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Abstract: Evidence from large epidemiological studies has shown that obesity may predispose to
increased Th2 inflammation and increase the odds of developing asthma. On the other hand, there
is growing evidence suggesting that metabolic dysregulation that occurs with obesity, and more
specifically hyperglycemia and insulin resistance, may modify immune cell function and in some
degree systemic inflammation. Insulin resistance seldom occurs on its own, and in most cases
constitutes a clinical component of metabolic syndrome, along with central obesity and dyslipidemia.
Despite that, in some cases, hyperinsulinemia associated with insulin resistance has proven to be
a stronger risk factor than body mass in developing asthma. This finding has been supported by
recent experimental studies showing that insulin resistance may contribute to airway remodeling,
promotion of airway smooth muscle (ASM) contractility and proliferation, increase of airway hyper-
responsiveness and release of pro-inflammatory mediators from adipose tissue. All these effects
indicate the potential impact of hyperinsulinemia on airway structure and function, suggesting
the presence of a specific asthma phenotype with insulin resistance. Epidemiologic studies have
found that individuals with severe and uncontrolled asthma have a higher prevalence of glycemic
dysfunction, whereas longitudinal studies have linked glycemic dysfunction to an increased risk
of asthma exacerbations. Since the components of metabolic syndrome interact with one another
so much, it is challenging to identify each one’s specific role in asthma. This is why, over the last
decade, additional studies have been conducted to determine whether treatment of type 2 diabetes
mellitus affects comorbid asthma as shown by the incidence of asthma, asthma control and asthma-
related exacerbations. The purpose of this review is to present the mechanism of action, and existing
preclinical and clinical data, regarding the effect of insulin resistance in asthma.

Keywords: asthma; insulin resistance; antidiabetic drugs; metabolic dysfunction; obesity

1. Introduction

Asthma is one of the most common respiratory disorders worldwide [1], and in 2019,
there were 262.4 million prevalent cases and 37.0 million new cases of asthma all over
the world, contributing to 21.6 million disability-adjusted life years (DALYs) [2]. Chronic
eosinophilic bronchitis with T helper 2 (Th2) inflammation, bronchial smooth muscle hy-
perplasia, easy epithelium shedding, mucus plug formation in the bronchi, and thickening
of the subepithelial basement membrane are its hallmark pathologic features [1]. Due to its
broad diagnostic standards, which include varying expiratory airflow limitation and respi-
ratory symptoms, asthma is a heterogeneous disease with multiple pathogenic mechanisms
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(endotypes) and higher-order groupings sharing similar clinical characteristics (pheno-
types) [3,4]. In the era of personalized medicine, significant progress has been achieved
in disease phenotyping and endotyping with the evolution and utilization of dependable
biomarkers precisely measured through reliable and repeatable techniques [5]. Even though
several asthma phenotypes have been described, including allergic and non-allergic asthma,
occupational, environmental (indoor/outdoor pollutants) [6] and aspirin-induced asthma,
the pathologic characteristics of these phenotypes are very similar, while type 2 inflam-
mation by Th2 and group 2 innate lymphoid (ILC2) cells is their crucial component [3].
Regarding severe uncontrolled asthma phenotypes, recently developed monoclonal an-
tibody treatments have highlighted the importance of type 2 inflammation [7]. Despite
the differences in the design of different studies, it is clear that a considerable minority of
patients with severe uncontrolled asthma have a lack of atopy and type 2 inflammation,
emphasizing the significance of non-allergic triggers to these patients [8,9].

Dysglycemia, glycemic dysfunction, and glucose dysmetabolism, (also referred to
as disorders of glucose metabolism) have been identified as possible causes of severe
asthma and as potential triggers of asthma exacerbation [10,11]. Asthma and insulin
resistance appear to interact and interrelate through mechanisms and pathways that are
not yet fully understood, thereby influencing each other’s natural course [12]. Compared to
individuals with Th2 inflammation, patients with asthma and metabolic dysfunction have
additional pathogenic and pathologic characteristics [11]. Often presented as metabolic
syndrome, metabolic dysfunction has several significant clinical characteristics, such as
insulin resistance/glucose intolerance, central obesity, dyslipidemia, and in certain cases,
vitamin D (Vit D) deficiency [13,14].

It is commonly known that the treatment of asthma in obese patients can be chal-
lenging, partly because of the patients’ poor response to inhaled corticosteroids [15,16].
Treatment of insulin resistance has favorable effects on asthma management [17]. Addi-
tionally, metabolic dysfunction appears to be the primary cause of asthma exacerbation,
according to a cohort analysis of asthmatic patients who were prone to exacerbations [18].
These characteristics highlight the association between asthma phenotype and metabolic
dysfunction, and the significance of metabolic dysfunction in the pathogenesis of asthma.
The impact of obesity and metabolic dysfunction on asthma is becoming increasingly
apparent as these diseases’ prevalence rises worldwide.

In this context, the purpose of this review was to summarize current data on the
deleterious role of insulin resistance in asthma, along with suggested mechanisms of
asthma irritation.

