis non-parametric test (comparison of three
sub-groups). We tested the null hypothesis that the sub-groups are considered identical pop-
ulations. A p-value < 0.05 is considered statistically significant to reject the null hypothesis.
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3. Results
3.1. Clinical Profile of DSD Patients

This study was performed on 35 retrospective DSD pediatric patients admitted to two
hospital centers. Inclusion criteria for patients in this study were age less than 18 years and
congenital malformation according to clinical examination. The mean age of these patients
at diagnosis was 2.62 years (0–14 years) and 3.33 years (0–18 years) at cytogenetic analysis.
Twelve of these DSD patients (34.5%) had non-classified pathologies. Clinical features of
all patients are listed in Table 1.

Table 1. Clinical characteristics of Differences/Disorders of sex development (DSDs) patients before
cytogenetic investigations.

Characteristics No. of Patients

DSDs 35

Assigned sex

Male 17

Female 13

ND 5

Age (years)

At diagnosis 2.6

At analysis 3.5

Type

Clitoral hypertrophy 8

Micropenis + cryptorchidism 5

Isolated hypospadias 4

Isolated cryptorchidism 2

Isolated micropenis 1

Hypogonadism + gynecomastia 1

Short stature + Turner syndrome 1

Other DSDs with diverse congenital malformations 12
ND: The sex of the patient could not be determined by clinical examination.

3.2. Conventional and Molecular Cytogenetic Investigations

After PHA stimulation of freshly isolated circulating lymphocytes and of cells in
culture, conventional and molecular cytogenetics were performed to retrieve chromosomal
abnormalities. Table 2 summarizes the results of G-Banding and SRY-specific FISH.

Table 2. Cytogenetic profiles of DSDs patients.

Cytogenetic Profile No. of Patients

Nb of analyzed DSDs patients 35

Conventional cytogenetics 35

Molecular cytogenetic (SRY) 35

Karyotype results

46,XY 18

46,XX 14

46,XX[12]/45,X[5] 1

45,X[28]/46,XY[20] 1

nuc ish(DXZ1x2,SRYx1)[85/200] 1

Structural chromosome aberrations 8
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Using conventional cytogenetics, 20 patients had a male karyotype profile (46,XY)
without apparent chromosomal abnormalities (Figure 1A). Thirteen patients had a female
karyotype (46,XX) without apparent chromosomal abnormalities (Figure 1B). Two patients,
YH008 and YH015 (Table 2) (Supplementary Table S1), had mosaic Turner syndrome
46,XX[12]/45,X[5] and 45,X[28]/46,XY[20], respectively (Figure 1C).
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Normal male karyotype (46,XY) from a DSD patient with ambiguous genitalia but no apparent
chromosomal abnormalities. (B) Normal female karyotype (46,XX) from DSDs patients with am-
biguous genitalia without visible chromosomal abnormalities. (C) Karyotype of a DSD patient with
ambiguous genitalia and a monosomy X (45,X, Turner syndrome).

Molecular analysis using co-hybridization with FISH probes specific for SRY and X
centromere sequences, respectively, was used to validate the conventional cytogenetic data
(Figure 2). A male profile with corresponding signals was found in 19 patients (Figure 2A).
The female profile with corresponding signals was found in 13 patients (Figure 2B). We
have also confirmed the Turner syndrome profile for two patients (YH008 and YH015)
detected by conventional cytogenetics (Figure 2C). In addition, Klinefelter syndrome was
also found in patient YH009 (Figure 2D). The latter anomaly had not been identified using
conventional cytogenetics.
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Using telomere and centromere-specific probes, several additional structural chromo-
some aberrations were identified in metaphases from eight of the patients (22%), such as a
dicentric chromosome (Figure 3A) and acentric chromosomes with chromosome deletions
(2 patients) (Figure 3B). Telomere fusions (3 patients) (Figure 3C) were observed in addition
to chromosome fragmentations (2 patients) (Figure 3D), as well as chromosomal breaks
(3 patients).
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Figure 3. Structural chromosome aberrations in DSD patients were identified by telomere (red signal)
and centromere (green signal) staining. (A) Metaphase showing a dicentric chromosome, dic(Y;4)
between chr 7 with interstitial telomeres, demonstrating that telomere fusion is the origin of the
formation of aberration. (B) Double Strand breaks (DSB) resulting in the formation of an acentric
chromosome and chromosome deletion (ace(+/−) with chr(+/−)). These aberrations have been
observed in 4 patients (YH014, YH020, YH032, YH033). (C) Telomere fusion between two different
chromosomes (D) DNA pulverization observed in two patients (YH016 and YH017). Metaphase
of a DSD with DNA fragmentation observed in patients YH004 and YH033. (C) Chromatid break
observed in several DSDs involving different chromosomes. (D) Metaphase showing a fusion of two
chromosomes from the chromatids of each chromosome with interstitial telomeres, observed in DSDs
(YH016, YH017).

