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Simple Summary: In the current landscape of gastric cancer treatment, identifying patients who can
benefit from immunotherapy and determining high-risk individuals post immunotherapy remain
pivotal objectives. Numerous studies have confirmed the value of classical inflammatory and
nutritional markers in predicting the prognosis of patients undergoing immunotherapy. However,
these markers have been in use for a long time, and the treatment strategies for gastric cancer have
undergone significant changes. Therefore, proposing a novel biomarker based on the latest treatment
strategies is necessary. This study established the Gastric Cancer Immune Prognostic Score (GCIPS)
through comprehensive blood parameter analysis before immunotherapy, utilizing Cox regression
analysis. Comprising white blood cells, lymphocytes, and the international normalized ratio (INR),
the GCIPS not only demonstrated excellent performance in survival analyses across all subgroups
but was also identified as an independent prognostic factor in this study. Furthermore, the GCIPS
exhibited the highest prognostic value, surpassing even the TNM stage and radical resection. Analysis
in the validation set further confirmed the accuracy and stability of the results. The proposal of the
GCIPS provides a new reference for developing immunotherapy strategies.

Abstract: (1) Background: This study aims to explore the predictive capability of the Gastric Cancer
Immune Prognostic Score (GCIPS) for an unfavorable prognosis in gastric cancer patients under-
going immune checkpoint inhibitor (ICI) treatment. (2) Methods: This study included 302 gastric
cancer patients who underwent treatment with ICIs at our institution from January 2017 to De-
cember 2022. The patients were randomly divided into a test set (201 cases) and a validation
set (101 cases) using a random number table. Kaplan–Meier survival analysis and the log-rank
test were used to investigate survival differences. Cox regression analysis and Lasso regression
analysis were employed to establish the GCIPS and identify independent prognostic indicators.
ROC curves, time–ROC curves, and nomograms were utilized to further explore the predictive
performance of GCIPS. (3) Results: The test set and validation set showed no statistical differences
in clinical and pathological features, as well as blood parameters (all p > 0.05). Cox regression
analysis revealed that white blood cells (WBC), lymphocytes (LYM), and the international normal-
ized ratio (INR) emerged as independent prognostic blood indicators after eliminating collinearity
through Lasso analysis. The GCIPS was established using β coefficients with the following formula:
GCIPS = WBC (109/L) × 0.071 − LYM (109/L) × 0.375 + INR × 2.986. ROC curves based on death
and time–ROC curves demonstrated that the GCIPS had higher AUCs than other classical markers
at most time points. Survival analyses of all subgroups also revealed a significant correlation be-
tween the GCIPS and patients’ progression-free survival (PFS) and overall survival (OS) (all p < 0.05).
Furthermore, the GCIPS was identified as an independent prognostic factor for both PFS and OS.
Analyses in the validation set further confirmed the reliability and stability of the GCIPS in predicting
patient prognosis. Finally, nomograms incorporating the GCIPS exhibited high accuracy in both the
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test and validation sets. Additionally, the nomograms revealed that the GCIPS had a higher prognos-
tic value than any other factor, including the TNM stage. (4) Conclusions: The GCIPS demonstrated
its ability to predict adverse outcomes in gastric cancer patients undergoing ICIs treatment and had a
high prognostic value. As a readily accessible and simple novel biomarker, it effectively identified
high-risk patients.

Keywords: gastric cancer; immunotherapy; inflammatory and nutritional markers; gastric cancer
immune prognostic score; prognostic factor

1. Introduction

As the fifth most common cancer, gastric cancer remains a major global health concern
and a longstanding focal point of medical research [1]. While traditional treatment methods
have somewhat improved patient survival rates, their effectiveness remains limited [2,3]. In
recent years, immunotherapy has emerged as an innovative therapeutic approach, offering
new hope for those affected by gastric cancer [4–6]. This treatment activates the patient’s
immune system, enabling it to actively identify and eliminate tumor cells [7,8]. While
immunotherapy holds significant potential, it is not universally effective for all patients.
In gastric cancer, only a small subset of patients demonstrates sensitivity to immune
checkpoint inhibitors (ICIs). Additionally, currently available biomarkers such as PD-1/PD-
L1 expression and Microsatellite Instability (MSI) not only incur high costs but also fail to
comprehensively cover patients who may benefit from ICIs. This underscores the urgent
need for a reliable biomarker to accurately predict patient responses and provide robust
support for treatment strategies [9,10].

Non-invasive biomarkers have gained widespread attention due to their simplic-
ity, accessibility, and relative accuracy in the field of immunotherapy [11–13]. Previ-
ous research has confirmed the predictive value of traditional inflammatory and nu-
tritional markers in forecasting the prognosis of immunotherapy patients [14–16]. Pa-
rameters such as the prognostic nutritional index (PNI), neutrophil-to-lymphocyte ratio
(NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), systemic
immune-inflammation index (SII), and systemic immune response index (SIRI) have been
identified to correlate with the effectiveness of immunotherapy [17–20]. Liu et al. conducted
an analysis of multiple classical indicators for their predictive abilities in hepatocellular
carcinoma (HCC). After analyzing data from 151 HCC patients, they found that these
inflammatory and nutritional indicators possess certain prognostic value, particularly the
nutritional biomarkers. In a prospective study on gastric cancer, Ding and his colleagues,
through the analysis of data from 30 gastric cancer patients, identified that the combination
of SII and PNI effectively predicts the outcome for gastric cancer patients receiving sintil-
imab [17,21]. However, these markers have been established and applied for an extended
period. On the other hand, with the advancement of medical technology, the treatment
strategy for gastric cancer has evolved from singular approaches to a comprehensive com-
bination of surgery, chemotherapy, targeted therapy, immunotherapy, and psychological
treatment [22]. This integrated treatment strategy has significantly prolonged the sur-
vival period for patients. In this context, the overall systemic condition of the patients
becomes particularly crucial. Given the continuous evolution of treatment strategies for
gastric cancer, traditional markers may exhibit limitations when confronted with new
treatment modalities and approaches [23]. Therefore, there is an urgent need to introduce
a new biomarker based on the latest treatment methods to assess patient responses to
immunotherapy more accurately and predict their prognosis.

