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Abstract: The aim of our study was to predict the occurrence of distant metastases in non-small-cell
lung cancer (NSCLC) patients using machine learning methods and texture analysis of 18F-labeled
2-deoxy-d-glucose Positron Emission Tomography/Computed Tomography {[18F]FDG PET/CT}
images. In this retrospective and single-center study, we evaluated 79 patients with advanced NSCLC
who had undergone [18F]FDG PET/CT scan at diagnosis before any therapy. Patients were divided
into two independent training (n = 44) and final testing (n = 35) cohorts. Texture features of primary
tumors and lymph node metastases were extracted from [18F]FDG PET/CT images using the LIFEx
program. Six machine learning methods were applied to the training dataset using the entire panel of
features. Dedicated selection methods were used to generate different combinations of five features.
The performance of selected machine learning methods applied to the different combinations of
features was determined using accuracy, the confusion matrix, receiver operating characteristic (ROC)
curves, and area under the curve (AUC). A total of 104 and 78 lesions were analyzed in the training
and final testing cohorts, respectively. The support vector machine (SVM) and decision tree methods
showed the highest accuracy in the training cohort. Seven combinations of five features were obtained
and introduced in the models and subsequently applied to the training and final testing cohorts using
the SVM and decision tree. The accuracy and the AUC of the decision tree method were higher than
those obtained with the SVM in the final testing cohort. The best combination of features included
shape sphericity, gray level run length matrix_run length non-uniformity (GLRLM_RLNU), Total
Lesion Glycolysis (TLG), Metabolic Tumor Volume (MTV), and shape compacity. The combination of
these features with the decision tree method could predict the occurrence of distant metastases with
an accuracy of 74.4% and an AUC of 0.63 in NSCLC patients.

Keywords: machine learning; texture features; [18F]FDG PET/CT; non-small-cell lung cancer; metastases

1. Introduction

Lung cancer is recognized as the leading cause of cancer death worldwide [1]. Each
year, a total of 11.4% of all new cancer cases originate from the lungs, making it the second
most common type of cancer [1]. At diagnosis, about 85% of patients have non-small-cell
lung cancer (NSCLC), which, at histopathological examination, includes adenocarcinoma,
squamous cell carcinoma, and large cell carcinoma [2]. Following diagnosis, patients
undergo a complete work-up for the accurate staging of the disease that will guide the
selection of the most appropriate treatment regimen for each patient [3]. Early-stage lung
cancer patients are candidates for surgery or curative radiotherapy, whereas advanced-stage
lung cancer patients will receive chemotherapy, chemo-radiotherapy, targeted therapy, and
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immunotherapy [4–6]. Despite the transitory success of therapy, patients with lung cancer
in stages I-III will often develop distant metastases that probably were already present at
diagnosis in a subclinical phase and thus being undetectable at the staging work-up.

Lung cancer diagnosis, staging, evaluation of response to treatment, and follow up
are based on multimodality imaging, including Computed Tomography (CT), Positron
Emission Tomography/Computed Tomography (PET/CT), and Magnetic Resonance Imag-
ing (MRI). The recent development of methods for the analysis of medical images based
on artificial intelligence (AI) significantly improved the accuracy and efficiency of image
analysis in several clinical contexts, such as lung cancer screening and diagnosis, nodule
detection, molecular characterization, lung cancer staging, response to treatment, and prog-
nosis [7,8]. In particular, AI-based algorithms including machine learning, deep learning,
and radiomics have significantly enhanced clinical decision making based on individual
patient’s imaging, clinical, molecular, and pathological data. Machine learning methods
include several algorithms that are capable of learning from data observation, thus ob-
taining inferences. Deep learning methods include algorithms based on artificial neural
networks composed of layers of artificial neurons capable of extracting features from data
and building complex models. Radiomics is based on the extraction and quantification of
subvisual image features using data characterization algorithms.