3.3. Quantification of Telomere Length of DSD Patients

To understand the origin and mechanisms underlying the formation of these additional
aberrations, we assessed the telomere lengths of circulating lymphocytes of the DSD
patients using an automated approach based on cytogenetic preparations and FISH (Aging
kit Cell Environment). This approach permits not only the assessment of mean telomere



Biomedicines 2024, 12, 565 8 of 18

length but also the intercellular variation and proportion of cells with extreme telomere
shortening (<5 kb) in vast numbers of interphase nuclei (Figure 4A). A large cohort of
150 healthy donors (0.5–79 years of age) served as controls in this study. Telomere length
in healthy donors was age-dependent and characterized by high inter-individual variation
(R2 = 0.316 and p = 2.48 × 10−10) (Figure 4B). The spontaneous decrease in telomere length
in healthy donors was 79 bp per year. Interestingly, there was a significant difference
(p < 10−6) between the mean telomere length of DSD patients and that of healthy donors
of similar age, being 6.99 kb (4.33–9.85 kb) for DSD patients and 10.5 kb (5.2–13.9 kb) for
healthy donors, respectively (Figure 4C).
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Figure 4. Quantification of telomere length in circulating lymphocytes of DSDs patients. (A) Distribu-
tion of the telomere lengths in circulating lymphocytes of patients YH013 and YH030 that exhibit the
most extreme telomere lengths in our DSDs cohort. The mean telomere length is presented by the red
line and the frequency of cells with extreme telomere shortening (<5 kb) is presented as a dashed
blue line. The different quartiles of fluorescence signal intensities in telomeres are also shown. (B)
Telomere length (kb) as a function of age in lymphocytes from healthy donors (150 donors, mean
age 36 years, range 0.5–79 years) (red circles) and in DSDs patients (blue triangle). (C) A significant
difference between the means of telomere length of DSD patients and those from healthy donors with
similar ages.



Biomedicines 2024, 12, 565 9 of 18

3.4. Telomere Dysfunction of DSDs Patients

Telomere dysfunction relates to any telomere structural aberration that effectively
abolishes the presence of a functional telomere, resulting in chromosome end-to-end fusion,
dicentric chromosome formation, and ongoing chromosomal instability. In metaphases
of DSDs patients, telomere loss (Figure 5A) was significantly more extensive than in
those of healthy donors of similar age 1.42 (range 0–8) per cell vs. 0.52 (range 0–3.23)
per cell, (p < 10−7), respectively (Figure 5B). In contrast, telomere doublet formation was
significantly lower in DSD patients (0.8, range 0–1.7 per cell) than in healthy donors (5.51,
range 1.29–12.17 per cell) (p < 10−10), respectively (Figure 5C). In addition, high inter-
individual variation in the frequencies of telomere losses and doublets was recorded in
DSD patients (Figure 5D).
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Figure 5. Telomere aberrations are identified by assessing telomeres on individual chromosomes
in metaphases of circulating lymphocytes. (A) Representative metaphase after telomere (red) and
centromere (green) staining showing different types of telomere aberrations: telomere loss (red
arrow), telomere doublet (green arrow), and telomere deletion (yellow arrow). (B,C) Frequencies of
telomere losses and telomere doublet formations per cell in DSDs patients and in the control panel
with similar age. A significant increase in the frequency of telomere loss was observed in DSDs
patients in comparison to the control group (p < 1.8 × 10−7). A significant decrease in telomere
doublet formation in DSDs patients was observed compared to that in the control (p < 9.6 × 10−10).
(D) The frequency of telomere loss and telomere doublets in each patient shows high inter-individual
variation. One hundred metaphases were analyzed per patient.

A closer inspection of the data on telomere aberrations in individual chromosomes
revealed that many chromosomes, especially chromosomes 21 and 22, were more frequently
affected than others (Figure 6).

