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Abstract: Type 2 diabetes (T2D) has become a worldwide epidemic, primarily driven by obesity
from overnutrition and sedentariness. Recent results reveal there is heterogeneity in both pathology
and treatment responses in T2D patients. Therefore, a variety of T2D animal models are necessary
to obtain a mechanistic understanding of distinct disease processes. T2D results from insufficient
insulin, either due to beta cell loss or inborn deficiency. Although decreases in beta cell mass can
occur through loss of identity or cell death, in this review, we will highlight the T2D animal models
that display beta cell death, including the Zucker Diabetic Fatty Rat, sand rat, db/db mouse, and
a novel diabetic zebrafish model, the Zebrafish Muscle Insulin-Resistant (zMIR) fish. Procuring a
mechanistic understanding of different T2D progression trajectories under a variety of contexts is
paramount for developing and testing more individualized treatments.
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1. Introduction

Hyperinsulinemia and insulin resistance are major risk factors for the leading causes
of death in the world, including cardiovascular disease and cancer [1]. These pathological
phenotypes are often prerequisites for the development of type 2 diabetes (T2D). Physio-
logically, T2D manifests as an inability of the pancreatic beta cells to produce and secrete
a sufficient bolus of insulin to elicit a response in target cells to transport glucose from
the blood and properly regulate glucose levels. This leads to an elevated fasting glucose
measurement of 125 mg/dL or higher in humans [2]. T2D is a worldwide epidemic, ex-
erting substantial disruptions on economic productivity, financial stability, longevity, and
health span within the afflicted population. According to the CDC’s 2019 estimates, 14.7%
of the adult populace is diabetic, with another 38% being pre-diabetic. T2D is not solely
an adult disease. In the past two decades, the prevalence of pediatric T2D in the United
States has doubled [3]. Despite these staggering figures, if these trends persist, pediatric
T2D incidences are projected to rise 4-fold by 2050, and worldwide diabetes prevalence in
adults to double, with a projected 1.31 billion individuals living with diabetes by 2050 [4].

Diabetes is associated with a reduction in life span by 6 years in individuals who have
diabetes at 50 years old compared to non-diabetic adults [5]. Just as concerning as the loss
of lifespan, diabetes also decreases health span. In this context, health span refers to the
number of years lived without significant disease and disability. Key T2D comorbidities
include hypertension, ischemic heart disease, kidney disease, cancer, asthma, back pain,
and osteoarthritis. As many as 37% of T2D persons at diagnosis have hypertension [6].
Additionally, diabetes is the leading cause of non-traumatic lower limb amputation, kidney
failure, and new incidences of blindness in adults.

Along with adverse physical outcomes for individuals with T2D, there are detrimental
psychological consequences linked with diabetes. Anxiety and depression are associated
with diabetes [7]. The risk of developing depression is 50–100% higher in persons with
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diabetes than in the general public [8,9]. Similarly, significant correlations have been
identified between psychotic disorders, including schizophrenia, and diabetes [7]. Likely
due to the negative psychological and physical repercussions experienced by individuals
with diabetes, there is a higher propensity for suicide in this population, with the risk
nearly doubling in comparison to their non-diabetic counterparts [10,11].

Diabetes is a complex and heterogeneous medical condition characterized by a chronic
elevation in blood glucose levels. In the case of T2D, the dysregulation of glucose primarily
stems from two factors: (1) inadequate production of insulin by the pancreatic beta cells
and/or (2) a reduction in insulin’s effectiveness to stimulate target cells to take up glucose, a
condition known as insulin resistance [12]. Insulin resistance is a major hallmark of T2D and
occurs when the target cells of insulin, including adipocytes, hepatocytes, and myocytes,
become less sensitive and require a higher concentration of insulin to stimulate the cell to
uptake glucose from the blood into the cell for storage and oxidation. Insulin resistance
can occur through a plethora of mechanisms. However, obesity is a major contributor to
insulin resistance and hyperinsulinemia as it instigates inflammation and consequently
increases circulating FFA, adipocytes, and proinflammatory cytokines that impair insulin
signaling [13]. Hyperinsulinemia itself can also contribute to insulin resistance via a
common process known as homologous desensitization, whereby continuously high levels
of a ligand can inhibit the responsiveness of its receptor [14]. Thereby, obesity and insulin
resistance can build upon the pathophysiology of one another to culminate in T2D.

Insulin is synthesized in the endoplasmic reticulum (ER) of pancreatic beta cells
where it undergoes a series of post-translational modifications to form mature insulin.
Insulin resistance requires more insulin to be produced by beta cells to compensate for
these desensitized cells. Consequently, this compensation causes additional strain on beta
cells [15,16]. This stress primarily originates from the ER and can also trigger oxidative
stress [17,18]. These cellular stresses can lead to beta cell decompensation, manifested by
dysfunction and eventually a loss of beta cell mass.