Texture analysis is an emerging radiomic tool for the evaluation and quantification of
spatial signal variation in a segmented volume of medical images [9,10]. A combination of
texture analysis and AI-based algorithms has been applied to evaluate tumor heterogeneity,
overall and progression-free survival (OS and PFS), response to therapy, and biological
and molecular characteristics of different types of tumors [11,12]. In particular, previous
studies performed texture analysis in lung cancer patients and showed that several features,
including the coefficient of variation, dissimilarity, coarseness, and entropy, were able
to predict both PFS and OS in patients [13–18]. Other studies successfully used texture
analysis and machine learning or deep learning methods to discriminate involved lymph
nodes from reactive lymph nodes in lung cancer patients by analyzing and processing
18F-labeled 2-deoxy-d-glucose {[18F]FDG} PET/CT or CT alone [19,20]. Only a few studies
reported the use of texture analysis to predict distant metastases in NSCLC patients and
even fewer combined texture analysis and machine learning methods to identify patients
at high risk of developing distant metastases [21–23]. In the present study, we compared
six different machine learning methods and selected those that combined with texture
analysis could predict the development of distant metastases in lung cancer patients, thus
helping clinicians to select the appropriate treatment for patients at high risk of metastatic
dissemination. To this end, we analyzed primary tumors and lymph nodes that were
positive at [18F]FDG PET/CT scan using texture analysis and tested different machine
learning methods in order to develop an effective classification model. By applying a
radiomic approach, we aim to exploit all the information contained in the images to test
whether they can predict the development of distant metastases.

2. Materials and Methods
2.1. Patients

We retrospectively evaluated 79 patients (54 men, 25 women) using the following
inclusion criteria: histologically proven non-small-cell lung cancer; stage III and IV disease;
whole-body [18F]FDG PET/CT scan performed at our institution before any therapy; and
clinical and imaging follow up for at least 6 months. The exclusion criteria were prior
lung or chest malignancy; prior chemotherapy or chest radiotherapy; no pathological
diagnosis on primary lung lesion; missing imaging data for analysis; and missing clinical
and imaging follow up for at least 6 months. Distant metastases were detected by [18F]FDG
PET/CT scan, whole body contrast-enhanced CT, brain MRI, and in selected cases, MRI of
different anatomical districts, and were subsequently confirmed at clinical and imaging
follow up. This single institutional study was approved by the local ethics committee
(Protocol No. 352/18), and all subjects signed an informed consent form.
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We divided the overall population into two independent cohorts based on the time
of imaging (before or after 2019). The first cohort included 44 patients and was used for
training purposes. The second independent cohort included 35 patients and was used
for final testing purposes. The clinical characteristics of all patients are summarized in
Table 1. In the training dataset, there were 11 patients in stage III (5 IIIA, 4 IIIB, and
2 IIIC), while 33 patients were in stage IV (14 IVA and 19 IVB). There were 18 patients with
adenocarcinoma, 12 with squamous cell carcinoma, 2 with large cell carcinoma, and 12 with
NSCLC not otherwise specified (NOS). In the final testing cohort, there were 15 patients in
stage III (7 IIIB and 8 stage IIIC), while 20 patients were in stage IV (4 IVA and 16 IVB); there
were 20 patients with adenocarcinoma, 8 with squamous cell carcinoma, 1 with large cell
carcinoma, and 6 with NSCLC not otherwise specified (NOS). The overall population was
treated according to their stage, histology, molecular pathology, age, performance status,
and comorbidities [4–6], as reported in Table 1.

Table 1. Clinical characteristics, histology, stage, and treatment of 79 patients with advanced NSCLC.