2. Insulin Resistance

The most comprehensive definition of “insulin resistance” was formulated by Petersen
and Shulman [19] as a “maladaptive in the setting of chronic overnutrition”. Even though
its molecular causes are not entirely known, improper lipid accumulation in the liver is
considered a major factor that contributes to decreased cellular sensitivity to insulin. To
preserve glucose homeostasis, pancreatic B-cells produce more insulin, which results in a
period of clinically silent hyperinsulinemia with normal blood glucose levels [10].

With time, blood glucose levels rise in tandem with reductions in insulin secretion
as this compensatory hyperinsulinemia starts to falter [20]. This period can be identified
by elevated glycated hemoglobin A1c (HbA1c), which is a measure of the average blood
glucose levels over the previous 3 months, elevated fasting glucose (also named impaired
fasting glucose, or IFG), or inadequate ability to completely offset hyperglycemic increases
as a result of a glucose load (also named impaired glucose tolerance or IGT). Elevated IFG,
IGT, or HbA1c are useful in diagnosing prediabetes [21]. Crucially, the human body still
secretes more insulin during the prediabetic state, and eventually, there is a reduction in
insulin secretion that coincides with overt hyperglycemia and pancreatic failure. Diabetes
is diagnosed based on blood glucose or HbA1c levels [22].
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Evidence from the Third National Health and Nutrition Examination Survey (NHANES
III) has shown that one-third of nondiabetic adults in the United States (US) experience
hyperinsulinemia associated with insulin resistance [23], whereas 12–43% of US adults
have prediabetes. In the US, 11.3% of the population of all ages (more than 37 million
people), had diabetes in 2019 [24]. Taken together, these data suggest that insulin resistance,
prediabetes and diabetes are widespread and interrelated. Metabolic syndrome, which in-
cludes obesity, hypertension, dyslipidemia, and hyperglycemic tendencies, is closely linked
to obesity (specifically abdominal obesity), while insulin resistance and hyperinsulinemia
are the main molecular markers of this syndrome [25]. Indeed, large epidemiological
studies [26,27] have shown that the main obesity-associated asthma risk was attributed to
insulin resistance, and even maternal obesity raises the incidence of childhood asthma in
susceptible children, pointing to systemic causes [28]. In the Korean Health and Genome
Study (a population-based study of 10,038 Korean adults aged 40 to 69) [29], metabolic
syndrome was related to asthma-like symptoms.

There is a strong connection between more severe and uncontrolled asthma and
metabolic syndrome [30], which are often related to increased airway hyperresponsiveness,
oxidative stress, regulation of systemic and pulmonary inflammation, and macrophage
activation [31–33]. Modifications to nutrition and microbiome, immunity, inflammation and
biophysical lung function associated with obesity may also likely have an impact on asthma,
regardless of metabolic pathways [14,34]. Particularly, obesity-induced insulin resistance
seems to precede macrophage accumulation and inflammation in adipose tissue [35] and
has been linked to elevated inflammatory markers in serum and adipose tissue among
patients with severe asthma [34]. On the other hand, sputum and serum expression of
interleukin 6, which is recognized to participate in the development of insulin resistance,
have been linked with more severe asthma and airway obstruction [36,37].

3. Insulin Resistance and Asthma Pathophysiology: A Missing Link

The degree of insulin resistance and the amount of circulating insulin are strongly
correlated in most patients with prediabetes and insulin resistance. As a result, the lung
and other peripheral organs that retain insulin sensitivity are susceptible to high levels
of circulating insulin [30]. Studies have shown the presence of insulin receptors in the
developing lung [38], but while the lungs’ extent of insulin sensitivity is unknown, it is
assumed that (like most other tissues) hyperinsulinemia is accompanied by reduced insulin-
like growth factor binding proteins (IGFBP-1 and -3) and increased free insulin-like growth
factor (IGF-1) [39,40]. Both insulin and IGF-1 have significant impacts on cell proliferation
and differentiation through several mechanisms of action, including increased fibrosis,
increased epithelium to mucus transition, as well as increased contractility and mass of
airway smooth muscle (ASM); some of these are associated with asthma phenotypes.

Insulin causes a hypercontractile phenotype of bovine ASM, similar to that seen in
asthma, by increasing the production of b1-containing laminins through a phosphoinositide-
3 kinase (PI-3K)/Akt-dependent signaling pathway [41]. Recent observations in hu-
mans [41] have shown that inhaled insulin can cause an abrupt loss in lung function
due to airway smooth muscle contraction, suggesting that hyperinsulinemia may increase
airway smooth muscle bulk or contraction. In mice, administration of intranasal insulin
resulted in an enhancement in the deposition of collagen in the lungs, as well as increased
airway hyper-responsiveness [42]. Furthermore, the lungs of mice treated with insulin
showed activation of β-catenin by PI3K/Akt, which is a positive regulator of epithelial-
mesenchymal transition and fibrosis, suggesting that hyperinsulinemia may have negative
impacts on airway structure and function.

