
Citation: Teisseire, M.; Giuliano, S.;

Pagès, G. Combination of

Anti-Angiogenics and

Immunotherapies in Renal Cell

Carcinoma Show Their Limits:

Targeting Fibrosis to Break through

the Glass Ceiling? Biomedicines 2024,

12, 385. https://doi.org/10.3390/

biomedicines12020385

Academic Editors: Loredana Albonici,

Elias Kouroumalis and

Camilla Palumbo

Received: 9 December 2023

Revised: 2 February 2024

Accepted: 3 February 2024

Published: 7 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Review

Combination of Anti-Angiogenics and Immunotherapies in Renal
Cell Carcinoma Show Their Limits: Targeting Fibrosis to Break
through the Glass Ceiling?
Manon Teisseire , Sandy Giuliano * and Gilles Pagès *

University Cote d’Azur (UCA), Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284;
INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France; manon.teisseire@etu.univ-cotedazur.fr
* Correspondence: sandy.giuliano@univ-cotedazur.fr (S.G.); gilles.pages@univ-cotedazur.fr (G.P.)

Abstract: This review explores treating metastatic clear cell renal cell carcinoma (ccRCC) through
current therapeutic modalities—anti-angiogenic therapies and immunotherapies. While these ap-
proaches represent the forefront, their limitations and variable patient responses highlight the need
to comprehend underlying resistance mechanisms. We specifically investigate the role of fibrosis,
prevalent in chronic kidney disease, influencing tumour growth and treatment resistance. Our focus
extends to unravelling the intricate interplay between fibrosis, immunotherapy resistance, and the
tumour microenvironment for effective therapy development. The analysis centres on connective
tissue growth factor (CTGF), revealing its multifaceted role in ccRCC—promoting fibrosis, angiogen-
esis, and cancer progression. We discuss the potential of targeting CTGF to address the problem of
fibrosis in ccRCC. Emphasising the crucial relationship between fibrosis and the immune system in
ccRCC, we propose that targeting CTGF holds promise for overcoming obstacles to cancer treatment.
However, we recognise that an in-depth understanding of the mechanisms and potential limitations
is imperative and, therefore, advocate for further research. This is an essential prerequisite for the
successful integration of CTGF-targeted therapies into the clinical landscape.
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1. Introduction

The prognosis of renal cell carcinoma has improved in recent years thanks to the clinical
application of various therapies, including, above all, anti-angiogenesis therapy and, more
recently, immune checkpoint inhibitor therapy. Nevertheless, renal cell carcinoma cannot
be cured, and there is still room for improvement through deciphering the molecular
mechanisms leading to resistance to current treatment and discovering new therapeutic
targets. This review summarises the latest findings in the field and highlights one of the
key players, CTGF, which is involved in fibrosis, an important feature of precancer.

2. Clear Cell Renal Cell Carcinoma

Renal cancer comprises a relatively small portion, 2–5%, of global cancer diagnoses,
impacting around 400,000 individuals. The predominant histological subtype is clear cell
renal cell carcinoma ccRCC (ccRCC), which accounts for 80% of cases, followed by papillary
RCC (10–15%) and chromophobe RCC (5%) [1]. Each subtype has different histological
and genetic features, which affect treatment methods and prognosis. For localised RCC,
partial or total nephrectomy has been shown to be effective [2]. However, 25% of patients
are diagnosed at the metastatic stage, necessitating systemic treatments. Unfortunately,
metastatic renal cell carcinoma has a bad prognosis, with a five-year survival rate of
only 10–15% [3].
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3. Anti-Angiogenic Therapies: Beneficial Effects and Limitations

Among the various renal cell carcinomas, ccRCC, the most common form, is proba-
bly one of the most vascularised tumours. The recurrent inactivation of the von Hippel
Lindau gene, which leads to the stabilisation of Hypoxia Inducible Factor 1 and 2 α

(HIF1/2α), is one of the causes of this hypervascularisation. VHL inactivation is key for
the expression of one of the most important pro-angiogenic factors, vascular endothe-
lial growth factor (VEGF). Therefore, ccRCC represents a paradigm for treatment with
anti-angiogenic drugs [4], including the historical combination of bevacizumab/Avastin
(humanised monoclonal antibody) with interferon-alpha [5] and the use of the multitarget
inhibitor sunitinib [6]. More recently, therapies approved between 2007 and 2009 have been
gradually replaced by more potent therapies targeting alternative tyrosine kinase receptors
(PDGFR, c-MET, FGFR) implicated in mechanisms of resistance, including axitinib [7],
pazopanib [8], tivozanib [9], cabozantinib [10], and lenvatinib [11]. Despite their relative ef-
fectiveness, these treatments are not a curative solution and patients progress after varying
lengths of time. The heterogeneous responses of patients can be divided into three distinct
categories: (1) patients with intrinsic resistance who exhibit no or minimal response, facing
rapid progression and mortality; (2) patients who have acquired resistance and experience
transient benefits followed by relapse; (3) and a subgroup for whom treatment proves
effective over an extended timeframe [12]. This diversity of patient outcomes underscores
the multifaceted nature of resistance, which is due to factors such as genetic or epigenetic
aberrations in cancer cells, environmental influences, and interactions with host cells. These
mechanisms can either manifest themselves before the start of therapy or occur later. Each
patient has a unique genetic profile, which requires a personalised therapeutic approach.
However, achieving this goal requires a comprehensive understanding of the specific ge-
netic landscape and the underlying mechanisms that determine adaptation to treatments
with varying efficacy. Resistance identified in cancer therapies can be divided into intrinsic
and acquired forms depending on the temporal context of its manifestation. This review
examines in detail the temporal dimensions that influence resistance and provides insights
into the different mechanisms underlying this phenomenon (see Figure 1). In addition,
possible ways of deciphering the factors contributing to treatment failure are outlined.
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Figure 1. Summary of mechanisms of resistance to anti-angiogenic drugs in mRCC.