Characteristic Overall Training
Cohort Final Testing Cohort

Patients 79 44 35

Age

Mean ± SD 65 ± 12 64 ± 13 67 ± 10
Range 38–86 38–86 41–71

Gender

Male 54 29 25
Female 25 15 10

Histology

Adenocarcinoma 38 18 20
Squamous cell carcinoma 20 12 8
Large cell carcinoma 3 2 1
Not otherwise specified 18 12 6

TNM stage

Stage III 26 11 15
Stage IV 53 33 20

Treatment

Chemotherapy 46 30 16
Chemoradiotherapy 3 3
Chemotherapy/Immunotherapy 15 3 12
No cancer therapy 15 8 7

The presence of metastases was established at the time of [18F]FDG PET/CT in both
the training and final testing cohorts.

2.2. [18F]FDG PET/CT Study

After fasting for 8 h, patients received 370 MBq of [18F]FDG by intravenous injec-
tion and 60 min later underwent [18F]FDG PET/CT scan using an Ingenuity TF scanner
(Philips Healthcare, Best, The Netherlands). Before tracer injection, blood glucose level
was measured in all patients and was <120 mg/dL. The parameters of the multidetector
CT scan were 120 kV, 80 mAs, 0.8 s rotation time, and a pitch of 1.5; if needed, a fully
diagnostic contrast-enhanced CT was performed. For PET scan acquisition, 3-dimensional
mode, 3 min per bed position, and six to eight bed positions per patient were used. An
ordered subset-expectation maximization algorithm was applied for image reconstruction.
A filtered back projection of CT reconstructed images (Gaussian filter with 8 mm full width
half maximum) was used for the attenuation correction of PET emission data. [18F]FDG
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PET/CT co-registered images in the transaxial, sagittal, and coronal planes were prelimi-
narily visualized with Ingenuity TF software (IntelliSpace Portal V5.0, Philips Healthcare,
Best, The Netherlands).

2.3. [18F]FDG PET/CT Image Analysis

PET/CT data, after transfer in DICOM format to a different workstation, were pro-
cessed by the LIFEx program [24]. Areas of focal [18F]FDG uptake were considered positive
if detected at least on 2 contiguous PET slices and corresponded to structural CT abnor-
malities. When multiple lymph nodes were coalescent, they were considered as a single
lesion. Areas of physiological tracer uptake were excluded from the analysis. In agreement
with previous studies [25–27], an automated contouring program was applied for drawing
a tridimensional region around the target lesion using an absolute threshold for SUV at
2.5 (Figure 1), thus obtaining a Volume of Interest (VOI). The transfer of the VOI on the
corresponding CT images confirmed the accuracy of lesion delimitation.
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Figure 1. Representative images of [18F]FDG PET/CT scan in a patient with NSCLC. Representative
images of [18F]FDG PET/CT scan in a patient with NSCLC: (a) transaxial [18F]FDG PET image;
(b) co-registered PET/CT fusion image; (c) co-registered CT image. A tridimensional region of interest
was drawn around the FDG avid tumor lesion (pink) using an automated contouring program setting
an absolute threshold for SUV at 2.5 (a). Fusion and CT images confirmed the accuracy of lesion
segmentation (b,c).

Texture features of the primary tumor and lymph node metastases were extracted
using the LIFEx package (developed at CEA, Orsay, France, http://www.lifexsoft.org,
accessed on 19 February 2024). VOIs that did not reach the minimum number of 64 voxels
were excluded from the analysis to avoid the inaccurate quantification of texture features
inside small lesions. Tonal discretization of the gray scale for PET images was adjusted
using 64 gray levels with an absolute scale bound between 0 and 25 SUV. Texture features
included conventional and histogram-based parameters, shape and size, and second- and
high-order features, as shown in Supplementary Table S1 online. In particular, 39 features
plus conventional [18F]FDG PET parameters SUVmax, SUVmean, SDmean, SUVmin, SUV-
peak, MTV, and TLG were extracted from each lesion and then subjected to selection based
on redundancy and importance in determining the clinical endpoint.

2.4. Selection of the Best Machine Learning Method

There are a large number of machine learning methods that can be used to train a
model. Selecting the best method highly depends on the type of data and targets. Therefore,
it is often needed to apply various machine learning methods to data and compare their
performance. In this study, we compared the efficacy of 6 renowned methods, including
the decision tree, linear discriminant analysis, the naïve Bayes classifier, the support vector
machine (SVM), k-nearest neighbors, and the feedforward neural network [28–30].