In this context, we enrolled 302 gastric cancer patients undergoing immunotherapy
and, through comprehensive analysis, developed a novel evaluation indicator called the
Gastric Cancer Immune Prognostic Score (GCIPS). This scoring system aims to provide a
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fresh feasible biomarker for a more accurate and reliable assessment of immunotherapy
prognosis for gastric cancer patients.

2. Materials and Methods
2.1. Patients

This study included 302 patients with gastric cancer, all of whom underwent ICI treat-
ment at Harbin Medical University Cancer Hospital between January 2017 and December
2022. Incomplete clinical records, loss to follow-up, and the presence of multiple cancers
and other chronic diseases were exclusion criteria for this study. All experimental designs
in this study comply with the Helsinki Declaration and its amendments, and the study
has received approval from the Ethics Committee of Harbin Medical University Cancer
Hospital (Ethics Number: 2019-57-IIT, approved on 17 April 2019).

2.2. Data Collection and Follow-Up

To minimize potential bias, we employed a random number table to divide the patients
into a training set (n = 201) and a validation set (n = 101). We retrospectively collected
clinical and medical records for all patients using the medical record system. Additionally,
to establish the GCIPS, we gathered the results of all pre-treatment blood tests performed
on the patients. The primary endpoints of this study were progression-free survival (PFS)
and overall survival (OS), obtained through regular telephone follow-ups over a follow-
up period of 73.27 months. Specifically, PFS was defined as the time from the start of
treatment to disease progression, death, or the last follow-up. Disease progression was
confirmed through comprehensive imaging or pathological examinations. Overall survival
was defined as the time from the start of treatment to death or the last follow-up.

2.3. Immune Checkpoint Inhibitors

All patients underwent multiple cycles of ICIs treatment, with 203 patients partici-
pating in three clinical trials receiving camrelizumab (Clinical Trial Registration Numbers:
CTR20200708, approved on 21 April 2020; CTR20200045, approved on 9 January 2020;
CTR20190072, approved on 24 January 2019), and 61 patients participating in another clini-
cal trial receiving toripalimab (Clinical Trial Registration Number: CTR20212739, approved
on 30 November 2021). The remaining 38 patients, who did not enroll in clinical trials,
voluntarily opted for various ICIs, including toripalimab, pembrolizumab, camrelizumab,
and sintilimab.

2.4. Statistical Analysis

This study defined statistical significance as a bilateral p-value of <0.05, and all statis-
tical analyses were conducted using SPSS 25 (Chicago, IL, USA, https://www.ibm.com,
accessed on 1 October 2023), R 4.2.3 (Vienna, Austria, https://cran.r-project.org, accessed on
2 October 2023), and GraphPad Prism 8 (San Diego, CA, USA, https://www.graphpad.com,
accessed on 1 October 2023). Continuous variables conforming to a Gaussian distribution
are presented as mean and standard deviation (SD) and were analyzed for differences
using independent samples t-tests. Non-normally distributed continuous variables are
represented by the median and interquartile range (IQR) and were compared using the
Mann–Whitney U test. Categorical variables are expressed as counts and percentages
(%), and differences were assessed through chi-square tests or Fisher’s exact tests. We
implemented a random number table method to group patients and employed Cox univari-
ate and multivariate regression analysis to establish the GCIPS and identify independent
prognostic factors, with the relative risk represented by the hazard ratio (HR) and 95%
confidence interval (CI). Additionally, we utilized Least Absolute Shrinkage and Selection
Operator (Lasso) regression analysis to alleviate potential multicollinearity. Lasso regres-
sion analysis is a statistical method used for feature selection and regression analysis. It
achieves sparsity of unimportant variables in the model by penalizing model parameters,
effectively addressing multicollinearity. The key feature of Lasso regression is its ability
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to shrink the coefficients of predictive variables with minimal impact on the target vari-
able to zero, thus facilitating feature selection. By adjusting the regularization parameters
(λ value), Lasso regression can identify variables that significantly contribute to the pre-
dictive variables, enhancing the model’s generalization ability and interpretability. Then,
we evaluated the optimal cutoff value and assessed the prognostic significance of different
factors using ROC curves, time–ROC curves, and the area under the curve (AUC). Next, we
analyzed survival differences by examining Kaplan–Meier survival curves and conducting
log-rank tests. Additionally, we delved into the impact of relevant indicators on survival
via proportional risk hypothesis testing, nomograms, and calibration curves.

3. Results
3.1. Patient Characteristics

In the overall dataset, there were a total of 302 patients, including 200 (66.2%) males
and 102 (33.8%) females, with a mean age and body mass index (BMI) of 63.73 (10.56) years
and 21.93 (3.28), respectively. This study only included patients in TNM stage III and IV,
with 59.9% of them being in stage IV. Due to the rapid progression of the disease, only 177
(58.6%) individuals underwent surgery, among whom only 108 (35.8%) underwent radical
resection. There were no differences in clinical and pathological information between the
test set and validation set in all patients (all p > 0.05, Table 1). To establish the GCIPS, we
collected pre-treatment blood test indicators from patients (detailed information is available
in Table 2). There were also no differences in blood indicators between the test set and the
validation set (p > 0.05).

Table 1. Patient characteristics.