Unfortunately, though T2D presents as an inability to regulate glucose levels in the
appropriate range, there are a multitude of factors that can influence an individual’s propen-
sity to develop T2D, with the process being much more complicated than solely calories in
verses calories out. While an extensive body of scientific literature exists within the domain
of diabetes, a considerable realm of undiscovered knowledge still remains, vastly eclipsing
what has already been uncovered. Given the substantial impact of diabetes on financial
well being, reductions in both life and health span, adverse psychological effects, and an
alarmingly elevated incidence of suicide among diabetic patients, it becomes imperative to
focus on enhancing our comprehension of the complex pathophysiology of diabetes. As
mechanisms regulating glucose homeostasis are evolutionarily conserved, exploring dis-
ease pathogenesis across different diabetic vertebrate models may uncover novel pathways
of disease development, providing a better understanding of this multifaceted disease and
potentially paving the way for more personalized treatments for patients. Indeed, animal
models have already been instrumental in the development of most pharmaceutical drugs,
including the Nobel prize-winning discovery of insulin utilizing a dog model. This review
will explore diabetic hallmarks using animal models in four different species, highlighting
a novel zebrafish diabetic model.

Current Drug Treatments

Although metformin and thiazolidinediones are still commonly used, several new
drug classes have been approved to treat T2D over the past two decades. These include
non-sulfonylurea KATP antagonists, alpha-glucosidase inhibitors, DPP-4 inhibitors, GLP-1
receptor agonists (GLP-1RAs), and SGLT2 inhibitors [19]. These diabetic drugs exhibit
distinct mechanisms of action in managing blood glucose levels [19,20]. Metformin and
thiazolidinediones (such as pioglitazone and rosiglitazone) are insulin sensitizers that
improve insulin sensitivity in peripheral tissues, such as liver, muscle, and adipose (fat)
tissue [21,22]. Non-sulfonylurea KATP antagonists, including the medications nateglinide
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and repaglinide, stimulate insulin release by targeting ATP-sensitive potassium channels
on pancreatic beta cells, promoting calcium influx and insulin secretion [23,24]. Alpha-
glucosidase inhibitors, such as acarbose, exert their effects by slowing down carbohydrate
digestion in the small intestine, leading to a gradual release of glucose after meals [25,26].
SGLT2 inhibitors, including canagliflozin, reduce renal glucose reabsorption, increasing
urinary glucose excretion and providing potential cardiovascular and renal benefits [27].

DPP-4 inhibitors and GLP-1RAs both act on GLP-1R, the receptor for GLP-1. GLP-1
is a hormone secreted from enteroendocrine L-cells in response to food [28]. GLP-1 has
been shown to increase insulin sensitivity by elevating the expression of GLUT 4, the
glucose transporter, in insulin-dependent tissues [29,30]. GLP-1 acts at the level of the
pancreas to promote beta cell proliferation and insulin release while inhibiting glucagon
secretion [28,30,31]. GLP-1 can also improve insulin sensitivity by promoting weight
loss [32,33]. This is mainly through GLP-1′s effect in the hypothalamus, whereby GLP-1
reduces feelings of hunger, thereby decreasing food intake [32]. GLP-1 also reduces food
intake by slowing gastric emptying, but the mechanism remains unclear [30,31]. DPP-4
inhibitors, including sitagliptin, saxagliptin, linagliptin, and alogliptin, increase GLP-1
levels by inhibiting its degradation [34]. GLP-1RAs, including semaglutide, exenatide, and
liraglutide, are long-acting GLP-1 analogs that activate GLP-1Rs supraphysiologically [35].
GLP-1RAs have recently surged in popularity due to their potent weight loss effect. As a
result, they also ameliorate insulin resistance in T2D patients [30].

Despite the multitude of drug targets and treatment options, clinical trials consistently
find approximately half of the enrolled patients fail to reach the ADA-recommended goal
of an HbA1c ≤ 7% [36–40]. Furthermore, all current treatments have side effects [41–43].
Insulin and sulfonylureas are known to cause weight gain and hypoglycemia. On the other
hand, thiazolidinediones are linked to weight gain, edema, and an elevated risk of cardiac
events and bone fractures in women. Some thiazolidinediones have been withdrawn
from use due to these adverse effects. Though GLP-1 RA drugs, including liraglutide
and semaglutide, have been shown to be effective in reducing weight and decreasing
insulin resistance and hyperglycemia, it is important to note that some individuals may
experience gastrointestinal issues or develop other adverse health outcomes as an off-target
effect [31,44,45].

2. A Heterogeneous Disease

A multitude of factors contribute to T2D development in humans. Some of these
elements include ethnicity, exposure to toxins, circadian disruptions, stress, activity level,
epigenetic, genetic, and even microbiota variations as shown in Figure 1 [9,46–50]. As such,
T2D is heterogenous in etiology and phenotype. Here, we briefly review recent evidence
on genetic and phenotypic heterogeneity.

T2D has been classified into different subgroups based on phenotypes. Several clas-
sification schemes have been reported [51–55]. For example, Ahlqvist et al. assigned
T2D patients into four clusters, including severe insulin-deficient diabetes (SIDD), severe
insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related
diabetes (MARD) [51]. More recently, Nair et al. projected nine T2D-related phenotypes
at diagnosis of 23,137 Scottish T2D patients into a tree with seven branches through a
dimension reduction DDRTree algorithm. Each branch is distinct in the strength of the nine
phenotypes [56].