4. Innate Anti-Angiogenic Resistance Leads to Primary Drug Inefficacy
4.1. Molecular Subclassification of ccRCC

As outlined by Beuselinck B. et al. [13], ccRCC manifests in four distinctive molecular
subtypes, labelled ccRCC1 to 4. Among these, ccRCC2 (“classical”) and ccRCC3 (“normal-
like”) exhibit the loss of tumour suppressor genes PBMR1 and VHL, resulting in a robust
activation of proangiogenic pathways. Notably, these subtypes display heightened sensitiv-
ity to anti-VEGF/VEGFR interventions. Furthermore, ccRCC1 (“c-myc up”) and ccRCC4
(“c-myc-up and immune up”) are characterised by low tumour cell differentiation, the
absence of the tumour suppressor gene BAP1, diminished expression of pro-angiogenic
genes, and PDL-1 overexpression. Consequently, these subtypes demonstrate reduced
responsiveness to anti-VEGF/VEGFR treatments but heightened sensitivity to immune
checkpoint inhibitors (ICI) compared to their counterparts. It is worth noting that subtypes
of ccRCC1 and 4 exhibit a shorter overall survival in contrast to ccRCC2 and 3.

4.2. Single Nucleotide Polymorphism (SNPs)

Germline genetic alterations in the promoter region of different genes have been
shown to be clinically relevant and are potential predictive markers for the efficacy of
anti-angiogenic therapies. SNPs, which are characterised by subtle genetic changes in
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which a single nucleotide is exchanged, exert a significant influence. SNPs can predict
response to treatment, susceptibility to environmental factors, and predisposition to cer-
tain diseases. In ccRCC, SNPs play a central role as they influence both development
and resistance to anti-angiogenic therapies. The VEGF gene, for example, is highly poly-
morphic, and many single nucleotide polymorphisms (SNPs) have been described [14].
Furthermore, a compelling illustration of this phenomenon is found in the intriguing corre-
lation between specific IL-8 SNPs and reduced survival rates under sunitinib treatment.
This correlation is a”consequence of the activation of alternative angiogenic pathways,
underscoring the profound implications of SNPs in shaping the dynamics of response to
therapeutic interventions [14].

4.3. miRNAs

Numerous miRNAs have been implicated in orchestrating TKI resistance in ccRCC
by targeting crucial signalling pathways that govern cell proliferation, survival, and
drug response. Operating at the post-transcriptional level, these miRNAs exert a neg-
ative influence on gene expression. Within the landscape of ccRCC, specific miRNAs
have surfaced as both prognostic markers [15] and predictive indicators for sunitinib
response [15,16]. miR-15b was found to be significantly upregulated in cell lines resis-
tant to sunitinib after exposure to the drug. This observation has been replicated in
in vivo models [17]. Other notable miRNAs overexpressed in sunitinib-resistant RCC
cells include miRNA-575, miRNA-642b-3p, and miRNA-4430 (in vitro study), as well as
miRNA-942, miRNA-133a, miRNA-628-5p, and miRNA-484 (in vivo study) [16,18]. Over-
expression of miR-144-3p in ccRCC was shown to increase cell proliferation, clonogenicity,
migration, invasion, and resistance by inhibiting the expression of the tumour suppres-
sor gene ARID1A, which encodes the basic directional subunit of SWI/SNF chromatin
remodelling complexes [19]. In addition, miR-221 attenuates the efficacy of sunitinib by
reducing VEGFR2 expression. Additionally, miR-942 up-regulates MMP-9 and VEGF secre-
tion, which promote endothelial cell migration and sunitinib resistance [16]. In contrast,
miR-200b and miR-141 were found to be downregulated in ccRCC compared to benign
tissue, and their expression may serve as an independent prognostic factor for prolonged
progression-free survival and overall survival [20].

1. Immediate/rapid resistance:

a. Molecular subclasses of mRCCs;
b. miRNAs and SNPs;
c. Lysosomal sequestration of sunitinib;
d. Metabolic adaptations.