Total Set Test Set Validation Set
pItems n = 302 n = 201 n = 101

Age (years), mean (SD) 63.73 (10.56) 57.94 (9.97) 57.72 (9.94) 0.861
Sex, n (%) 0.316
Male 200 (66.2) 137 (68.2) 63 (62.4)
Female 102 (33.8) 64 (31.8) 38 (37.6)
BMI (Kg/m2), mean (SD) 21.93 (3.28) 21.95 (3.26) 21.90 (3.34) 0.906
SLN, n (%) 0.443
Positive 36 (11.9) 26 (12.9) 10 (9.9)
Negative 266 (88.1) 175 (87.1) 91 (90.1)
Surgery, n (%) 0.092
Yes 177 (58.6) 111 (55.2) 66 (65.3)
No 125 (41.4) 90 (44.8) 35 (34.7)
Radical resection, n (%) 0.080
Yes 108 (35.8) 65 (32.3) 43 (42.6)
No 194 (64.2) 136 (67.7) 58 (57.4)
Primary tumor site, n (%) 0.912
Upper 1/3 44 (14.6) 30 (14.9) 14 (13.9)
Middle 1/3 66 (21.9) 45 (22.4) 21 (20.8)
Low 1/3 184 (60.9) 120 (59.7) 64 (63.4)
Whole 8 (2.6) 6 (3.0) 2 (2.0)
Borrmann type, n (%) 0.173
I 38 (12.6) 25 (12.4) 13 (12.9)
II 6 (2.0) 4 (2.0) 2 (2.0)
III 193 (63.9) 136 (67.7) 57 (56.4)
IV 65 (21.5) 36 (17.9) 29 (28.7)
Tumor size, n (%) 0.952
<20 mm 55 (18.2) 36 (17.9) 19 (18.8)
20–50 mm 32 (10.6) 22 (10.9) 10 (9.9)
>50 mm 215 (71.2) 143 (71.1) 72 (71.3)
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Table 1. Cont.

Total Set Test Set Validation Set p
Items n = 302 n = 201 n = 101

Differentiation, n (%) 0.157
Poor 121 (40.1) 74 (36.8) 47 (46.5)
Moderate 26 (8.6) 15 (7.5) 11 (10.9)
Good 2 (0.7) 1 (0.5) 1 (1.0)
Unknown 153 (50.7) 111 (55.2) 42 (41.6)
Lauren type, n (%) 0.237
Intestinal 27 (8.9) 16 (8.0) 11 (10.9)
Diffuse 27 (8.9) 16 (8.0) 11 (10.9)
Mixed 34 (11.3) 19 (9.5) 15 (14.9)
Unknown 214 (70.9) 150 (74.6) 64 (63.4)
TNM stage, n (%) 0.104
III 121 (40.1) 74 (36.8) 47 (46.5)
IV 181 (59.9) 127 (63.2) 54 (53.5)
AFP, n (%) 0.272
<2.96 ng/mL 151 (50.0) 105 (52.2) 46 (45.5)
≥2.96 ng/mL 151 (50.0) 96 (47.8) 55 (54.5)
CEA, n (%)
<2.43 ng/mL 151 (50.0) 91 (45.3) 60 (59.4) 0.051
≥2.43 ng/mL 151 (50.0) 110 (54.7) 41 (40.6)
CA199, n (%) 0.080
<14.40 U/L 149 (49.3) 92 (45.8) 57 (56.4)
≥14.40 U/L 153 (50.7) 109 (54.2) 44 (43.6)
CA724, n (%) 0.155
<3.06 U/L 150 (49.7) 94 (46.8) 56 (55.4)
≥3.06 U/L 152 (50.3) 107 (53.2) 45 (44.6)
CA125II, n (%) 0.653
<25.19 U/L 144 (47.7) 94 (46.8) 50 (49.5)
≥25.19 U/L 158 (52.3) 107 (53.2) 51 (50.5)

SD: standard deviation; BMI: body mass index; SLN: subclavian lymph nodes; AFP: alpha-fetoprotein; CEA: carci-
noembryonic antigen; CA199: carbohydrate antigen 199; CA724: carbohydrate antigen 724; CA125II: carbohydrate
antigen 125II.

Table 2. Blood parameters.

Total Set Test Set Validation Set
p

Items n = 302 n = 201 n = 101

ALT (U/L, median (IQR)) 14.00 (10.00, 26.00) 14.00 (10.00, 25.95) 14.00 (10.00, 26.00) 0.910
AST (U/L, median (IQR)) 20.00 (16.00, 27.00) 20.00 (16.00, 28.00) 20.00 (16.00, 25.00) 0.559

γ-GGT (U/L, median (IQR)) 23.00 (16.00, 45.50) 24.00 (16.00, 46.00) 21.00 (16.00, 45.50) 0.661
LDH (U/L, median (IQR)) 171.00 (147.00, 215.00) 174.00 (148.00, 216.50) 167.00 (144.50, 208.50) 0.164

TBIL (µmol/L, median (IQR)) 12.00 (9.20, 15.60) 12.00 (9.20, 15.70) 12.00 (9.15, 15.31) 0.653
DBIL (µmol/L, median (IQR)) 2.70 (1.93, 3.66) 2.60 (1.85, 3.60) 2.80 (2.03, 3.86) 0.218
IDBIL (µmol/L, median (IQR)) 9.00 (7.00, 12.10) 9.30 (7.10, 12.17) 8.79 (6.63, 11.85) 0.235

TP (g/L, mean (SD)) 69.13 (7.10) 69.32 (7.11) 68.73 (7.08) 0.494
ALB (g/L, mean (SD)) 38.98 (4.43) 38.85 (4.46) 39.26 (4.40) 0.447

GLOB (g/L, mean (SD)) 30.06 (5.11) 30.36 (5.22) 29.46 (4.85) 0.153
A/G, mean (SD) 1.33 (0.25) 1.31 (0.25) 1.35 (0.26) 0.129

PALB (mg/L, mean (SD)) 199.60 (65.32) 202.30 (65.66) 194.24 (64.63) 0.313
BUN (mmol/L, mean (SD)) 5.52 (1.60) 5.61 (1.62) 5.33 (1.56) 0.158
CREA (µmol/L, mean (SD)) 76.14 (16.56) 76.08 (16.15) 76.27 (17.44) 0.926

UA (µmol/L, mean (SD)) 290.70 (83.67) 296.76 (87.07) 278.64 (75.44) 0.076
ALP (U/L, median (IQR)) 90.00 (73.00, 121.00) 89.00 (71.50, 121.00) 91.00 (73.50, 121.00) 0.631

Glu (mmol/L, median (IQR)) 5.10 (4.57, 5.80) 5.10 (4.60, 5.80) 5.10 (4.50, 5.80) 0.513
WBC (109/L, median (IQR)) 6.40 (5.07, 8.09) 6.46 (5.13, 8.33) 6.31 (4.90, 7.93) 0.232
NEU (109/L, median (IQR)) 3.90 (2.84, 5.38) 3.97 (2.92, 5.44) 3.76 (2.72, 5.03) 0.247
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Table 2. Cont.