GWAS studies have identified more than 400 genes that are associated with T2D [57].
These variants only explain approximately 20% of the diabetes risk, less than half of the
estimated heritability of T2D in the European population [57,58]. Therefore, more T2D-
associated genes remain to be identified. By examining the correlation of the genetic
architecture of T2D with other related traits, Mahajan et al. identified a link between T2D
risk and sleeping behaviors, smoking, metabolites, depressive symptoms, urinary albumin-
to-creatinine ratio, and urate [57]. By assigning risk alleles into groups of likely pathogenic
pathways, Udler et al. identified five different clusters [59]. Two clusters have indications of
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reduced beta cell function. The other three clusters displayed features of insulin resistance,
“lipodystrophy-like” fat distribution, and disrupted liver lipid metabolism.
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Figure 1. A schematic representing the genetic and environmental factors that play a role in T2D
susceptibility. The pink circles represent environmental factors while the blue circles show genetic
and epigenetic variations. The right top panel depicts two of many diabetic animal models that
can be used to better understand the individual factors encompassed in the circles on the left panel.
The advantages of these animal models are listed. The bottom right panel illustrates a transition
from animal models to better drug, surgical, and lifestyle/behavioral therapies. Created with
BioRender.com (2 February 2024).

The T2D classifications also have implications for complication development and
treatment options. As an example, the SIRD cluster had a substantially higher risk of
developing diabetic kidney disease than the other clusters [51]. Similarly, patients in
different branches in the Nair et al. study respond differently to the wide variety of drug
treatments available and have divergent propensities to develop various complications [60].
Nonetheless, simple lab tests outperformed the cluster assignment in selecting drug and
treatment plans for patients [26,56,60].

Overall, these studies show the importance of treating diabetes as a continuum with an
abundance of variation between individual patients. Deducing the most optimal treatment
for diabetic patients is essential, as managing blood glucose in a euglycemic range greatly
reduces the risk for adverse events, including a 40% decrease in the risk of eye, kidney,
and nerve disease [61]. Therefore, it is important for researchers and clinicians to continue
finding and producing optimal drugs and therapies for individual patients. Employing a
diverse array of animal models that mimic variations in disease progression will enhance
comprehension of pathogenic diabetic pathways, thereby fostering improved treatment
strategies for patients (Figure 1).

BioRender.com
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3. T2D Animal Models

Animal models can be leveraged to understand diabetic mechanisms in a way that
is impossible in humans today. The most common diabetic animal models are rodents.
However, many different animal models have been used in diabetic research, including
zebrafish, non-human primates, dogs, pigs, and sheep. Humans and other animals share
a huge degree of similarity in physiology and disease processes. Interestingly, 90% of
medications for animals also work in the same way in humans. Additionally, animal
models are useful for determining the mechanisms of disease in a very specific context.
Because humans have a vast degree of heterogeneity between individuals genetically and
environmentally, it is difficult to pinpoint the mechanisms driving disease. However,
animal models reduce the amount of genetic variability by conducting experiments in
inbred animals and by utilizing siblings. Therefore, the researcher can manipulate one
aspect at a time and determine what effects are produced. This scientific process utilizing
animal models is incredibly powerful, and researchers would be decades behind if we
could not use animal models. For reviews that explore a comprehensive array of animal
models in diabetes, Kottaisamy et al. and Pandey et al. are excellent resources [62,63]. The
following text will summarize three different mammalian diabetic models and one novel
zebrafish diabetic model that all present with beta cell compensation, islet inflammation,
and beta cell loss; however, there are distinct mechanisms of disease within these realms
(Table 1).

Table 1. Represents the T2D animal models: zebrafish muscle insulin resistance (zMIR) [64], sand
rats [65], Zucker Diabetic Fatty (ZDF) Rats [66], and db/db mice [67], along with their respective
genetic alteration or treatment, which elicits the phenotype in the neighboring column. Animal model
pros and cons are listed next, along with paper references.

Animal Model Genetic
Alteration/Treatment Phenotype Pros/Cons References

Zebrafish muscle
insulin resistance

(zMIR) (Danio rerio)

Dominant-negative
IGF1R diet: 5%

egg yolk

Muscle insulin
resistance, beta cell
compensation, and

decompensation

Pros: live imaging, high
fecundity, insulin
resistance, quick

disease progression,
drug/genetic

alterations easier Cons:
non-mammal model

Maddison et al. [64]

Sand rat
(Psammomys obesus) High-energy diet

Obese, hyperglycemia,
insulin resistance, beta
cell compensation, and

decompensation

Pros: mammal, insulin
resistance, quick

disease progression,
dyslipidemia

Cons: seasonal breeder,
lower fecundity, genetic
manipulations difficult

Schmidt-Nielsen et al. [65]

Zucker Diabetic
Fatty Rat (ZDF)

(Rattus norvegicus)

Leptin receptor
mutation Gln269Pro

Obese, hyperglycemia,
beta cell compensation,
and decompensation

Pros: mammal,
hyperphagic, obese,
hyperglycemia, islet

structure more
comparable to humans

Cons: inbred,
expensive, longer time

to disease

Peterson et al. [66]

db/db mouse
(Mus musculus)

Leptin receptor
mutation 106 nt

insertion

Obese, hyperglycemia,
beta cell compensation,
and decompensation

Pros: mammal,
hyperphagic, obese,

hyperglycemia
Cons: inbred, longer

time to disease

Hummel et al. [67]
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3.1. Rodent Models

Rodent animal models are commonly used in T2D research. Islet composition and
function are well conserved between rodents and humans. Rodents, particularly mice,
are easy to manipulate with genetic, pharmacologic, or dietary approaches to create a
desired diabetic phenotype. There are numerous models that can mimic aspects of human
pathologies. For this review, we will briefly discuss selected rodent models that show beta
cell compensation followed by a loss of beta cell mass, with the caveat that dozens of rodent
models have different paths of disease progression.