A key mechanism implicated in several biological processes, such as cell proliferation,
morphogenesis, and development, is the Wnt/β-catenin-signaling pathway [43]. Multiple
human abnormalities, such as malignancies and inflammatory, fibrotic, and metabolic
disorders, have been linked to aberrant Wnt/β-catenin signaling [44]. Experimental stud-
ies in a murine model have illustrated that blocking Wnt/β-catenin signaling decreases
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pulmonary fibrosis [45]. The wnt/β-catenin-signaling pathway plays a crucial role in
pulmonary arterial hypertension, in which vascular smooth muscle cell proliferation is a
fundamental feature [46]. Considering that smooth muscle hyperplasia and subepithelial
fibrosis are the hallmarks of airway remodeling, we can speculate that Wnt/β-catenin
signaling plays a role in the process of airway remodeling in asthma. In the lung tissue of
mice with chronic asthma, the use of a particular siRNA, which blocks β-catenin expres-
sion, resulted in airway remodeling and inflammation, reduction of subepithelial fibrosis
and collagen accumulation, and downregulation of transforming growth factor-β produc-
tion [47]. Furthermore, suppression of β-catenin in a model of chronic asthma prevented
smooth muscle hyperplasia through downregulation of the tenascin C/platelet-derived
growth factor receptor pathway, indicating that this pathway is abundantly expressed and
controls the process of airway remodeling. Hence, insulin is thought to be involved in
b-catenin-mediated unfavorable airway remodeling, since inhibiting this protein has been
demonstrated to block the progression of subepithelial fibrosis, mucus metaplasia, and
ASM hyperplasia in chronic asthma [48].

Remodeling of the airway wall is a feature of chronic airway inflammation and may
play a significant role in airway hyperresponsiveness and lung function loss in patients
with severe persistent asthma [49]. Both changes in extracellular matrix (ECM) [50] and
increased mass of airway smooth muscle (ASM) [51] are characteristics of airway wall
remodeling in these patients. ECM proteins known as laminins are frequently present
in basement membranes with an increased expression being observed in the airways of
patients with asthma compared with healthy controls [52]. Using bovine tracheal smooth
muscle, Dekkers et al. showed a pivotal role for laminins in the establishment of an ASM
phenotype that is hypercontractile and hypoproliferative after insulin exposure [41]. Thus,
increased ASM contractility and contractile protein expression may be related to increased
laminin synthesis by ASM in asthma. Moreover, the same study showed that eight days
of administration of insulin causes an elevation in the expression of particular markers of
the contractile phenotype in the smooth muscle cells and strips of the bovine trachea [53].
This was followed by a decrease in mitogenic responses and the installation of a phenotype
functionally hypercontractile [54].

Additionally, it has been observed that high-fat-diet (HFD)-induced obesity enhanced
the expression of TGF-β1 and insulin resistance in the lungs, which causes perivascular
and peribronchial pulmonary fibrosis and aggravated airway hyper-responsiveness (AHR)
to inhaled aerosolized methacholine (MCh) in mice [55].

Intranasal insulin increased the expression of TGF-β1 in the bronchial epithelium and
caused lung fibrosis. HFD-induced AHR, lung fibrosis, and goblet cell hyperplasia were
reduced by the anti-TGF-β1 antibody. Regarding airway hyper-responsiveness, muscarinic
M2 receptors in parasympathetic nerves in the trachea of humans and rats are inhibited by
insulin, which leads to an increase in acetylcholine release and airway contraction [56]. Loss
of inhibitory M2 muscarinic receptor function on parasympathetic nerves and enhanced
vagally mediated bronchoconstriction in obesity are strongly related [56]. Interestingly,
Calco GN et al. demonstrated that cutting insulin receptors on sensory nerves blocked
the increase in sensory nerve density and inhibited airway hyperreactivity in obese mice
with hyperinsulinemia [57]. The same author [58], in a mouse model of maternal diet-
induced obesity that recapitulates metabolic dysregulation, showed for the first time, that
exposure to a maternal high-fat diet leads to hyperinnervation of airway sensory nerves
and increased reflex bronchoconstriction in offspring fed a regular diet only [58]. These
findings could clarify why obese people are more likely to experience asthma exacerbations
since hyperinsulinemia is more common and predominant in obese people. They also
imply that anticholinergic medications may be useful in treating this type of asthma.
Furthermore, insulin-exposed open-ring guinea pig tracheal preparations induce ASM
contraction via PI3-kinase and Rho kinase-dependent mechanisms mediated by contractile
prostaglandin synthesis [59]. Xu et al. found [60] that insulin treatment decreased the
β-agonist responsiveness of primary human ASM cells and obese mice via phosphorylating
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phosphodiesterase 4D and upregulating its downstream activity. In contrast, a recent
study by Ferreira et al. [61] demonstrated that insulin deficiency correlated with decreased
lung levels of STAT3, JNK, and ERK1/2. Additionally, in a mouse model of asthma, it
blocked the onset of allergic inflammation, eosinophilic pulmonary infiltration, and airway
hyperresponsiveness [61].

Delving even deeper into the pathophysiology of asthma, it is worth mentioning that
mast cells are essential for the development and progression of inflammatory and acute-
type allergic reactions. Lessman et al. [62], found that in mast cells generated from rabbit
bone marrow, insulin and IGF-1 increased cell survival through the PI3-kinase pathway.
These effects might be involved in the inverse link between atopic diseases, such as allergies
and asthma, and type 1 diabetes mellitus, which is characterized by low insulin levels.
Insulin-mediated stimulation of PI3-kinase and ERK pathways prevented human bronchial
epithelial cell apoptosis, which may facilitate airway remodeling [63]. Accordingly, insulin
is important in the pathogenesis of apoptosis-driven lung diseases (such as asthma and
chronic obstructive pulmonary disease).