Total Set Test Set Validation Set
p

Items n = 302 n = 201 n = 101

LYM (109/L, median (IQR)) 1.65 (1.24, 1.99) 1.65 (1.24, 2.03) 1.63 (1.22, 1.93) 0.601
MON (109/L, median (IQR)) 0.48 (0.32, 0.62) 0.49 (0.33, 0.64) 0.44 (0.29, 0.60) 0.085

RBC (109/L, mean (SD)) 4.27 (0.62) 4.29 (0.62) 4.23 (0.62) 0.492
HGB (109/L, mean (SD)) 122.15 (21.75) 122.70 (22.44) 121.07 (20.39) 0.539
HCT (109/L, mean (SD)) 37.86 (6.38) 38.10 (6.81) 37.40 (5.41) 0.337

PLT (109/L, median (IQR)) 236.50 (184.00, 312.00) 241.00 (186.50, 314.00) 232.00 (180.50, 308.50) 0.546
INR, mean (SD) 1.00 (0.13) 1.01 (0.12) 0.98 (0.15) 0.135

Fbg (g/L, median (IQR)) 3.47 (2.80, 4.36) 3.47 (2.80, 4.37) 3.47 (2.79, 4.34) 0.612
Ddi (ng/L, median (IQR)) 0.75 (0.41, 1.58) 0.67 (0.41, 1.19) 0.78 (0.46, 1.80) 0.211

IQR: interquartile range; SD: standard deviation; ALT: alanine transaminase; AST: aspartate aminotransferase;
γ-GGT: γ-glutamyl transferase; LDH: lactate dehydrogenase; TBIL: total bilirubin; DBIL: direct bilirubin; ID-
BIL: indirect bilirubin; TP: total protein; ALB: albumin; GLOB: globulin; PALB: prealbumin; BUN: blood urea
nitrogen; CREA: creatinine; UA: uric acid; ALP: alkaline phosphatase; Glu: glucose; WBC: white blood cells;
NEU: neutrophils; LYM: lymphocytes; MON: monocytes; RBC: red blood cells; HGB: hemoglobin; HCT: hemat-
ocrit; PLT: platelets; INR: international normalized ratio; Fbg: fibrinogen; Ddi: D-dimer.

3.2. Establishment of the GCIPS in the Test Set

To identify independent prognostic blood parameters influencing OS, we included all
blood parameters as continuous variables in a Cox regression analysis. The results showed
that γ-glutamyl transferase (γ-GGT), total protein (TP), albumin (ALB), albumin/globulin
ratio (A/G), prealbumin (PALB), alkaline phosphatase (ALP), white blood cell count (WBC),
neutrophil count (NEU), lymphocyte count (LYM), platelet count (PLT), and the interna-
tional normalized ratio (INR) were all correlated with OS (all p < 0.05). Simultaneously,
to prevent the impact of multicollinearity on the results, we conducted a Lasso regression
analysis on these indicators before the multivariate analysis. After 303 cycles of validation,
the optimal λ was determined to be 0.008, and ALB was excluded due to multicollinearity
(Figure 1). After incorporating the remaining indicators associated with OS into the multi-
variate analysis, it was found that WBC (HR = 1.073, p < 0.001), LYM (HR = 0.720, p = 0.030),
and INR (HR = 1.732, p = 0.007) were identified as independent prognostic factors for OS
(Table 3).
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Table 3. Cox regression analysis.

Univariate Analysis Multivariate Analysis
Items HR 95% CI p HR 95% CI p

ALT (U/L) 0.996 0.985–1.008 0.509
AST (U/L) 1.008 0.999–1.017 0.070

γ-GGT (U/L) 1.002 1.000–1.004 0.027 1.001 0.998–1.003 0.543
LDH (U/L) 1.001 1.000–1.002 0.068

TBIL (µmol/L) 1.004 0.999–1.008 0.106
DBIL (µmol/L) 1.007 0.999–1.016 0.089
IDBIL (µmol/L) 1.007 0.998–1.016 0.141

TP (g/L) 0.977 0.955–0.999 0.044 0.978 0.954–1.002 0.077
ALB (g/L) 0.942 0.908–0.978 0.002

GLOB (g/L) 0.997 0.964–1.031 0.862
A/G 0.452 0.219–0.932 0.032 0.553 0.243–1.260 0.159

PALB (mg/L) 0.995 0.992–0.998 0.001 0.998 0.994–1.001 0.174
BUN (mmol/L) 0.973 0.862–1.097 0.651
CREA (µmol/L) 0.993 0.981–1.004 0.216

UA (µmol/L) 0.999 0.996–1.001 0.172
ALP (U/L) 1.002 1.000–1.004 0.022 1.001 0.999–1.003 0.399

Glu (mmol/L) 0.943 0.813–1.094 0.439
WBC (109/L) 1.084 1.046–1.123 <0.001 1.073 1.035–1.113 <0.001
NEU (109/L) 1.083 1.006–1.166 0.034 0.951 0.871–1.037 0.256
LYM (109/L) 0.637 0.475–0.854 0.003 0.720 0.535–0.969 0.030
MON (109/L) 0.830 0.355–1.940 0.667
RBC (109/L) 0.798 0.600–1.061 0.120
HGB (109/L) 0.997 0.989–1.005 0.425
HCT (109/L) 0.992 0.965–1.020 0.567
PLT (109/L) 1.002 1.000–1.004 0.026 1.002 1.000–1.004 0.127