Zucker Diabetic Fatty Rats (ZDFs): ZDFs represent a non-insulin-dependent diabetes
model due to a genetic mutation in the leptin receptor [66]. ZDF rats have a missense
mutation at nucleotide position 806, resulting in an amino acid switch from Gln to Pro
at position 269, a region in the extracellular domain of the leptin receptor [68]. This mu-
tation results in the inhibition of leptin signaling, leading to hyperphagic and obese rats.
Hyperinsulinemia is detected at 3 weeks of age and hyperglycemia by 7 weeks for male
rats [69]. At 19 weeks, the insulin amount significantly drops as the islets atrophy [69].
This model is advantageous for studying T2D progression from obesity and insulin
resistance-induced beta cell compensation to decompensation, caused at least in part by beta
cell death.

Psammomys obesis (sand rat): The sand rat is a terrestrial mammal from the gerbil
subfamily that only eats the stems and leaves of plants from the Amaranth family in their
natural habitat. In captivity, when fed with a high-energy diet, they develop T2D [70].
Therefore, unlike the other models in this review, the sand rat represents a non-genetic T2D
model with disease being induced by diet. These animals experience insulin resistance,
hyperglycemia, and a significant reduction in beta cell mass within 4–6 weeks on a calorie-
dense diet. This model is advantageous in studying the role of beta cell dysfunction in
T2D development, as a loss of beta cell mass occurs quickly [65]. Jörns et al. described
beta cell loss as a consequence of increased necrotic beta cell death and reductions in
proliferation [70].

Db/db mouse: This mouse strain represents a genetically induced T2D phenotype
mouse model. This model has a 106-nucleotide insertion in the leptin receptor gene causing
premature termination of the intracellular region of the leptin receptor, leading to an
inhibition of leptin signaling in the hypothalamus and unchecked hyperphagia, obesity,
hyperinsulinemia, and increased leptin levels [67,71,72]. Db/db mice have a significant
increase in beta cell proliferation in juvenile animals, which is followed by a gradual
decrease in beta cell mass later in life [73]. This model has been used to study diabetic
dyslipidemia, a major factor leading to atherosclerosis [74]. Additionally, investigation
of neurobehavior complications associated with T2D, including anxiety and depression,
has been used in this model [75]. Because of the similarity between mice and humans,
novel pharmaceutical drugs can be tested first in mice to determine their effects on feeding
behaviors and other diabetic phenotypes.

3.2. Zebrafish Model

Zebrafish serve as excellent model organisms to study the pathophysiology of di-
abetes [76]. Zebrafish and humans share the same basic islet architecture, possessing
identical endocrine cell types whose development involves conserved gene networks and
pathways [77]. The nutrient–secretion coupling machinery for insulin secretion is conserved
in zebrafish [77]. Zebrafish can develop a diabetic phenotype when exposed to prolonged
overnutrition feeding [78]. Zebrafish are translucent in the early stages of development [47].
The transparent quality of zebrafish allows for live imaging of beta cells. This is a huge
advantage over using a mouse model, as disease processes and changes can be seen in
real time in a living organism. Zebrafish are easily genetically manipulated and produce
a bolus of offspring upon breeding in a short time span, making these organisms an out-
standing model for chemical and genetic screens. Zebrafish can develop enlarged fat stores,
hyperglycemia, and hyperlipidemia when continuously fed a high-fat or calorie-dense diet.
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Zebrafish muscle insulin resistance model (zMIR): We have established a novel insulin-
resistant zebrafish model (zMIR) that possesses a dominant-negative form of the IGF-1
receptor inhibiting both insulin and IGF signaling in fast twitch muscles [64]. Upon 3 days
of high-fat diet fed 5% egg yolk emulsion, larval zebrafish experience beta cell compensation
and subsequent decompensation along with islet inflammation and immune cell infiltration,
phenotypes also associated with T2D human patients.

3.3. Limitations of Animal Models

Though animal models have been essential in research progression in the diabetes field,
there are many limitations that must be addressed when trying to translate discoveries in
animal models into humans. Notably, humans have variations in islet structure depending
on the islet size. Smaller islets have a structure similar to rodents and zebrafish, with a
core of beta cells surrounded by a mantle of non-beta cells [79]. However, larger islets
have a more dispersed arrangement of beta cells and a variation in the percentage of beta
cells within the islet [79]. This heterogeneity may be important in disease progression and
discrepancies between humans versus zebrafish and rodents. There are also variations
in metabolic enzymes in humans and rodents [80]. For instance, the enzyme pyruvate
carboxylase, an important protein in insulin secretion, may be up to 90% lower in human
islets than in rat and mouse islets [80]. Regarding the zebrafish specifically, there is no white
adipose tissue (WAT) at this early stage of development in which the zMIR diabetes-prone
model is tested [64]. Additionally, because zebrafish are ectoderms, they do not possess
brown adipose tissue (BAT). WAT and BAT release important cytokines that have been
implicated in T2D [81,82]. Due to the small size of larval and even adult zebrafish, there are
some experimental limitations that exist. Some of these include measuring insulin secretion
and having the ability to perform single-cell RNA sequencing on the limited number of
beta cells available.