The lungs are not sterile, but they have a far lower bacterial load compared with other
mucosal surfaces. This is partly because of strict control over the availability of nutrients,
including glucose. Normally, the airway surface liquid has up to 12 times lower glucose
levels compared with plasma [64]. Two mechanisms maintain this low concentration:
glucose transporters that take up the glucose from the blood, and tight junctions that block
it from entering the airway. Keeping glucose levels low may be a homeostatic strategy
that prevents bacteria from growing by depriving them of an essential nutrient [65]. A
higher risk of bacterial lung infection arises when these processes fail with resultant glucose
increase, particularly in patients with underlying lung disease, like asthma [66]. In line with
this, high glucose levels increase the likelihood of respiratory tract bacterial colonization in
critically ill patients [66].

In the event of chronic hyperglycemia, advanced glycation end-products (AGEs) are
actively generated and accumulate in the bloodstream and different organs [67]. By vari-
ous mechanisms, AGEs also promote the expression of AGE receptors and play a crucial
role in the onset of vascular complications in diabetes. Initially, the multiligand receptor
known as the receptor for advanced glycation end products (RAGE) was suggested as
a potential mediator in diabetes [68]. However, it was later discovered that membrane
RAGE (mRAGE) signaling is pro-inflammatory, while soluble RAGE (sRAGE), a secreted
form of RAGE, is mostly anti-inflammatory due to its ability to scavenge pro-inflammatory
ligands [68]. Milutinovic et al. [69], revealed that RAGE is essential to the disease processes
that lead to pulmonary eosinophilia, mucus hypersecretion, airway remodeling, and hyper-
responsiveness of the airways in a model of dust mite-induced asthma/allergic airway
disease. Airway hypersensitivity (resistance, tissue damping, and elastance), eosinophilic
inflammation, and airway remodeling were all eliminated in the absence of RAGE. Addi-
tionally, the expression of IL-5 and IL-13 protein and mRNA in the lung was decreased [69].

Finally, insulin resistance, hyperglycemia, or both have been linked as a cause of
accelerated decline in respiratory function, a condition that has been reported as “diabetic
lung” [70]. The term “diabetic lung” includes several abnormalities of the respiratory
function concerning control of ventilation, bronchomotor tone, lung volume, pulmonary
diffusing capacity, and neuroadrenergic bronchial innervation. Although the precise patho-
genetic processes through which insulin resistance, hyperglycemia, and diabetes mellitus
may affect respiratory function are not yet fully understood, it is speculated that an increase
in lung collagen and elastin [71], and the occurrence of subclinical nodular fibrosis, in
addition to physiological impacts on the function of the respiratory muscles are responsible
for this effect [72].

The suggested mechanisms of insulin resistance in asthma are shown in Table 1 and
Figure 1.



Biomedicines 2024, 12, 437 6 of 18

Table 1. Suggested mechanisms of insulin resistance in asthma.

Enhanced Airway Remodeling

Increased collagen deposition in the lungs
Increased epithelium to mucus transition
Increased fibrosis
Increased airway smooth muscle mass
Increased expression of TGF-β1

Increased Airway Smooth Muscle (ASM) contractility

Increased airway hyper-responsiveness
Loss of inhibitory M2 muscarinic receptor function
Enhanced vagally mediated bronchoconstriction

Lung function impairment

Reduced Forced Expiratory Volume in the 1st sec (FEV1)
Reduced Forced vital capacity (FVC)
Reduced Forced expiratory flow over the middle half of the FVC (FEF25–75%)

Increase the risk of respiratory tract bacterial colonization

Release of pro-inflammatory mediators from adipose tissue

Increased IL-6
Increased TNF-α
Increased Th2-inflammation
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4. Epidemiological-Observational Studies

Diabetes and disorders of glucose metabolism have been associated with reduced
diffusing capacity and restrictive spirometry in subpopulations free from any pulmonary
disease. This is based on 40 clinical trials evaluating lung function data of 3182 patients
with diabetes [73]. However, no study has clarified whether hyperglycemia and conse-
quently diabetes mellitus, increases the risk of asthma or vice versa [74]. It appears to be a
bidirectional independent relationship between diabetes mellitus and asthma [74].
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One of the first studies evaluating this issue was conducted in Denmark [26] and
concluded that insulin resistance was related to a higher probability of manifesting asthma-
like symptoms, thus promoting the theory that asthma and obesity may be associated with
inflammatory processes also implicated in insulin resistance.

A few years afterward, Mueller et al. [75], using data from Singapore Chinese Health
Study, also found a positive correlation between the likelihood of developing type 2 diabetes
and self-reported, physician-diagnosed asthma. In agreement with the two aforementioned
studies, the Nord-Trøndelag Health Study (HUNT) examining prospectively 23191 adults
aged 19–55 years, without asthma at baseline, showed that metabolic syndrome was
related to increased risk of incident asthma, indicating that physicians may take metabolic
syndrome into account as a predictor of future risk of asthma [76]. The same was the result
from another study that used multiple logistic regression analyses from the National Health
and Nutrition Examination Survey (NHANES), 2001–2018, and found that an increase in
the metabolism score for visceral fat (METS-VF) index was related to an increase in the
incidence of asthma [77]. Recently, a cross-sectional analysis of 41,480 adults from the
Korean National Health and Nutrition Examination Survey during the period 2007–2016,
revealed that when both obesity and metabolic syndrome are present, the risk of developing
asthma is highest [78]. The above observation is also seen in children: a study from Australia
Illustrated signs of insulin resistance in 43% of children aged 6 to 17 who suffered from
allergic asthma [79].