INR 2.788 1.748–3.335 <0.001 1.732 1.034–3.812 0.007
Fbg (g/L) 1.017 0.921–1.124 0.739

Ddi (ng/L) 1.066 0.967–1.175 0.198

HR: hazard ratio; CI: confidence interval; ALT: alanine transaminase; AST: aspartate aminotransferase; γ-GGT: γ-
glutamyl transferase; LDH: lactate dehydrogenase; TBIL: total bilirubin; DBIL: direct bilirubin; IDBIL: indirect
bilirubin; TP: total protein; ALB: albumin; GLOB: globulin; PALB: prealbumin; BUN: blood urea nitrogen;
CREA: creatinine; UA: uric acid; ALP: alkaline phosphatase; Glu: glucose; WBC: white blood cells; NEU: neu-
trophils; LYM: lymphocytes; MON: monocytes; RBC: red blood cells; HGB: hemoglobin; HCT: hematocrit;
PLT: platelets; INR: international normalized ratio; Fbg: fibrinogen; Ddi: D-dimer.

After incorporating WBC, LYM, and INR into the Cox multivariate model again, the
obtained β coefficients were 0.071, −0.375, and 2.986, respectively (Table 4). Therefore, the
final formula for calculating the GCIPS was defined as follows: GCIPS = WBC (109/L) ×
0.071 − LYM (109/L) × 0.375 + INR × 2.986.

Table 4. Multivariate analysis for WBC, LYM, and INR.

Items β Value HR 95% CI p

WBC (109/L) 0.071 1.074 1.038–1.111 <0.001
LYM (109/L) −0.375 0.687 0.512–0.922 0.012
INR 2.986 2.809 1.882–3.132 0.002

HR: hazard ratio; CI: confidence interval; WBC: white blood cells; LYM: lymphocytes; INR: international normal-
ized ratio.

3.3. The Prognostic Value of the GCIPS

To explore the prognostic predictive ability of GCIPS, we also calculated several classic
inflammatory and nutritional markers in the test set and compared their prognostic value
with that of the GCIPS (Table 5). We first calculated the area under the curve (AUC) of all
markers by plotting ROC curves based on OS-related deaths (Figure 2). The AUCs of NLR,
PLR, MLR, SII, SIRI, PNI, and the GCIPS were 0.581, 0.540, 0.513, 0.544, 0.507, 0.591, and
0.634, respectively, with the GCIPS exhibiting the highest AUC (Table 6).
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Table 5. The calculation formulas.

Items Calculation Formulas

NLR Neutrophils (109/L)/lymphocytes (109/L)
PLR Platelets (109/L) /lymphocytes (109/L)
MLR Monocytes (109/L)/lymphocytes (109/L)

SII Platelets (109/L)× neutrophils (109/L)/lymphocytes (109/L)
SIRI Monocytes (109/L) × neutrophils (109/L)/lymphocytes (109/L)
PNI Albumin (g/dL) + 5 × lymphocytes (109/L)

NLR: Neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; MLR: monocyte-to-lymphocyte ra-
tio; SII: systemic immune-inflammation index; SIRI: systemic inflammation response index; PNI: prognostic
nutritional index.

Biomedicines 2024, 12, x FOR PEER REVIEW 8 of 20 
 

3.3. The Prognostic Value of the GCIPS 
To explore the prognostic predictive ability of GCIPS, we also calculated several clas-

sic inflammatory and nutritional markers in the test set and compared their prognostic 
value with that of the GCIPS (Table 5). We first calculated the area under the curve (AUC) 
of all markers by plotting ROC curves based on OS-related deaths (Figure 2). The AUCs 
of NLR, PLR, MLR, SII, SIRI, PNI, and the GCIPS were 0.581, 0.540, 0.513, 0.544, 0.507, 
0.591, and 0.634, respectively, with the GCIPS exhibiting the highest AUC (Table 6). 

Table 5. The calculation formulas. 

Items Calculation Formulas 
NLR  Neutrophils (109/L)/lymphocytes (109/L) 
PLR Platelets (109/L) /lymphocytes (109/L) 
MLR Monocytes (109/L)/lymphocytes (109/L) 

SII Platelets (109/L) × neutrophils (109/L)/lymphocytes (109/L) 
SIRI Monocytes (109/L) × neutrophils (109/L)/lymphocytes (109/L) 
PNI Albumin (g/dL) + 5 × lymphocytes (109/L) 

NLR: Neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; MLR: monocyte-to-lym-
phocyte ratio; SII: systemic immune-inflammation index; SIRI: systemic inflammation response in-
dex; PNI: prognostic nutritional index. 

 
Figure 2. ROC curves of all markers. (A) ROC curve of NLR; (B) ROC curve of PLR; (C) ROC curve 
of MLR; (D) ROC curve of SII; (E) ROC curve of SIRI; (F) ROC curve of PNI; (G) ROC curve of 
GCIPS. NLR: neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; MLR: monocyte-
to-lymphocyte ratio; SII: systemic immune-inflammation index; SIRI: systemic inflammation re-
sponse index; PNI: prognostic nutritional index; GCIPS: Gastric Cancer Immune Prognostic Score. 

Table 6. AUC values of all markers. 

Items AUC 95% CI 
NLR 0.581  0.501–0.661 
PLR 0.540  0.459–0.621 
MLR 0.513  0.431–0.595 
SII 0.544  0.463–0.625 
SIRI 0.507  0.425–0.588 
PNI 0.591  0.511–0.671 
GCIPS 0.634  0.557–0.712 
AUC: area under the curve; CI: confidence interval; NLR: neutrophil-to-lymphocyte ratio; PLR: 
Platelet-to-Lymphocyte Ratio; MLR: Monocyte-to-Lymphocyte Ratio; SII: systemic immune-

Figure 2. ROC curves of all markers. (A) ROC curve of NLR; (B) ROC curve of PLR; (C) ROC curve
of MLR; (D) ROC curve of SII; (E) ROC curve of SIRI; (F) ROC curve of PNI; (G) ROC curve of
GCIPS. NLR: neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; MLR: monocyte-to-
lymphocyte ratio; SII: systemic immune-inflammation index; SIRI: systemic inflammation response
index; PNI: prognostic nutritional index; GCIPS: Gastric Cancer Immune Prognostic Score.