4. Compensation: Beta Cell Proliferation, Transdifferentiation, and Neogenesis

The expansion of beta cell mass is infrequent in adult humans, with an estimated rate
of 0.1–0.5% proliferating cells versus a 4% peak in fetal development [83–85]. However,
under conditions of stress and heightened insulin demand due to factors including excess
calorie intake, insulin resistance, and pregnancy, not only beta cell function but also beta cell
mass increases to compensate for an amplified insulin need [86,87]. Beta cell mass expan-
sion can occur through a variety of mechanisms, including neogenesis, proliferation, and
transdifferentiation (Figure 2). Neogenesis arises when endocrine progenitor cells become
beta cells. Proliferation refers to the replication of existing beta cells. Transdifferentiation is
the shift of a non-beta cell in the islet into a beta cell. These new beta cells are functional and
increase insulin content to help combat hyperglycemia and T2D [88,89]. In combination
with additive factors, reductive processes, including cell death and dedifferentiation, or a
loss of beta cell identity can be inhibited to promote beta cell mass expansion (Figure 2).

Beta cell compensation has been reported in various animal models, including ze-
brafish, rodents, non-human primates, and humans [86,87,90]. Butler et al. showed evi-
dence of beta cell compensation in humans by their work with human cadavers. The study
revealed that individuals who were classified as obese had a larger beta cell volume than
individuals with (a) both obesity and T2D and (b) normal-weight individuals [90]. The
results imply that obesity can induce a rise in beta cell mass, which is decreased in diabetic
obese patients.

Though these results suggest a change in beta cell mass at different stages of T2D
development, there are natural variations in beta cell mass in healthy individuals [91].
Furthermore, obesity state and beta cell mass do not track perfectly in all ethnicities. In
a study by Inaishi and colleagues, Japanese individuals had no significant difference in
beta cell mass between lean and obese subjects regardless of T2D [48]. Therefore, although
there is evidence that supports beta cell mass compensation in humans until beta cell mass
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can be tracked from birth to disease state, there is not a definitive answer for the extent to
which beta cell mass compensation occurs in humans.
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Figure 2. Routes promoting beta cell expansion: Beta cell numbers can expand through different
pathways, including neogenesis from pancreatic progenitor cells, intrinsic cell replication, or transdif-
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cells. Created with Biorender.com (2 February 2024).

4.1. Beta Cell Expansion in Rodent Models

Expansions in beta cell mass can occur through multiple biological pathways, includ-
ing hypertrophy, transdifferentiation, neogenesis, and beta cell replication. In the diabetes
field, there is a long history of debate regarding the primary pathway responsible for beta
cell mass expansion in adulthood. Early studies by Bonner-Weir and colleagues found when
rats were exposed to short bouts of hyperglycemia through glucose infusions, beta cell mass
increased by 50% and the mitotic index, a measurement attained from the accumulation of
mitotic frequency, increased by 5-fold [92]. The increase in mitotic frequency suggests that
the major pathway of beta cell mass expansion was replication in this study [92].

In other rodent models, including mice, beta cell replication also appeared to be the primary
means of mass expansion instead of neogenesis or endocrine transdifferentiation [93,94]. Dor
et al. found via genetic lineage tracing that pre-existing beta cells rather than pluripotent
stem cells were the major avenue of mass expansion in mice [94]. Indeed, Dalboge et al.
and colleagues found that the total beta cell mass more than doubled in db/db mice from
5 weeks to 12 weeks of age [73]. The major route of cell expansion in these studies was
concluded to stem from beta cell proliferation driven via increases in islet size and not islet
number [73].

Pick et al. and colleagues found while investigating ZDF rats that at 5–7 weeks
old, beta cell mass was significantly increased in the ZDF rat compared with Zucker
lean control (ZLC) rats [95]. Furthermore, the increase in mass was noted as coming
from proliferation, as an immunochemistry method, 6-h 5-bromo-2′-deoxyuridine (BrdU)
incorporation, indicated that cell proliferation was the major source of mass increase [95].

Sand rats, when fed a high-energy diet, show dramatic increases in beta cell mass
even after short 2- and 5-day overfeeding diets [96]. Interestingly, in these short-term
feeding models, increases in beta cell mass mostly stemmed from increased rates of beta
cell proliferation, as shown by PCNA staining. However, in sand rats fed a high-energy
diet for 22 days, beta cell neogenesis increased by sixfold [96]. These studies by Kaiser et al.
illustrated that the means of increased mass in sand rats may change depending on the
timeline of the disease.