Together with the aforementioned epidemiological population-based studies, studies
employing electronic and administrative health records similarly reported that the prob-
ability of developing asthma is higher in subjects with type 2 diabetes compared with
non-diabetic individuals, suggesting that these 2 diseases are related [80,81]. Nevertheless,
a major limitation in all these studies is that incident asthma was defined by self-report or
through diagnostic codes and not objectively confirmed.

One step forward, Cardet et al. [82] hypothesized that insulin resistance is an ef-
fect modifier of the relationship between asthma and obesity. A history of physician-
diagnosed current asthma and insulin resistance was obtained from 12,421 individuals,
aged 18–85 years, utilizing the large National Health and Nutrition Examination Survey
from 2003–2012. In logistic regression analysis, increased insulin resistance increases in
obese individuals increased the likelihood of asthma [82]. This was not the case for other
components of metabolic syndrome [82]. Therefore, it is possible that a subgroup of pa-
tients with asthma and obesity may be identified by their insulin resistance, and agents
targeting insulin resistance may also improve asthma control in this subgroup [82]. This
was confirmed recently, in another cross-sectional study of 1276 participants from the
NHANES 2009–2012 database [83]. In this analysis, waist-to-hip ratio and insulin resistance
independently predicted impaired pulmonary function in overweight/obese asthmatic
adults [83]. Evaluations were based on forced expiratory volume in the 1st second (FEV1),
forced vital capacity (FVC), and forced expiratory flow over the middle half of the FVC
(FEF25–75%).

As indicated in a recent study by Peters and colleagues [84], in a SARP-3 (Severe
Asthma Research Program–3) cohort, insulin resistance is independently linked to airflow
limitation, diminished treatment responses, and an accelerated deterioration in lung func-
tion over time. In more detail, patients with insulin resistance had considerably lower FEV1
and FVC values and responded to β-adrenergic agonists and systemic corticosteroids with a
lower FEV1 compared to individuals without insulin resistance. Moreover, individuals with
moderate and severe insulin resistance had an annualized decline in FEV1 of −41 mL/year
and −32 mL/year, respectively, compared to patients without insulin resistance who had
an annualized decline of −13 mL/year [84]. What is noteworthy about the present study
is the fact that after controlling for body mass index in regression models, the analysis
showed that the effects of extra body fat on chest wall mechanics were unlikely to fully
explain the association between worsening lung function and insulin resistance [84,85].
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Accordingly, the association between insulin resistance, diabetes, and prevalent asthma
is bidirectional. Other studies including patients with asthma have also reported a pos-
itive correlation between disorders of glucose metabolism and asthma morbidity. An
increased risk of asthma exacerbation has been associated with a higher incidence of dia-
betes, hypertension, and obesity, according to a recent longitudinal analysis of the Severe
Asthma Research Program cohort [18]. In a cross-sectional analysis using data from ERICA
(Study of Cardiovascular Risk in Adolescents, Portuguese acronym ERICA), a multicenter,
school-based countrywide study in a complex sample of adolescents aged 12–17 years,
metabolic syndrome and insulin resistance were significantly associated with severe asthma
in adolescents from Brazilia [86].

In an attempt to ascertain the relationship between pre-diabetes/diabetes and asthma
exacerbations in an obese asthma cohort, Wu et al. [87], conducted a retrospective cohort of
5722 individuals with obese asthma in the United States, aged 18–64, from a claims-based
health care database covering 2010–2015. It is worth underlining that in the current study,
the investigators used HbA1c instead of a historical or self-reported diagnosis of diabetes,
and pre-diabetes was defined as 5.7% ≤ HbA1c ≤ 6.4%, while diabetes was defined as
HbA1c ≥ 6.5% [87]. Compared to patients with normal HbA1c, those in the pre-diabetes
range experienced a 27% and those in the diabetes range experienced a 33% higher asthma
exacerbation rate. Yang et al. [17] conducted a cross-sectional analysis of 47,606 adults with
asthma who did not have diabetes mellitus from the UK Biobank to evaluate the association
between lung function, HbA1c, and asthma-related hospitalizations. Both HbA1c per
se and an HbA1c in the pre-diabetic or diabetic range were associated with ≥1 asthma
hospitalization. Both HbA1c per se and HbA1c in the prediabetic/diabetic range were
significantly and inversely associated with FEV1 and FVC [17].

Other studies have also shown that prediabetes or diabetes is linked with asthma
exacerbations [88,89]. Although non-significant after adjustment for covariates, diabetes has
been associated with asthma exacerbations [88]. A cross-sectional analysis of data from 709
participants in the US-based Severe Asthma Research Program (SARP)-3 cohort revealed
that patients with exacerbation-prone asthma were more likely to self-report a diagnosis
of diabetes mellitus than those without exacerbation-prone asthma [88]. Conversely, even
after controlling for smoking status, overweight or obesity, and other potential confounders,
a study of 130,547 patients (aged 12–80 years) in two UK databases found that type 1 or
type 2 diabetes was strongly related to 1.53 times increased odds of hospitalizations due to
asthma within the following year [89].