Briefly, the decision tree is a supervised algorithm used for classification and regression.
It has a hierarchical tree-like structure composed of a root node, branches, and leaf nodes.
The predicted class is obtained by applying a top-down approach to the dataset from
the root node to a leaf node [31]. Linear discriminant analysis is an algorithm that finds

http://www.lifexsoft.org
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linear discriminants that maximize the separation between classes in a dataset [32]. The
naïve Bayes classifier is a supervised algorithm that computes the class of a given sample
by maximizing its probability of belonging to that class. It assumes that predictors are
independent of one another in each class [33]. The support vector machine is a supervised
algorithm used for binary classification or regression prediction. It finds the boundary
that best separates two classes while remaining at the maximum distance from the closest
data points in each class. The term “support vectors” refers to the closest data points
in each class [28]. K-nearest neighbor is an algorithm that identifies the k points closest
to the unknown sample based on their distance. If k-nearest points belong to a given
class, the assumption is that also the unknown sample belongs to the same class [34].
The feedforward neural network is a class of algorithms composed of layers of artificial
neurons; basically, the input layer receives input data, the hidden layer extracts features
from the input data, and the output layer produces the result. The flow of information is
unidirectional from one layer to the next [35]. The selection of the tested classifiers was
based on simplicity, interpretability of results, efficiency with a small dataset, computational
time, and intensity. The experimental setting of each model is summarized as follows. In
the decision tree model, the split criterion was the Gini’s diversity index, and the maximum
tree depth was set to 10 levels. Linear discriminant analysis was performed using singular
value decomposition. The naïve Bayes classifier used the Gaussian model and assumed
that each class is normally distributed. The support vector machine algorithm used a linear
kernel. The k-nearest neighbor algorithm used a k parameter of 1 and Euclidean distance
as the distance metric. The feedforward neural network model used an input layer of
10 neurons fully connected to a hidden layer of 10 neurons followed by an output layer,
using sigmoid as the activation function.

The six methods were applied to the entire set of features in the training cohort of
104 lesions using MATLAB (version R2021a, Mathworks Inc., Natick, MA, USA), and the
results were subjected to univariate analysis to select the best method for the prediction of
distant metastases based on accuracy. A 5-fold cross-validation approach was used to train
all six methods in the training cohort of 104 lesions. Among these lesions, 70% of the input
data went into the training set, leaving 30% for the validation group.

2.5. Selection of Texture Features

Since many features are correlated, to avoid redundancy, we calculated the Pearson
correlation coefficient of pairs of features. When the correlation coefficient of the two vari-
ables was >0.8, one of the two features was removed from the analysis. To select features
on the basis of their importance in determining the clinical endpoint, we applied the least
absolute shrinkage and selection operator algorithm (LASSO) in a MATLAB environment
along with the Cox survival model in the training cohort. This algorithm includes several
selection methods, such as Fscchi2, Fscmrmr, Fscnca, Fsrftest, Fsrnca, Fsulaplacian, and
Relieff, which identify a subset of measured features highly correlated with the clinical
endpoint. The first 5 features selected by each method were employed in the training model.

2.6. Selection and Evaluation of the Best Model

The selected machine learning methods were combined with each pool of selected
features and accuracy, the confusion matrix, and ROC curves were obtained to identify the
best model. Then this model was used in the final testing cohort of patients. The accuracy
of the model was calculated for each combination of the selected features considering the
presence or absence of metastases at the time of [18F]FDG PET/CT.