Biorender.com
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Although there is a bolus of studies supporting replication as a major compensatory
pathway in murine animal models, other studies contest these early findings showing
both neogenesis and replication in mice under different settings, including pancreatic
regeneration, partial pancreatectomy, and partial duct ligation along with various drug
treatments [97–99]. Furthermore, using control and diabetic mouse models, a new study
with improved lineage tracing by Gribben and colleagues illustrated that progenitor ductal
cells expressing Ngn3 contribute to adult beta cell mass in adulthood [100]. Therefore, there
is still a debate on the origin of new beta cells generated during compensation. However,
both neogenesis and replication probably contribute to the expansion of beta cell mass, and
which is the major pathway likely depends on the individual and the specific context of
the disease.

4.2. Human Beta Cell Expansion

Research in beta cell compensation in humans is a much harder feat than in animal
models, as the major methods for assessing beta cell mass are from autopsies and organ
donors. However, there are still a few studies that were able to evaluate the question of beta
cell mass in humans. In a study by Butler and colleagues examining autopsies of pregnant
women, relative beta cell volume was increased by 40% in pregnant versus non-pregnant
women [101]. However, only a small increase in proliferation was observed in the pancreas
assessed by the Ki67 marker for replication [101]. Instead of enlarged islets, which would
be more indicative of replication, there was an increased number of small islets distributed
around the pancreas, and insulin-positive cells were found within the ducts; therefore,
neogenesis appeared to be the major pathway of expansion rather than replication [101].
Indeed, the presence of insulin-positive duct cells has been found in a few autopsied adult
studies. Furthermore, in an obese model, when human islets were transplanted in mice,
although there was a robust amount of native beta cell proliferation in response to a high-fat
diet, there was little to no proliferation in the human islets [102]. These results suggest that
beta cell expansion may follow neogenesis instead of the replication of existing beta cells.
However, more work needs to be performed to definitively determine the major pathway
of beta cell expansion in humans during pregnancy and in obesogenic settings.

4.3. Zebrafish Beta Cell Expansion

The major form of compensatory beta cell expansion in zebrafish at the larval stage
may be neogenesis. Our group found that when zebrafish were treated with glucose
for 8 h, beta cell mass increased by 30% in larval fish, and the increase in mass was
due to the neogenesis of beta cells arising from endocrine precursor cells expressing
mnx1 or nkx2.2 [78]. This expansion of beta cell mass is attributed to persistent insulin
secretion, as prolonged pharmacologic activation of beta cell insulin secretion is sufficient
to induce a compensatory response in zebrafish without feeding [103]. Interestingly, a
similar mechanism also regulates beta cell proliferation in mice [104]. In contrast, drugs
that block insulin secretion inhibit overnutrition-induced beta cell mass expansion [78].

Our lab also developed an insulin resistant zebrafish model (zMIR) [64]. When
challenged with a high lipid diet, these fish experience beta cell compensation rapidly [64].
Beta cell mass expansion was investigated using transgenic cell markers and lineage tracing.
Cell expansion was attributed to neogenesis instead of the replication of existing beta cells
in the first 4 weeks of age [64]. However, at the juvenile stage, zebrafish exhibit a burst of
beta cell proliferation. The proliferation is dependent on feeding [105].

Unlike humans, zebrafish have a tremendous regenerative capacity. Several groups
have found that when beta cells are abolished using chemical or genetic ablation, beta
cells regenerate, and the regenerated cells are functionally competent to regulate glucose
levels within 1 month of insult in both larval and adult fish [106–108]. The origin of
the regenerated cells has been widely studied and is reviewed by Yang et al. [86]. Early
studies implicate alpha cells and notch-responsive ductal cells as a resource of new beta
cells [109,110]. Recently, using single-cell transcriptomics and lineage tracing, the Ninov
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and Manfroid groups demonstrated that a major source of new beta cells after ablation
is sst1-expressing cells in the islet [111,112]. These cells become Sst1+ Ins+ bihormonal
cells and eventually Ins+ monohormonal cells [111–113]. Another source of new beta cells
is ghrelin-expressing epsilon cells [114]. To determine the relative contribution of these
sources to beta cell regeneration, Mi et al. performed a series of lineage tracing studies [113].
They found the major source of regenerated beta cells was not from alpha, delta (Sst2+), or
gip cells, but from Sst1+ cells. Furthermore, Mi et al. demonstrated that Sst1+ cells were
derived from Krt4+ ductal cells, distinct from notch-responsive ductal cells [113]. A series
of bioinformatic analyses of single-cell sequencing data revealed the trajectory of Krt4+ to
Sst1+ differentiation [113]. These studies vary from mouse models that illustrate a 70–80%
loss of beta cells results in regeneration via the proliferation of surviving cells, while a near
complete ablation of beta cells in mice results in alpha–beta cell conversion [93]. Humans
do not have this incredible capacity for regeneration upon beta cell injury and, therefore,
require insulin therapy upon diabetic disease states and major pancreatic damage. A greater
understanding of the pathways for regeneration in zebrafish beta cells and other animal
models may lead to novel pathways capable of eliciting beta cell-specific proliferation in
humans for improved treatment strategies and better glycemic control.

5. Islet Inflammation

Beta cell stress and an obesogenic milieu can also perpetuate systemic and islet inflam-
mation. Mounting evidence now shows that inflammatory pathways become chronically
activated in T2D [115]. A landmark study insinuating that inflammation was correlated
with diabetes was pioneered by Hotamisiligil and colleagues in the 1990s [116]. TNFα
was systemically elevated in four different diabetic mouse models, and the neutralization
of TNFα increased insulin sensitivity in peripheral tissues significantly [116]. Since this
initial study, other research groups have recapitulated this research, finding elevations in
inflammatory cytokines in various diabetic models [117,118].