Furthermore, we quantitated telomere length and the frequency of telomere losses
and telomere doublet formations in DSDs patients with or without additional chromosome
aberrations to assess a putative correlation between telomere dysfunction and the formation
of chromosomal aberrations. Telomere loss in patient cells with additional chromosome
aberrations (1.60 telomere loss/cell) was not significantly higher than in those with normal
karyotypes (1.32 telomere loss/cell). Of note, dicentric chromosomes, a driving force
of chromosomal instability, were identified in two patients with structural chromosome
aberrations. Interstitial telomeres were observed in dicentric chromosomes, demonstrating
the role of telomere dysfunction in their formations.



Biomedicines 2024, 12, 565 10 of 18

In addition, we observed a high frequency of micronuclei in these DSDs, which is
relevant given that micronuclei can originate from those with additional chromosomal
aberrations and chromosomal pulverizations. The chromosomal and telomere profiles of
each patient are listed in Table 3, in addition to clinical features.
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Figure 6. The pooled frequencies of telomere aberrations (loss and doublet) per chromosome of all
the DSDs patients reveal that the most abundant aberrations are in chromosomes 3, 14, 21, and 22.
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Table 3. Clinical and cytogenetic characteristics of the used DSDs cohort.

ID Assigned
SEXE

Age
Month

Reason for
Consultation FISH (SRY) Karyotypes Telomere

Length (kb)
Telomere
Loss/Cell

Telomere
Doublet/Cell

Additional
Chromosome
Aberrations

YH001 M 0 Micropenis and
cryptorchidism XY (SRY+) 46,XY 9.31 0.78 1.52

YH002 M 178 Micropenis and
cryptorchidism) XY (SRY+) 46,XY 8.5 1.35 0.35

YH003 F 3 Prader Type I XX (SRY−) 46,XX 9.15 2.17 1.17

YH004 M 0 ND XY (SRY+) 46,XY 7.66 1.5 1.05
DNA fragmentation

Dicentric with
interstitial telomeres

YH005 M 4 Clitoral
hypertrophy XX (SRY−) 46,XX 6.32 NA NA

YH006 M 33 ND XY (SRY+) 46,XY 7.57 2.19 2

YH007 M 19 Hypospadias XY (SRY+) 46,XY 8.09 1.52 1.08

YH008 M 120 Micropenis and
cryptorchidism 28% XY/57% X (SRY+) 45,X[28]/46,XY[20] 6.09 NA NA

YH009 M 7 Hypospadias ish(DXZ1x2,SRYx1)[85/200]
(SRY+) 46,XY[115]/47,XXY[85] 8.21 1.06 1.71

YH010 F 42 Clitoral
hypertrophy XX (SRY−) 46,XX 7.29 0 0

YH011 M 1 ND XY (SRY+) 46,XY 5.42 0 0

YH012 M 166 Hypogonadism and
gynecomastia XY (SRY+) 46,XY 8.12 0 0

YH013 F 3 Clitoral
hypertrophy XY (SRY+) 46,XY 9.85 0.94 1.03

YH014 F 0 Clitoral
hypertrophy XX (SRY−) 46,XX 9.47 0.37 0.3

Chromosomal
breakage

46,XX,del(15)(q10q26)
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Table 3. Cont.