3. Results

Texture analysis was performed on [18F]FDG PET/CT scans of NSCLC patients. A
total of 104 lesions (37 primary tumors and 67 lymph nodes) were analyzed in the training
group, while 78 lesions (32 primary tumors and 46 lymph nodes) were analyzed in the final
testing dataset. Texture analysis provided 39 features for each lesion plus conventional
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[18F]FDG PET parameters SUVmax, SUVmean, standard deviation of SUVmean (SDmean),
SUVmin, SUVpeak, Metabolic Tumor Volume (MTV), and Total Lesion Glycolysis (TLG).

Six methods were applied using the entire set of features, and univariate analysis was
performed to find the best method for the prediction of metastases based on accuracy [36].
Table 2 shows the mean and standard deviation of the accuracy of each method for the
training dataset. The SVM and decision tree methods had the best accuracy with 78.26% and
71.68%, respectively. So, these two methods were considered for further data processing.

Table 2. Mean and standard deviation of the accuracy of six training machine learning methods.

Methods Mean Accuracy (%) ± SD

Decision tree 71.68 ± 0.89

Linear discriminant analysis 65.39 ± 1.04

Naïve Bayes classification 62.05 ± 0.98

Support vector machine 78.26 ± 0.98

K-nearest neighbor 63.39 ± 1.07

Feedforward neural network 66.09 ± 1.01

Correlation among features was tested using the Pearson correlation coefficient, and
27 features (23 from texture analysis plus SUVmax, SUVmean, MTV, and TLG) remained
after the exclusion of correlated features. Then, seven feature selection methods (LASSO)
were applied to twenty-seven features to rank them in terms of importance and relative
weight. The features extracted by each method are listed in Table 3.

Table 3. Features extracted by seven LASSO feature selection methods on the basis of their high
correlation with the clinical endpoint.

Fscchi2 Fscmrmr Fscnca Fsrftest Fsrnca Fsulaplacian Relieff
GLCM_

dissimilarity GLRLM_RP GLZLM_
LZHGE

GLCM_
dissimilarity

GLZLM_
LZHGE MTV Shape

sphericity

GLCM_energy TLG GLRLM_
RLNU GLCM_energy GLRLM_

RLNU SUVmean GLRLM_
RLNU

GLCM_
homogeneity

HISTO_
kurtosis CoV GLCM_

homogeneity CoV TLG TLG

TLG CoV GLRLM_
LRHGE TLG GLRLM_

LRHGE CoV MTV

GLZLM_
SZLGE

Shape
sphericity GLZLM_SZLGE SUVmax Shape

compacity

The variables selected by Fscchi2 and Fsrftest and those selected by Fscnca and Fsrnca
are similar since the methods have similar mathematic fundamentals. In the Fscnca and Fs-
rnca algorithms, the fifth feature had a slight weight compared to the previous four selected
by the same method and was not included in further analysis.

In the subsequent stage, we tested the best combination of selected features and
machine learning techniques. To this end, some models were designed using features in
Table 3 as the input and the presence of distant metastases as the output. These models
were trained with the SVM and decision tree methods as well. Accuracy, the confusion
matrix, and ROC curves were obtained to identify the best model.

Although the SVM had good accuracy in the training dataset using different com-
binations of features (71.4−83.7%), its accuracy was very low in the final testing dataset
(40−51.3%), as shown in Supplementary Tables S2 and S3 online. For example, one of
the best performances for this method belonged to a model that combined five extracted
features by the Fscchi2 algorithm as inputs. Despite the fact that this model achieved fairly
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good accuracy in training (83.7%), the accuracy in the final testing dataset was just 51.3%.
In addition, the values of the AUC derived from the ROC curve for the training and final
testing datasets were very low (training AUC = 0.43, final testing AUC = 0.39).

Tables 4 and 5 show that the decision tree method had great accuracy in both the
training and final testing datasets using different combinations of features.

Table 4. The training accuracy of the model calculated for each combination of the selected features
using the decision tree method in 104 lesions.