Furthermore, islet inflammation specifically is a hallmark of T2D. The first evidence of
increased immune cell infiltration was found in the db/db mouse and Goto-Kakizaki (GK)
rat models for diabetes [119–121]. In the db/db mouse, Ehses et al. found using immunos-
taining that macrophage infiltration was increased in the islet of diabetic db/db mice [119].
Additionally, infiltrating macrophages in the islet of db/db mice were proinflammatory
in nature, expressing traditional M1-like polarization markers, and were not positive for
M2-like, anti-inflammatory markers, including CD206 and CD301 [122]. However, no
differences in neutrophil infiltration in the islet were found [119]. In contrast to heterozy-
gous db/+ mice islets, db/db islets expressed several folds higher levels of cytokines and
chemokines, including TNFα, IL1β, CCL2, and CXCL1 [122].

Since then, various animal models and human studies have found an increased number
of the inflammatory macrophage markers CD68+ and iNOS+ cells in and around the islets
of T2D individuals compared to patients without T2D [119,120]. Conversely, these T2D
patients are not positive for markers associated with tissue repair macrophages, such as
CD163 and CD204, suggesting an inflammatory interaction [119]. Pathogenic interactions
between inflammatory macrophages and beta cells occur in diabetic models, including the
secretion of IL1β. Increased islet macrophage IL1β secretion reduces beta cell function and
disrupts glycemic control, while treatments reducing IL1β and interfering with the IL-1
pathway restore glycemic control and beta cell function [122].

In ZDF rats, there are elevated CRP and TNFα levels in hyperglycemic rats, signal-
ing increased systemic inflammation [119]. Islet inflammation is also elevated. Jourdan
et al. predicted that beta cell failure in the ZDF model is associated with M1 polarized
macrophages infiltrating the islets and Nlrp3-ASC inflammasomes in macrophages becom-
ing activated during this infiltration [119]. Islet inflammation and Nlrp3-ASC activation
are associated with decreases in insulin secretion. The depletion of macrophages reduces
this phenotype and restores insulin secretion and normal glycemic levels [119].
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Diet-induced diabetes by the use of a high-energy diet in sand rats significantly
elevates the level of thioredoxin-interacting protein (TXNIP) [123]. TXNIP is known to
inhibit major antioxidant systems in beta cells and lead to increases in oxidative stress.
TXNIP knockdown reduces beta cell intrinsic stress and beta cell loss. IL1β expression is
increased in sand rat islets due, at least partly, to hyperglycemia as treatment with phlorizin,
a drug reducing blood glucose levels by inhibiting glucose absorption in the gut, reduces
IL1β expression in the islets [123,124].

Though macrophages were the predominant immune cells implicated in islet inflam-
mation for many years, neutrophils’ role in the perpetuation of islet inflammation has
been called into question. Neutrophils move much faster than macrophages and, during
inflammation, may not continue to reside in the area for a long time; hence, a possible
reason why other studies have failed to find increases in neutrophil infiltration. Therefore,
neutrophils’ role in pathogenesis may be harder to assess. In our diabetic zebrafish model,
both macrophages and neutrophils were found to interact with beta cells, leading to a loss
of beta cell mass [125]. We discovered the following progression of inflammatory events:
(1) the activation of Ripk3 initiated by ER stress in beta cells; (2) Ripk3-dependent induction
of il1b and other cytokines in beta cells; (3) Il1b-dependent recruitment of Tnfa-secreting
macrophages into the islet and Tnfa secretion; (4) Tnfa-dependent induction of cxcl8a in
beta cells; (5) cxcl8a-dependent recruitment of neutrophils into the islet; and (6) loss of beta
cells. These key chain events are essential for beta cell loss in our overnutrition model as
disruption of any prevents the loss of beta cell number and function. Intriguingly, crosstalk
between beta cells, macrophages, and neutrophils is indispensable for beta cell loss. En-
dogenous stress in beta cells, along with increases in islet inflammation and inflammatory
immune cell infiltration, are drivers of beta cell dysfunction and loss [117,125].

These diabetic models show the importance of islet inflammation in beta cell dysfunc-
tion and T2D progression. However, islet inflammation is also an essential component
in maintaining islet health. For example, lean il1b-deficient mice present with glucose
intolerance and decreases in insulin expression [126]. Additionally, macrophages have
been found to be important in beta cell mass expansion during embryonic development
and adulthood [122]. Therefore, it is crucial to view inflammation as a spectrum, wherein it
can promote islet health under a range of circumstances. Yet, if the scale tips in excess or
chronically, inflammation can significantly undermine beta cell function.