Finally, to evaluate the relationship between triglyceride-glucose index (TyG), a
biomarker of metabolic syndrome and insulin resistance, with the risk of severe asthma
exacerbation, Staggers KA et al. [90] designed a 5-year retrospective study. In it 108,219
patients with asthma from the US Veterans Health Administration were followed for a
severe asthma exacerbation, from January 2015 to December 2019. The authors found
that independent of obesity, eosinophils, smoking and asthma treatment, patients with an
elevated TyG had a 6% greater risk of experiencing a severe asthma exacerbation [90].

Insulin resistance and glucose dysregulation have been further associated with im-
paired lung function in people with and without asthma. A multivariable analysis of
15,792 United States adults in the Atherosclerosis Risk in Communities (ARIC) Study
showed that the % predicted of FEV1 and FVC were 2.4% and 3.6% lower, respectively,
in adults with diabetes compared to those without diabetes after adjusting for smoking,
body-mass index, waist circumference, and other covariates [91]. Conversely, in a U.S.
nationwide survey study of 4257 adults without diabetes, there was a significant non-linear
inverse association between elevated HbA1c and FEV1, FVC, and FEV1/FVC ratio, after
adjusting for body-mass index and waist-to-hip ratio [92]. Unfortunately, the possible ef-
fects of respiratory comorbidities, including asthma, on glucose metabolism were not taken
into account in either of those two trials. Moreover, according to a cross-sectional study of
1429 adolescents between the ages of 12 and 17 from the United States who participated
in the 2007–2010 National Health and Nutrition Examination Survey [93], metabolic syn-
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drome and insulin resistance were linked to impaired lung function in overweight/obese
adolescents. In another cross-sectional study of diabetic and non-diabetic adults [94], a
1% absolute increase in HbA1c was associated with a −52 mL difference in FVC and a
−25 mL difference in FEV1 in women, and a −128 mL difference in FVC and a −73 mL
difference in FEV1 in men, showing an inverse association between glycemic measurements
and pulmonary function. The findings of an additional cross-sectional observational cohort
study of non-smoker African American adults from the Jackson Heart Study were also
similar [95]. There was no significant difference in lung function between women and
men with impaired glucose tolerance and those with normal glucose tolerance, while
women and men with diabetes had lower FEV1 and FVC than those with normal glucose
tolerance [95].

Ultimately, data from the Colombian Diabetes Association Center in Bogotá [96],
showed that in comparison to patients with adequate control, patients with type 2 diabetes
and inadequate glucose control had higher FEV1/FVC (0.013%) and lower mean residuals
of FEV1 (75.4 mL) and FVC (121 mL), as well as higher levels of all inflammatory markers.

In light of all these data, we can assume that insulin resistance and metabolic syndrome
are strongly related to asthma prevalence and may predict the impairment of lung function.
However, the underlying mechanisms remain unclear. In an attempt to answer this query,
168 Hispanic and African American adolescents (13–18 years) from Children’s Hospital in
Montefiore were divide.d into groups of 42 obese subjects with asthma, 42 normal-weight
subjects with asthma, 40 obese subjects without asthma, and 44 healthy control subjects [33].
In children with obesity-related asthma, lung function deficiencies and non-atopic systemic
inflammation have been linked to insulin resistance and dyslipidemia [33].

5. Current Antidiabetic Drugs and Asthma

If diabetes and insulin resistance aggravate asthma, it makes sense that treating these
conditions could have a positive therapeutic impact, provided that the mechanism causing
lung damage is reversible. In addition to their effects on glucose management, many
antidiabetic drugs have additional actions that can also affect asthma [97].

According to in vivo and in vitro studies of the last decade, metformin exerts anti-
inflammatory effects in airways [98,99]. In mice asthma models, metformin has been
demonstrated to reverse eosinophilic infiltration of the lung tissue and reduce levels
of pro-inflammatory cytokines, reactive oxygen species, and nitric oxide species [99].
Adenosine monophosphate-activated protein kinase (AMPK) is thought to be the likely
key mechanism by which metformin has an anti-inflammatory effect on the airway [99].
Metformin has been observed to activate AMPK, and in a dose-dependent manner inhibit
tumor necrosis factor (TNF)-α–induced NF-κB activation and TNF-α–induced IκB kinase
activity [100]. Additionally, this agent appears to attenuate the TNF-α–induced gene
expression of various proinflammatory and cell adhesion molecules (such as vascular
cell adhesion molecule-1, E-selectin, intercellular adhesion molecule-1, and monocyte
chemoattractant protein-1) in human umbilical vein endothelial cells (HUVECs) [100].
AMPK activity also reduces oxidative stress and contributes to the inhibition of tumor
necrosis factor-α-induced inflammatory signaling and expression of inducible nitric oxide
synthase mediated by nuclear factor-kB [99]. In male mice given a high-fat diet (HFD) for
ten weeks to induce obesity, Calixto et al. showed that metformin reduced the exacerbation
of allergic eosinophilic inflammation [98]. Given that metformin is proposed as a first-
line therapeutic medication for diabetes [101], it may be a new therapeutic option for
these patients. Indeed, metformin was associated with a reduced risk of asthma-related
emergency department visits and hospitalizations in a US cohort of patients with diabetes
and asthma [102].