Number of Combined Features
LASSO method First feature Two first features Three first features Four first features Five first features

Fscchi2 74 75 76 82.7 79.8
Fscmrmr 76 73.1 77.9 75 74
Fscnca 77.9 78.8 72.1 71.2 -
Fsrftest 74 75 76 82.7 79.8
Fsrnca 77.9 78.8 72.1 71.2 -
Fsulaplacian 75 71.2 72.1 71.2 73.1
Relieff 76.9 76.9 76 77.9 76.9

Table 5. Accuracy of the model calculated for each combination of the selected features using the
decision tree method in the final testing dataset of 78 lesions.

Number of Combined Features
LASSO method First feature Two first features Three first features Four first features Five first features

Fscchi2 73.1 71.8 69.2 70.5 69.2
Fscmrmr 66.7 67.9 60.3 65.4 65.4
Fscnca 71.8 75.5 70.5 69.2 -
Fsrftest 73.1 71.8 69.2 70.5 69.2
Fsrnca 71.8 75.5 70.5 69.2 -
Fsulaplacian 71.8 70.1 65.4 69.5 70.6
Relieff 69.2 73.1 73.1 71.9 74.4

Table 5 reports the accuracy of the decision tree method using different combinations
of features from 1 to 5 in the final testing dataset. The best accuracy of the model using both
Fscchi2 and Fsrftest was 73.1% by employing only the first feature of the combination, i.e.,
GLCM_dissimilarity. Using Fscnca and Fsrnca, the best accuracy was 75.5% by combining
GLZLM_LZHGE with GLRLM_RLNU, the first two features of the selected combination.
The best accuracy using Fscmrmr was 67.9% by combining GLRLM_RP with TLG, whereas
with the Fsulaplacian combination, an accuracy of 71.8% was obtained employing only
MTV. Finally, the best accuracy using Relieff was 74.4% with a combination of shape
sphericity, GLRLM_RLNU, TLG, MTV, and shape compacity. To select the best model, we
also consider the AUC and ROC curves, and Figure 2 shows the values of the AUC and
accuracy for each model that were calculated based on the confusion matrix.

When we took into account the AUC and accuracy of each most accurate selection
method, we found that the best AUC and accuracy values were obtained using the Relieff
method. Therefore, the combination of shape sphericity, GLRLM_RLNU, TLG, MTV, and
shape compacity is able to predict the presence of distant metastases with an AUC of
0.63 and an accuracy of 74.4%. Figure 3 shows the AUC value and ROC curve for the
combination of five features of the Relieff model.
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Figure 3. Graph of the ROC curve showing the performance of the model combining the decision tree
and Relieff methods for the prediction of distant metastases in the final testing dataset of 78 lesions.
The combination of shape sphericity, GLRLM_RLNU, TLG, MTV, and shape compacity is able to
predict the presence of distant metastases with an AUC of 0.63.

4. Discussion

In the present study, we compared six machine learning methods to select the best
training model for the prediction of distant metastases in NSCLC patients and found the
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highest accuracy using the SVM and decision tree methods on the whole set of variables.
Then, by applying seven feature selection methods, we identified the best five features that
were predictive of metastases. The combination of the selected machine learning methods
with each group of five selected features was then tested in the training cohort of patients
and evaluated in the final testing cohort. We found that by feeding the decision tree method
with the combination of shape sphericity, GLRLM_RLNU, TLG, MTV, and shape compacity
selected by Relieff, we were able to predict the presence of distant metastases with an
AUC of 0.63 and an accuracy of 74.4% in the final testing cohort of patients. Therefore,
texture analysis of [18F]FDG-positive lesions and the decision tree method can identify
patients with a high risk of distant metastases that can be candidates for more aggressive
treatments. The novelty of our study, rather than being the use of advanced AI-based
algorithms, resides in the fact that a systematic evaluation of classical machine learning
methods and different feature combinations even in a small cohort of patients can provide
meaningful information about patient’s risk of distant metastases that can affect subsequent
therapeutic choices. Another important consideration that we can draw from our results
is that both GLCM_dissimilarity and MTV are very powerful predictive features since by
feeding alone the decision tree model they could identify patients with distant metastases.
In relation to the SVM method, while it showed good accuracy in the training group of
patients using different combinations of features, it failed to predict the development of
distant metastases in the final testing cohort.