6. Decompensation: Beta Cell Death and Loss of Identity

When beta cells are pushed to a certain point of strain, many groups have found that
there is a loss of beta cell mass. Loss of beta cell mass can happen through a variety of
different mechanisms. The major avenues of beta cell loss are through increased beta cell
death and loss of beta cell identity. Loss of beta cell identity occurs when beta cells stop
expressing beta cell markers. The beta cell markers include insulin and several transcription
factors, including NKX6.1, MAFA, and PDX1 in mice [127]. In T2D human cadavers, a
reduction in these transcription factors, NKX6.1, MAFA, and PDX1, was also observed [128].
These studies show that under some conditions of T2D pathophysiology, beta cell loss of
identity may occur. However, there is also evidence for loss of beta cell mass by beta cell
death. As cell death occurs relatively quickly and cell corpses are rapidly cleared, it is more
difficult to detect cell death. Because T2D is such a heterogeneous disease as previously
discussed, it is very likely that either cell death, loss of identity, or a combination of both
could occur depending upon the pathological setting in humans.

Our lab has found in the diabetic zebrafish model (zMIR) that beta cell death occurs
after 3 days of overfeeding with 5% egg yolk emulsion for 8 h per day. The cell loss occurs
on the fourth day in a small window during the night, between 2 a.m. and 4 a.m. [117].
Beta cell loss is not because of dedifferentiation, as all beta cells are marked with a stable
fluorescent protein and, therefore, cells will continue to possess the marker even if they
stop expressing insulin. Indeed, when the fish are immunostained for insulin, all marked
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cells still express insulin. Therefore, in our model, it appears that cell death occurs instead
of dedifferentiation.

Interestingly, the pathway of cell death does not appear to be apoptosis. Apoptotic
inhibitors did not stop cell death in our overnutrition-induced diabetes-prone zebrafish,
and our lab has not been able to find apoptotic bodies [117]. Canonical necroptosis is not
likely to be involved in beta cell death in our model as the effector, MLKL, has not been
found in the zebrafish genome [129]. Therefore, beta cell death in our model likely occurs
through an alternative pathway that is not canonical apoptosis or necroptosis. Cells may
instead utilize one of the many other pathways of necrotic cell death [130,131]. Studies
on this topic are currently ongoing and have the potential to provide insights into novel
disease processes in diabetes research.

Beta cell necrosis has also been reported in Psammomys obesus, desert sand rats, a
non-insulin dependent T2D model, which has been described earlier in this review. This
model experiences reductions in beta cell mass after three weeks on a high-energy diet [70].
Reductions in beta cell volume were attributed to necrosis as cell membrane rupture, and
swollen mitochondria with dilated cisternae of the Golgi complex and the rough ER in the
cytoplasm of beta cells were observed, while apoptotic bodies were not found [132,133].
Therefore, necrotic cell death may be a physiologically relevant avenue of beta cell death in
a subset of T2D patients. Understanding the pathway of beta cell death in these various
animal models may introduce novel drug targets and alternative pathological pathways
for disease progression in T2D.

The db/db mouse model experiences a loss of beta cell mass. In a study by Dalbøge
and colleagues, beta cell mass declines in db/db mice from 12 weeks of age, with a peak
mean value of 4.84 mg average mass, to 34 weeks with 3.3 mg average mass [73]. The
number of islets was found to be similar throughout ages 5–24 weeks, with variations being
constrained to islet size and not number. Beta cell proliferation was reduced in 24-week-old
mice compared to 10-week-old mice via Ki-67 analysis [73]. This study did not find any
significant differences in apoptosis, as measured by the use of caspase 3 immunoreactive
assays. An alternative study by Puff and colleagues found apoptosis to be increased in
db/db mice. However, their studies were performed on mice at earlier time points of
5–12 weeks of age, and they were unable to ensure that these cells were truly beta cells via
staining [134] ZDF rats also experience a robust decompensation of beta cell mass, losing
more than 50% in some cases [135]. Beta cell loss was thought to be an outcome of increased
apoptosis, as increased DNA fragmentation was found in several studies [95,135].

7. Future Outlook

T2D is a serious and worsening epidemic affecting the life and health span of humans
all around the world. This review characterizes major breakthroughs in disease heterogene-
ity, beta cell compensation and decompensation, and the role islet inflammation has on
pathogenesis in T2D using initial discoveries in rodents and zebrafish models, many of
which have paved the way for better treatments for human patients. Although a cannon of
research exists in the field, there is still much left to be revealed. For instance, how beta cell
loss occurs in humans is unknown. Despite several groups, including Butler et al., have
noted a decrease in beta cell mass in cadavers, what cell death pathway(s) are activated
in beta cells in vivo have not fully been addressed [90]. Additionally, in humans, it is
unknown to what extent beta cell death versus other processes shown in Figure 2 may
play a role in the overall decrease in beta cell mass. Zebrafish may pose an advantageous
model to address this question, as disease processes can be observed in real time with
live imaging.

Many heterogeneous disease pathways can culminate in the outcome of T2D. There-
fore, an even greater need to understand a variety of disease processes in patients exists.
Pharmacologic, dietary, and surgical treatments for T2D need to be optimized to fit the
bio-individuality of a particular patient to have the greatest success and outcomes for
the patient. Various animal models need to be utilized, including rodents, zebrafish, and
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non-human primates, to understand variances in disease development and discover novel
screening tests to discern the major pathological pathways driving disease in pre-diabetic
and diabetic patients. Combined with the development of pathway-specific treatments,
the identification and understanding of these pathways will lead to personalized care and
novel treatments for T2D.
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