Table 6. AUC values of all markers.

Items AUC 95% CI

NLR 0.581 0.501–0.661
PLR 0.540 0.459–0.621
MLR 0.513 0.431–0.595
SII 0.544 0.463–0.625
SIRI 0.507 0.425–0.588
PNI 0.591 0.511–0.671
GCIPS 0.634 0.557–0.712

AUC: area under the curve; CI: confidence interval; NLR: neutrophil-to-lymphocyte ratio; PLR: Platelet-to-
Lymphocyte Ratio; MLR: Monocyte-to-Lymphocyte Ratio; SII: systemic immune-inflammation index; SIRI:
systemic inflammation response index; PNI: prognostic nutritional index; GCIPS: Gastric Cancer Immune Prog-
nostic Score.

Additionally, we generated time–ROC curves for the GCIPS and compared their
predictive ability at different time points with other markers. The AUCs for the GCIPS
in predicting PFS at 3, 4, and 5 years were 0.703, 0.724, and 0.786, respectively, and for
OS, they were 0.699, 0.724, and 0.798, demonstrating consistently high levels of prediction
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(Figure 3A,B). In the comparative analysis of time–ROC curves at different time points, the
GCIPS consistently demonstrated a leading position, both in PFS and OS (Figure 3C,D).
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3.4. Survival Analysis of the GCIPS in the Test Set
3.4.1. Cox Regression Analysis

We conducted a Cox regression analysis for the GCIPS and other pathological factors.
The results showed that the GCIPS, subclavian lymph nodes (SLN), surgery, radical re-
section, tumor size, TNM stage, CEA, CA199, and CA724 were associated with PFS (all
p < 0.05). After including them in the Cox multivariate analysis, the GCIPS (HR = 2.020,
p = 0.009), radical resection (HR = 1.922, p = 0.010), TNM stage (HR = 1.800, p = 0.048),
and CA724 (HR = 1.494, p = 0.046) were identified as independent prognostic factors for
PFS (Table 7). Furthermore, analysis for OS revealed that the GCIPS, SLN, surgery, radical
resection, TNM stage, CEA, CA199, and CA724 were associated with patient survival (all
p < 0.05). The GCIPS (HR = 2.272, p < 0.001), radical resection (HR = 1.901, p = 0.011), and
TNM stage (HR = 1.755, p = 0.0404) were also identified as independent prognostic factors
influencing survival (Table 8).
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Table 7. Cox regression analysis for PFS.

PFS
Univariate Analysis Multivariate Analysis

Items HR (95% CI) p HR (95% CI) p

Age (years) 1.001 (0.984–1.019) 0.879
Sex
Male Ref
Female 1.017 (0.708–1.461) 0.927
BMI (Kg/m2) 0.977 (0.927–1.029) 0.376
GCIPS
<2.70 Ref Ref
≥2.70 2.197 (1.425–3.387) <0.001 2.020 (1.092–2.708) 0.009
SLN
Negative Ref Ref
Positive 1.661 (1.037–2.662) 0.035 1.372 (0.842–2.235) 0.204
Surgery
Yes Ref Ref
No 1.836 (1.275–2.643) 0.001 1.321 (0.811–2.152) 0.264
Radical resection
Yes Ref Ref
No 2.504 (1.692–3.705) <0.001 1.922 (1.171–3.156) 0.010
Primary tumor site
Low 1/3 Ref
#Other 1.004 (0.698–1.444) 0.984
Borrmann type
I + II Ref
III + IV 1.062 (0.675–1.671) 0.795
Tumor size
<50 mm Ref Ref
≥50 mm 1.513 (1.015–2.254) 0.042 1.087 (0.642–1.842) 0.756
TNM stage
III Ref Ref
IV 2.810 (1.891–4.175) <0.001 1.800 (1.005–3.224) 0.048
AFP
<2.96 ng/mL Ref
≥2.96 ng/mL 1.230 (0.869–1.740) 0.242
CEA
<2.43 ng/mL Ref Ref
≥2.43 ng/mL 1.801 (1.256–2.582) 0.001 1.322 (0.892–1.960) 0.164
CA199
<14.40 U/L Ref Ref
≥14.40 U/L 1.326 (0.936–1.879) 0.013 1.079 (0.754–1.546) 0.676
CA724
<3.06 U/L Ref Ref
≥3.06 U/L 2.210 (1.535–3.180) <0.001 1.494 (1.007–2.218) 0.046
CA125II
<25.19 U/L Ref
≥25.19 U/L 1.229 (0.868–1.739) 0.245

#Others: upper 1/3 + middle 1/3 + whole; PFS: progression-free survival; HR: hazard ratio; CI: confidence
interval; BMI: body mass index; SLN: subclavian lymph nodes; AFP: alpha-fetoprotein; CEA: carcinoembryonic
antigen; CA199: carbohydrate antigen 199; CA724: carbohydrate antigen 724; CA125II: carbohydrate antigen
125II; GCIPS: gastric cancer immune prognostic score.
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Table 8. Cox regression analysis for OS.