ID Assigned
SEXE

Age
Month

Reason for
Consultation FISH (SRY) Karyotypes Telomere

Length (kb)
Telomere
Loss/Cell

Telomere
Doublet/Cell

Additional
Chromosome
Aberrations

YH015 F 180
Statural retardation

and Turner
syndrome

71% XX/29% X (SRY−) 46,XX[12]/45,X[5] 9.55 1.59 0.42

YH016 ND ND XX (SRY−) 46,XX 5.56 1.28 0.09 chromatid fusion of
ch 8 and 10

YH017 M 13 ND XY (SRY+) 46,XY 5.83 1.65 0.35
chromatid fusion of

ch 15 and 4 chromatid
fusion of ch 15 and 9

YH018 ND 0 ND XY (SRY+) 46,XY 6.71 0.6363636364 0.09090909091

YH019 ND 0 ND XX (SRY−) 46,XX 8.18 0.5 0.125

YH020 M 130 Hypospadias XY (SRY+) 46,XY 7.42 1.8 1.13 Chromosome 2
breakage

YH021 ND 0 ND XY (SRY+) 46,XY 5.5 1.75 1.25

YH022 M 27 Micropenis and
cryptorchidism XY (SRY+) 46,XY 5.7 3 1

YH023 F 23 Clitoral
hypertrophy XX (SRY−) 46,XX 6.34 NA NA

YH024 M 11 Micropenis and
cryptorchidism XY (SRY+) 46,XY 5.67 NA NA

YH025 F 17 external Genitalia
Anomaly XX (SRY−) 46,XX 6.39 1 1

YH026 F 0 Clitoral
hypertrophy XX (SRY−) 46,XX 7.02 NA NA

YH027 F 0 XX (SRY−) 46,XX 5.8 NA NA

YH028 ND 0 Polymalformation XY (SRY+) 46,XY 6.42 8 0

YH029 M 1 ND XY (SRY+) 46,XY 6.25 NA NA

YH030 M 7 Ovotestis XX (SRY−) 46,XX 4.33 3.83 0.8 Acentric chromosome
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Table 3. Cont.

ID Assigned
SEXE

Age
Month

Reason for
Consultation FISH (SRY) Karyotypes Telomere

Length (kb)
Telomere
Loss/Cell

Telomere
Doublet/Cell

Additional
Chromosome
Aberrations

YH031 F 30 Prader Type II XY (SRY+) 46,XY 5.57 3.333 0.33

YH032 M 1 hypospadias XY (SRY+) 46,XY 7.14 1.47 0.87 Chromosome
breakage

YH033 F 35 ND XX (SRY−) 46,XX 6.84 2.67 0.374 DNA Fragmentation

YH034 F 3 ND XX (SRY−) 46,XX 6.01 0.5 0.42

YH035 F 2 Micro penis XY (SRY+) 46,XY 5.68 0.8 0.5
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4. Discussion

Rapid and precise diagnosis of DSDs patients is considered a major public health and
societal challenge, particularly in light of the increasing prevalence of DSDs in, e.g., SSA
countries in general and in Senegal in particular. Our study is a first step in the design of
novel biomarkers for the identification and diagnosis of DSDs patients in order to optimize
patient care. Furthermore, it will contribute to our understanding of mechanisms involved
in the development of DSDs. Currently, the analysis of karyotypes is the primary and
most accurate approach to diagnoseDSDs in clinical settings. In the present study, we have
extended the classical cytogenetic analyses by including, for the first time, the analysis
of telomeres to assess the telomere and chromosomal profiles in a Senegalese cohort of
35 DSDs patients. Our study has highlighted the implication of telomere dysfunction in the
development of DSDs, thus adding a novel biomarker for the identification and diagnosis
of DSD patients.

The high prevalence of DSDs in SSA countries is ascribed to two major causes: (i)
consanguinity and endogamy in these populations [2], and (ii) the excessive use of insecti-
cides such as Dichlorodiphenyltrichloroethane (DDT) in agriculture or farming in order to
eradicate tropical endemic diseases [43]. Consanguinity and endogamy are well-known
causes of many genetic disorders, including DSDs [44]. DDT is recognized as an endocrine
disruptor causing a reduction in sperm quality and increased risk of congenital diseases [45].
Accumulating evidence suggests that prenatal exposure to DDT is considered a risk factor
in the incidence of DSDs. The presence of chromosomal aberrations in DSDs patients could
be associated with genotoxic stress.

Conventional cytogenetic analysis of our cohort identified two patients with mo-
saic Turner syndrome (45,X/46,XY, and 45,X/46,XX). Turner syndrome is a chromoso-
mal DSD caused by the monosomy of the X chromosome [46]. The mosaic subtypes of
Turner syndrome are relatively rare [47]. We confirmed our findings by employing SRY-
specific probes. By this approach, we also identified a mosaic Klinefelter syndrome (KS)
(46,XY/47,XXY), which had not been detected by conventional cytogenetic, possibly be-
cause only 20 metaphases are being analyzed for conventional karyotyping, but 200 nuclei
with the automated FISH approach. KS is the most frequently observed chromosomal DSD,
with an estimated frequency of 1/500 to 1/1000 [48]. The mosaic subtype accounts for
some 10–20% of KS cases [49].