An 11-year (2001–2011) retrospective cohort study that followed 1332 individuals with
concurrent diabetes and asthma for three years to evaluate the asthma-related outcomes
was conducted utilizing the Taiwan National Health Insurance Research Database [103].
The study concluded that metformin users experienced a lower risk of asthma exacerbation
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or asthma-related hospitalization compared to non-users [103]. Very recently, Wu et al. [104]
identified 1749 patients with asthma and diabetes using the Johns Hopkins electronic health
record from April 2013 to May 2018. The use of metformin, independently of glycemic
control and obesity, was related to a lower hazard of asthma-related emergency department
visits and hospitalizations [104]. Unfortunately, there are no data regarding the beneficial
role of metformin from prospective controlled studies in asthmatic patients, with and
without obesity.

Glucagon-like peptide 1 (GLP-1) is a hormone derived from the gut that enhances
insulin sensitivity and increases pancreatic insulin production in response to oral food
consumption [105]. The GLP-1Ra (GLP-1 receptor) exists in the lung and immune cells and
may mediate several inflammatory pathways implicated in the pathogenesis of obesity-
related asthma [106]. Preclinical studies have indicated that GLP-1 inhibited the production
of pro-inflammatory cytokines, including TNF-a, by inactivating NF-κB in a protein kinase
A-dependent manner [107,108]. Moreover, GLP-1 receptor agonists (GLP-1RAs) suppress
RAGE expression, and thus reduce inflammation and bronchoconstriction [109]. Further-
more, the GLP-1RA liraglutide reduced mucus hypersecretion and airway inflammation
in a mouse model of allergic asthma [110]. In addition, in mice models, GLP-1RAs re-
duced the release of T2 cytokines from type 2 innate lymphoid cells (ILC2), as well as
mucus production after exposure to viral antigens and fungal allergens [111–113]. Interest-
ingly, in isolated human airways, GLP-1R activation reduced contractile tone and reduced
lipopolysaccharide-stimulated eosinophil activation [114,115].

GLP-1RAs have been linked with improvements in asthma outcomes in patients with
asthma and diabetes mellitus. In the first uncontrolled preliminary study, 9 participants
receiving a GLP-1RA for one-year improved asthma symptoms and decreased asthma
exacerbations [116]. An electronic health records-based new user, active-comparator, retro-
spective cohort study of patients with type 2 diabetes and asthma showed that patients on
GLP-1RAs for type 2 diabetes had fewer asthma exacerbations compared with other antidi-
abetic agents (sodium-glucose cotransporter-2 inhibitors [SGLT-2is], dipeptidyl peptidase
inhibitors [DPP-4is], sulfonylureas, or basal insulin) [117].

Another new-user active-comparator analysis using a national claims database (2005–2017)
also showed that patients with diabetes and chronic lower respiratory disease (CLRD) (a
medical term that includes both COPD and asthma) who started GLP-1RA experienced
fewer CLRD exacerbations compared to those starting DPP-4is [118]. In diabetes, a ran-
domized clinical trial reported that liraglutide decreased serum surfactant protein D, which
independently predicted improvements in FVC [119]. The addition of a GLP-1RA to met-
formin, as opposed to metformin alone or metformin plus insulin, improved lung function
(FEV1 and FVC) in a prospective cohort of 32 patients with diabetes who did not have
obstructive lung disease [120].

Sulfonylureas are frequently used as second-line antidiabetic therapy [121]. Sulfony-
lureas attach to receptors on the cell membranes of pancreatic beta cells and increase insulin
secretion. Their main untoward effect is hypoglycemia [122,123]. The utilization of a repre-
sentative UK primary care database in a retrospective cohort study revealed an association
between sulfonylureas and a lower risk of incident asthma [124].

DPP-4is are preferable to sulfonylureas as second-line therapy after metformin initia-
tion, due to their neutral effect on weight and the absence of hypoglycemia [125–127]. Very
recently, studies utilizing in vitro models of human bronchial epithelial cells have demon-
strated that DPP-4i inhibits pathways that lead to fibrosis [128] and oxidative stress [129].
Nonetheless, a retrospective observational matched cohort study found that treatment with
DPP-4i did not improve asthma control, treatment stability or asthma exacerbations [130].
This has been confirmed in a network meta-analysis [131].

SGLT-2is promotes glycosuria [132]. An in vitro transcriptomics experiment in human
proximal tubular cells revealed that the SGLT-2i canagliflozin decreased TNF receptor
1, matrix metalloproteinase 7, IL-6, and fibronectin 1 during two years of follow-up, as
compared with the sulfonylurea glimepiride [133].
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In 2021, 9 large randomized controlled trials (RCTs) were included in a fixed-effects
meta-analysis to assess the relationship between SGLT2 inhibitors and the occurrence
of 9 types of non-infectious respiratory disorders [134]. Compared to placebo, SGLT-2is
decreased the incidence of severe adverse events related to asthma. Another meta-analysis
with a similar design concluded that SGLT-2is reduced the risk of asthma in comparison
with GLP-1RAs and DPP-4is [131]. Despite that, the extremely low incidence of asthma
outcomes in both groups (treatment and placebo) limits the validity of both meta-analyses.