Our study enrolled patients with advanced NSCLC, and most of them already had
distant metastases at the time of [18F]FDG PET/CT examination. This allowed us to
rapidly identify the features strictly correlated with the presence of distant metastases
and to include them in the training model. However, the evaluation of the model in the
final testing dataset, showing good accuracy, may allow us to extend the model to the
early stages of NSCLC. In our study, texture analysis was performed on both primary
tumors and involved lymph nodes providing a large range of feature values that reflected
the heterogeneity of [18F]FDG uptake in lesions at different steps of disease progression.
Further studies are needed to test whether combining information on the heterogeneity of
primary lesions and involved lymph nodes may improve the identification of patients with
early-stage NSCLC at risk of distant metastases formation.

Nevertheless, our study has several limitations, including its retrospective design,
the relatively limited number of patients, a moderate cohort imbalance in relation to the
percentage of stage III patients in each cohort, and the absence of external validation.
Therefore, our findings may require confirmation in a larger prospective study using
stringent criteria for patient enrollment, including external validation in different centers.
Furthermore, the limited size of training and testing datasets prevented the application of
deep learning methods. Although we are aware that these methods are powerful tools to
perform even complicated tasks, we believe that a simple approach using classical machine
learning methods may provide key information to build more sophisticated models with a
higher clinical impact.

Previous studies used machine learning, deep learning, and radiomics for the analysis
of [18F]FDG PET/CT images of lung cancer patients in different clinical contexts. They
reported AUC values up to 0.97 in the diagnosis of lung cancer using deep learning
algorithms [7,22]. In the prediction of treatment response and prognosis, AUC values up
to 0.95 were achieved using machine learning algorithms [7,22]. For staging purposes,
lymph node involvement was predicted by both machine learning and deep learning
models, which often included radiomic features and clinical data with AUC values up
to 0.94 [19,22,37–40]. Only a few studies used AI-based algorithms for the prediction of
distant metastases in lung cancer patients [21–23]. By applying a CNN, an accuracy of
63 ± 5% was achieved in a study that included 264 patients with different stages of the
disease and 102 out of 264 with distant metastases [23]. In agreement with these findings,
using the decision tree method in the final testing cohort, we found an accuracy of 74.4%
in the prediction of distant metastases. Deep learning was also applied to predict occult
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nodal metastases in [18F]FDG PET/CT images of patients with NSCLC [41]. In this study,
1911 patients were included in the training dataset, 355 patients for external validation
and 999 patients for prospective validation. Deep learning applied to a combination of
imaging features extracted from PET and CT images of primary tumors could predict occult
metastases in regional lymph nodes with an AUC ranging between 0.875 and 0.958 in the
different cohorts. These findings are very promising from the perspective of applying
deep learning methods to the prediction of occult distant metastases in the early stages of
the disease.

Therapeutic regimens in NSCLC patients are currently designed on the basis of the his-
tology, stage, and molecular characterization of oncogene drivers and immune checkpoint
proteins. The addition of features expressing the heterogeneity of glycolytic phenotypes
in primary tumors and involved lymph nodes may add subclinical information on the
metastatic potential of early-stage NSCLC in individual patients. Analysis of combined clin-
ical data and texture features from imaging studies by machine learning or deep learning
methods may further improve the adaptation of therapy to individual patients.

In conclusion, our study reports an effective classification model based on the machine
learning method and texture analysis of [18F]FDG PET/CT images that can be clinically
employed to identify patients with NSCLC at risk of developing distant metastases.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/biomedicines12030472/s1, Table S1: Conventional and texture features
derived from [18F]FDG PET/CT images using LIFEx software; Table S2: Accuracy of models using
the SVM method in the training dataset; Table S3: Accuracy of models using the SVM method in the
final testing dataset.
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