OS
Univariate Analysis Multivariate Analysis

Items HR (95% CI) p HR (95% CI) p

Age (years) 0.999 (0.982–1.016) 0.880
Sex
Male Ref
Female 1.078 (0.750–1.549) 0.684
BMI (Kg/m2) 0.973 (0.922–1.026) 0.312
GCIPS
<2.70 Ref Ref
≥2.70 2.776 (1.801–4.278) <0.001 2.272 (1.464–3.524) <0.001
SLN
Negative Ref Ref
Positive 2.011 (1.254–3.223) 0.004 1.612 (0.995–2.612) 0.053
Surgery
Yes Ref Ref
No 1.637 (1.144–2.342) 0.007 1.469 (0.925–2.418) 0.101
Radical resection
Yes Ref Ref
No 2.384 (1.614–3.521) <0.001 1.901 (1.161–3.113) 0.011
Primary tumor site
Low 1/3 Ref
#Other 1.001 (0.696–1.439) 0.997
Borrmann type
I + II Ref
III + IV 1.229 (0.783–1.930) 0.370
Tumor size
<50 mm Ref
≥50 mm 1.428 (0.960–2.125) 0.078
TNM stage
III Ref Ref
IV 2.279 (1.560–3.330) <0.001 1.755 (1.201–2.565) 0.004
AFP
<2.96 ng/mL Ref
≥2.96 ng/mL 1.148 (0.812–1.623) 0.435
CEA
<2.43 ng/mL Ref Ref
≥2.43 ng/mL 2.081 (1.454–2.979) <0.001 1.481 (1.000–2.194) 0.050
CA199
<14.40 U/L Ref Ref
≥14.40 U/L 1.550 (1.092–2.201) 0.014 1.080 (0.751–1.553) 0.678
CA724
<3.06 U/L Ref Ref
≥3.06 U/L 2.464 (1.713–3.546) <0.001 1.475 (0.884–2.461) 0.137
CA125II
<25.19 U/L Ref
≥25.19 U/L 1.109 (0.784–1.567) 0.560

#Others: upper 1/3 + middle 1/3 + whole; OS: overall survival; HR: hazard ratio; CI: confidence interval;
BMI: body mass index; SLN: subclavian lymph nodes; AFP: alpha-fetoprotein; CEA: carcinoembryonic antigen;
CA199: carbohydrate antigen 199; CA724: carbohydrate antigen 724; CA125II: carbohydrate antigen 125II;
GCIPS: gastric cancer immune prognostic score.

3.4.2. Kaplan–Meier Survival Analysis

We plotted the survival curves for the GCIPS in the test set and observed that patients
with a higher GCIPS had a poorer PFS (χ2 = 7.375, p = 0.007) and OS (χ2 = 12.277, p < 0.001,
Figure 4A,B). Additionally, given that radical resection and TNM stage were identified
as independent prognostic factors for PFS and OS, we conducted subgroup analyses of
patients with different surgery and TNM stages. A total of 74 patients (low GCIPS = 28,
high GCIPS = 46) were diagnosed at TNM stage III. Notably, those with higher GCIPS
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exhibited significantly shorter PFS and OS (χ2 = 6.042, p = 0.014, and χ2 = 8.554, p = 0.003,
Figure 5A,B). Among the 127 patients (low GCIPS = 36, high GCIPS = 91) in TNM stage
IV, individuals with higher GCIPS similarly demonstrated shorter PFS and OS (χ2 = 5.421,
p = 0.047, and χ2 = 8.553, p = 0.004, Figure 5C,D). Moreover, among the 65 patients (low
GCIPS = 23, high GCIPS = 42) who underwent radical resection, a notable correlation
was observed between higher GCIPS and shorter PFS and OS (χ2 = 5.664, p = 0.017, and
χ2 = 8.709, p = 0.003, Figure 6A,B). Similarly, in the case of the 136 patients (low GCIPS = 41,
high GCIPS = 95) who did not undergo radical resection, higher GCIPS was associated
with shorter PFS and OS (χ2 = 5.302, p = 0.032, and χ2 = 6.770, p = 0.011, Figure 6C,D).
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3.5. Survival Analysis of the GCIPS in the Validation Set

To further validate its reliability, we reanalyzed the GCIPS in the validation set using
the same cutoff value. The AUCs of the GCIPS for PFS at 3, 4, and 5 years were 0.663, 0.734,
and 0.787, respectively. For OS, the AUCs were 0.699, 0.714, and 0.763, also indicating high
levels of predictive ability (Figure 7A,B). Meanwhile, the GCIPS also showed a significant
negative correlation with PFS (χ2 = 6.013, p = 0.014) and OS (χ2 = 11.012, p < 0.001) in the
validation set (Figure 7C,D).
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Biomedicines 2024, 12, 491 14 of 19

3.6. Nomograms of the GCIPS

We conducted a proportional hazards assumption test on the independent prognostic
factors in this study and found that they did not violate the proportional hazards assump-
tion (Figure 8A,B). Finally, based on the results of the multivariate analysis, we created
nomograms for PFS and OS in the test set, and the C-index of the nomograms was 0.719 and
0.742, respectively (Figure 8C,D). Additionally, we analyzed the predictive performance of
the nomograms using the validation set. The C-index of the nomograms in the validation
set was 0.699 and 0.713, respectively, indicating a high level of accuracy. The calibration
curves drawn in the validation set also demonstrated the good predictive accuracy of the
nomograms (Figure 8E,F).
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4. Discussion