Thiazolidinediones (TZDs) are another class of antidiabetic agent. They bind to the
gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) and reduce
insulin resistance and ectopic fat accumulation [135,136]. So far, the results of studies
regarding the anti-inflammatory effect of TZDs on asthma are controversial. Troglitazone
reduced IL-6 in cultured human airway smooth muscle cells, in a dose-dependent man-
ner [137], but a systematic review concluded that TZDs had no significant effect on IL-6
levels [138]. A large observational retrospective study of diabetic Veterans who had a
diagnosis of asthma and were taking oral antidiabetic agents [139], showed that expo-
sure to thiazolidinediones was linked with a significant reduction in the risk of asthma
exacerbation and oral steroid prescription. Utilization of angiotensin-converting enzyme
inhibitors (ACE-I) and/or TZD was also linked with a lower risk for incident asthma
in obese/overweight patients with diabetes and/or hypertension, in another retrospec-
tive observational longitudinal data analysis, who included 77,278 Veterans with incident
asthma [140].

Conversely, in a 12-week, randomized, placebo-controlled, double-blind trial, no
difference was observed in asthma control, exhaled nitric oxide, or lung function between
treatment groups [141]. Interestingly, patients receiving pioglitazone gained significantly
more weight than those receiving placebo [141]. New safety concerns regarding the risk of
bladder cancer with pioglitazone led to the early discontinuation of the study [141]. Finally,
a RCT of pioglitazone in severe asthma found no beneficial effect on asthma quality of life,
as well as many untoward effects [142]. Thus, TDZs do not appear to hold for asthma.

The potential effects of current classes of hypoglycemic therapies in the pathophysiol-
ogy of asthma are shown in Table 2.

Table 2. Potential effects of current classes of antidiabetics in pathophysiology of asthma.

Antidiabetic Agent Potential Beneficial
Effects on Asthma Putative Mechanisms

Metformin Yes

Reverse lung tissue eosinophilic
infiltrationProinflammatory cytokines

↓ Reactive Oxygen Species
↓ Nitric Oxide Species
↓ TNF-α
↓ Cell adhesion molecules
↓ Allergic eosinophilic

inflammation

GLP-1 Yes

↓ Proinflammatory cytokines
↓ TNF-α
↓ receptors of advanced glycation

end-products (RAGE)
expression

↓ Bronchoconstriction
↓ T2 cytokines
↓ Mucus hypersecretion
↓ Airway hyperresponsiveness

(AHR)
↓ IL-33
↓ Contractile tone
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Table 2. Cont.

Antidiabetic Agent Potential Beneficial
Effects on Asthma Putative Mechanisms

Dipeptidyl peptidase-4
inhibitors (DPP-4is) Uncertain ↓ Oxidative stress

↓ Lung fibrosis

Sodium-glucose
cotransporter-2 inhibitors
(SGLT-2)

Yes

↓ TNF receptor 1
↓ IL-6
↓ Matrix metalloproteinase 7
↓ Fibronectin 1

Thiazolidinediones (TZD) No ↓ IL-6 *

Sulfonylureas Uncertain
* A systematic review concluded that TZD does not significantly affect IL-6 levels. ↓: reduce.

6. Conclusions

Obesity, insulin resistance or glucose intolerance, dyslipidemia, and other key clinical
features of metabolic dysfunction—typically manifested as metabolic syndrome—have
been found to be possible risk factors for severe and uncontrolled asthma. More specifically,
disorders of glucose metabolism, ranging from clinically silent insulin resistance through
degrees of hyperglycemia defining prediabetes and diabetes, can precipitate changes in the
lung consistent with asthma through pathways principally involving insulin excess. Recent
experimental studies have shown that insulin resistance may contribute to an increase in
systemic inflammation, modulation of immune function, effects on airway remodeling,
promotion of airway smooth muscle (ASM) contractility and proliferation and increase of
airway hyper-responsiveness. Evidence from observational studies also supports clinically
relevant associations between glycemic dysregulation and asthma outcomes. In our opinion,
there are four mechanisms of the effect of insulin resistance in asthma: (i) aging is associated
with insulin resistance, which can lead to premature airway closure and airway damage,
(ii) insulin directly contributes to airway dysfunction by causing airway inflammation
through the activation of immunological and structural cells in the lungs, (iii) insulin
can directly induce airway hyperresponsiveness by promoting the deposition of collagen
fibroblasts in the airways, (iv) insulin is a pleiotropic hormone that affects endothelial cells
in a variety of ways. When all the aforementioned are taken into consideration, a significant
unmet therapeutic demand for drugs to ameliorate asthma management and control in
patients with insulin resistance is revealed. A growing volume of epidemiologic evidence
indicates that by focusing on the underlying glycemic dysregulation, specific types of
hypoglycemic drugs may be able to treat both chronic diseases. To better understand
the influence and the role of insulin resistance in asthma, more research is required, and
novel antidiabetic drugs pertaining to asthma should be investigated. Expanding our
understanding of the diverse range of biochemical mechanisms that result in an adult
asthma diagnosis may also enable us to pinpoint important tactics to prevent insulin
resistance, obesity, and asthma from emerging later in life.
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