Using conventional and molecular cytogenetics, structural chromosomal aberrations
were identified in only three of the DSD patients (3/35; 8.5%). This rate is less than that
previously described in other registers and in other countries (varying between 13% and
15%), thus underscoring a significant contribution of the etiology to the occurrence of DSD.
Our findings highlight the limitations of using conventional karyotyping in clinical genetics
and call for new genetic tests to identify additional biomarkers characteristic for these
diseases [50].

For a reliable and precise analysis of additional chromosomal aberrations in DSD
patients, we employed telomere and centromere staining. Using that approach, we identi-
fied additional non-clonal chromosomal aberrations in 22% of the DSD patients, including
dicentric chromosomes, DNA pulverization, acentric chromosomes, terminal deletions,
and chromatid breaks. Dicentric chromosomes are considered the best biomarker for
irradiation-induced DNA damage as well as for chromosomal instability [37]. In our cohort,
we detected a dic(Y;4) with interstitial telomere sequences, indicating that the formation
of this dicentric chromosome is related to telomere dysfunction. Several DSDs studies
have previously reported the implication of the Y chromosome in the formation of a di-
centric [51–56]. In addition, chromosome pulverization was observed in two patients in
our cohort as the consequence of telomere dysfunction and probably of micronuclei forma-
tion and chromothripsis mechanisms [57]. We demonstrate that our protocol for telomere
and centromere staining offers improved detection of all chromosomal aberrations, clonal
and non-clonal ones. Employment of this technique in SSA cytogenetic laboratories will
constitute a major step forward in the management of DSDs patients.
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Analysis of telomere lengths and telomere aberrations revealed shortening of and
accumulation of aberrations of telomeres in the DSDs patients. A link between reduced
fertility and telomere dysfunction has been reported previously [38,58]. Reduced telomere
length has been described in patients with chromosomal DSDs, including KS associated
with acute lymphoblastic leukemia (ALL). It was suggested that telomere dysfunction in
these KS patients may contribute to the pathogenesis of ALL [24]. However, no studies have
addressed a direct link between decreased telomere length and the prevalence of DSDs.

Here, we demonstrate for the first time a significant age-independent reduction
in mean telomere length in our cohort of DSDs patients compared to that observed in
healthy donors of similar age. Our data reveal an accelerated aging process in DSD pa-
tients, thus opening new horizons in our understanding of these disorders in terms of
possible mechanisms.

In addition to telomere length, we studied telomere aberrations involving losses
and doublet formations. The frequency of telomere aberrations in the DSDs cohort was
also independent of age. However, we recorded a more frequent loss of telomeres than
the occurrence of doublets in contrast to the healthy controls. The analysis of telomere
aberrations in each chromosome revealed a higher rate of these aberrations in chromosomes
21 and 22 compared to other chromosomes. These findings call for further investigation.

In this paper, we have conducted a comprehensive and in-depth cytogenetic study,
including telomere analysis of patients with DSD from West Africa, in particular from
Senegal. Although this study suffers from limitations in terms of the complexity of DSDs,
the difficulty in precise diagnosis, and the role of a specific environment, it nevertheless
allowed us to gain more insight into African DSDs that may present distinct genetic features
related to the environment and the management methods in these regions. However, anal-
ysis of a large prospective cohort with access to complete clinical and biological parameters
is required to validate the present results and, thus, the application of these techniques
for future genetic diagnosis of DSDs. The techniques employed for cytogenetic diagnosis
in the present cohort are accessible, and their application is feasible in Senegal. Hence,
the development of these techniques will be an indispensable tool for the management of
DSDs, which still constitute a major challenge in hospitals today.

5. Conclusions

The results of this study have allowed the establishment of a complete cytogenetic
diagnosis, including telomere analysis, and also defined specific features of DSDs that have
not been previously reported. Indeed, our data demonstrate for the first time that telomere
shortening and telomere aberrations represent one of the most common cytogenetic fea-
tures of DSDs. The results show a major involvement of small acrocentric chromosomes,
especially chromosomes 21 and 22, in telomere aberrations, allowing us to better under-
stand the mechanisms resulting in DSDs. The sequential analysis of telomere length and
aberrations for DSDs patients may contribute to our knowledge and better understanding
of molecular mechanisms of the accelerated aging process and the implication of DNA
repair mechanisms and specific mutations in these diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines12030565/s1, Table S1: Clinical and cytogenetic characteristics of the DSD
patient cohort.
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