Since the application of ICIs in gastric cancer, there has been significant interest in the
value of identifying effective predictive biomarkers for ICIs. In 2022, Nose and colleagues
collected blood samples from 29 gastric cancer patients undergoing ICI treatment. They
utilized flow cytometry to investigate the relationship between the frequency of CD103 in
PD-1-CD8 T cells and patients’ PFS. The results revealed a significant correlation between
a higher frequency of CD103 in PD-1-CD8 T cells and longer PFS, indicating the ability
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to predict the efficacy of anti-ICI treatment [24]. Yang and his colleagues established a
predictive model for immunotherapy by downloading data from The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO). They selected six lactylation-related
genes to create a lactylation score, finding that it could predict the immune progression
and immune escape in gastric cancer. At the same time, they also found that this model is
associated with the response to ICIs, serving as a potential biomarker for the efficacy of
ICI treatment [25]. Non-invasive biomarkers based on blood indicators have also garnered
attention due to their simplicity and ready availability. In 2022, Sun and colleagues explored
the application of the PNI in immunotherapy. They collected data from 146 gastric cancer
patients and analyzed the impact of the PNI on PFS and OS. The results demonstrated
that the PNI exhibited higher prognostic value in all subgroup analyses [26]. Zhang and
his colleagues’ meta-analysis further corroborated these findings, integrating data and
results from 17 studies, revealing that the PNI is a reliable predictive factor for gastric
cancer patients receiving ICIs [27]. Meanwhile, Wan and colleagues have extensively
studied inflammatory markers and found that the NLR was associated with the benefits of
immunotherapy [28]. On the other hand, there is a growing awareness of the necessity to
establish new biomarkers specifically for immunotherapy. In 2018, Mezquita collected data
from 466 advanced non-small cell lung cancer patients across eight centers and analyzed
their inflammatory status. Ultimately, they established a new lung immune prognostic
index (LIPI) and found its prognostic value to be higher in patients treated with ICIs
compared to those undergoing chemotherapy [29]. This clearly illustrated the advantages
of establishing new indicators based on patients treated with ICIs.

In this study, we established the independent blood parameters affecting patients in the
test set through a Cox regression analysis and a Lasso regression analysis, identifying WBC,
LYM, and INR. Based on this, we constructed the GCIPS. After comparing the predictive
abilities of the GCIPS with other classical biomarkers, we found that the GCIPS consistently
maintained the highest AUC at most time points, indicating a superior prognostic predictive
capability. The GCIPS also demonstrated a significant correlation with survival in all patient
groups and different subgroups. Additionally, GCIPS, TNM stage, and radical resection
were identified as independent prognostic factors for both PFS and OS. The stability of the
GCIPS in predicting patient prognosis was confirmed by time–ROC curves and survival
curves in the test set. Finally, nomograms incorporating the GCIPS not only exhibited a
high accuracy but also revealed that the GCIPS’s prognostic value surpassed even the TNM
stage and radical resection in the prediction model. This further confirms the significant
advantages of GCIPS in patients who received ICIs.

The GCIPS, composed of WBC, LYM, and INR, was found to predict the survival of
cancer patients [30–32]. The WBC count encompasses various cell subtypes, including
NEU, LYM, monocytes (MON), eosinophils (EOS), and basophils (BAS) [33]. Except for
EOS and BAS, which constituted a smaller proportion, the remaining cell subtypes played
crucial roles in the initiation and development of tumors [34,35]. NEU, the most common
type of WBC, constituting 60–70%, played a vital role in infections and inflammation [36].
However, in the tumor microenvironment, NEU exhibited a dual effect [37]. On the one
hand, they participated in the engulfment and destruction of tumors through the release
of inflammatory factors and the generation of reactive oxygen species [38]. On the other
hand, various cell factors produced by NEU, such as epidermal growth factor, vascular
endothelial growth factor, and transforming growth factor-β (TGF-β), promoted angiogen-
esis and tumor cell growth [39,40]. Furthermore, certain inhibitory factors secreted by NEU
could suppress the activity of lymphocytes, thereby weakening the anti-tumor immune
response [41]. MON constituted 2–8% of WBC and could differentiate into macrophages,
participating in the engulfment and clearance of cellular debris and pathogens [42]. Like
NEU, MON also exhibited a dual effect in tumor progression [43]. Some cell factors se-
creted by MON, such as interleukin-6, interleukin-10, and TGF-β, could inhibit lymphocyte
activity and promote the growth of tumor cells [44,45]. LYM constituted 20–30% of WBC
and were divided into subgroups such as T lymphocytes, B lymphocytes, and natural
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killer cells [46]. Unlike other subgroups, LYM played a crucial role in anti-tumor immunity,
especially in immunotherapy [47,48]. ICIs enhance the immune system’s recognition of
tumor cells, thereby boosting the anti-tumor immune response [49,50]. Therefore, the effi-
cacy of ICIs depends on the patient’s immune function. A decrease in LYM might indicate
a poorer immune status in patients, potentially reducing their response to ICIs [51,52].
Additionally, WBCs, to some extent, reflect the body’s tumor burden, with an overall higher
WBC potentially indicating a more active tumor [53]. INR reflects the body’s inflammatory
status and coagulation function [54]. An elevated INR indicates that the body is in a state
of chronic inflammation and coagulation dysfunction, reflecting not only a high tumor
burden but also directly influencing patient survival [55,56]. In addition, INR levels were
influenced by nutritional status and liver function, factors closely related to the patient’s
overall health and response to treatment [57]. Therefore, INR was defined as an important
component of the GCIPS.

In this study, GCIPS created based on pre-treatment blood indicators demonstrated
significant prognostic value in patients receiving ICIs. This provides clinicians with an
easily accessible biomarker to assess patients who may benefit from ICIs. Additionally,
GCIPS may assist clinicians in risk stratification, enabling the identification of high-risk
patients for timely intervention. The potential value of GCIPS in clinical practice deserves
further exploration.

While this study yielded meaningful findings, several limitations should be noted.
Firstly, due to the retrospective design employed in this research, it was challenging to
eliminate potential information bias. Secondly, the relatively small sample size of patients
in this study might have impacted the generalizability of the results. Further large-scale
studies would validate and solidify our research conclusions. Thirdly, the cutoff value
for the GCIPS in this study was determined through ROC curve analysis, which might
have been influenced to some extent by the sample size. Therefore, the stability of the
cutoff value should be further confirmed in studies with a larger scope. Lastly, despite
the significant potential demonstrated by the GCIPS in predicting the efficacy of ICIs, this
study did not delve into its molecular mechanisms, providing valuable direction for future
research in this field.

5. Conclusions

The proposed GCIPS demonstrated its ability to predict adverse outcomes in gastric
cancer patients undergoing immunotherapy and had a high prognostic value. As a readily
accessible and simple novel biomarker, it effectively identified high-risk patients.
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