2. Early resistance:

Communication between tumour cells.

3. Late resistance:

a. c-MET-dependent EMT;
b. Communication with the microenvironment: vascular and lymphatic endothe-

lial cells, CAFs, TAMs, MDSCs.

5. Tumour Cells Adaptative Response after Anti-Angiogenic Treatments

As we have previously published, resistance to anti-angiogenic drugs that mainly
target the VEGFA/VEGFR axis is time-dependent [17]. Originally, the mechanism of
action of these drugs was defined as inhibitors of vascular network development. The
elegant hypothesis proposed that by inhibiting tumour vascularisation, these drugs should
eradicate the tumour by asphyxiating it and limiting nutrient access. In this way, these
treatments should not have induced genetic adaptation of tumour cells, whose genetic
plasticity is the origin of resistance.

Tumour cells also express receptors or cytokines targeted by these therapeutics. In
addition, chronic exposure to so-called anti-angiogenic drugs leads to an adaptation of the
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tumour cells. This adaptation process includes genetic changes, a reduction in drug delivery
to their targets and the production of excessive angiogenic cytokines. For example, other
members of the VEGF family and angiopoietins, together with inflammatory cytokines,
also have pro-angiogenic properties.

5.1. Lysosomal Sequestration

An immediate adaptation to TKIs, including the longstanding standard treatment
sunitinib, involves sequestration within acidic intracellular compartments, specifically
the lysosomes. Lipophilic drugs (logP > 2) with ionisable amines (pKa > 6) accumulate
in lysosomes by passive diffusion and/or actively by efflux ABC pumps, where they
are protonated, can no longer diffuse back through the membrane and are sequestered.
Autophagy and lysosomal metabolic pathways serve to degrade cytoplasmic materials
and organelles. Lysosomes are partners in the degradation process of autophagy. The
alteration of their pH by lysosomotropic drugs, such as sunitinib, inhibits autophagic
processes [21,22]. This intracellular shielding effectively hinders sunitinib’s access to the
tyrosine kinase domain of target receptors in the cytoplasm, thereby limiting its therapeutic
activity. Remarkably, this sequestration phenomenon is observed in both tumour and
endothelial cells [21,23]. Sunitinib instigates incomplete autophagy while concurrently
stimulating the expression of pro-inflammatory cytokines and the ABCB1 transporter. In
the absence of the autophagy degradative pathway, a dependence on the proteasome for
the elimination of unfolded proteins is observed. Consequently, the inhibition of lysosome
trapping by LLOMe (L-Leucyl-L-leucine methyl ester), the suppression of the ABCB1
transporter by elacridar, or the hindrance of the proteasome by bortezomib re-sensitise cells
to the therapeutic effects of sunitinib [21].

5.2. EGFR Mutations

By exerting a pressure of selection on tumour cells, anti-angiogenic drugs induced
genetic adaptations within a few hours, leading to a modification in gene expression.
One striking modification is the decreased expression of phosphotyrosine phosphatase
receptor kappa, resulting in the constitutive activation of EGFR [24]. Such constitutive
activation renders the tumours more sensitive to EGFR inhibitors, especially those used for
the treatment of lung cancer.

5.3. Methylation of Tumour Suppressor Genes

Enhancer of Zeste Homolog 2 (EZH2) stands as the catalytic core component of
the Polycomb Repressive Complex 2 (PRC2), orchestrating gene silencing through the
trimethylation of H3K27, thereby inducing transcriptional repression. The dysregulation
of EZH2-mediated methylation emerges as a significant factor in conferring resistance to
tyrosine kinase inhibitors (TKIs).

EZH2 inhibitors increased the efficacy of the EGFR inhibitor gefitinib in cells that do
not have an EGFR mutation and are resistant to this TKI [25]. In addition, EZH2 has a
negative correlation with MET, a key player in resistance to EGFR TKIs in non-small cell
lung cancer (NSCLC) [26]. In ccRCC, the overexpression of EZH2 has been documented
and is intricately associated with a poor prognosis [26,27]. Overexpression of EZH2 in-
duces methylation of the LATS1 promoter and suppresses the expression of this tumour
suppressor [28]. LATS1 is a key component of the Hippo signalling pathway. When
the Hippo signalling pathway is activated, LATS1 induces the degradation of YAP/TAZ,
thereby maintaining a state in which the growth and metastasis of cancer cells are
inhibited [29]. Deciphering the role of EZH2 in methylation processes sheds light on
its potential as a key player in mediating resistance mechanisms and provides valuable
insights for targeted therapeutic interventions [30].
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5.4. Secretory Phenotype

More importantly, at longer time points after the initiation of anti-angiogenic therapies,
tumour cells modified their secretome to shape the tumour microenvironment. One of
the first hypotheses of resistance to anti-angiogenic drugs was the presence of alternative
angiogenic factors redundant to VEGF. These factors may be present before treatment or
may be involved in the processes of adaptation to treatment. Among them, the family
of ELR+CXCL cytokines (CXCL1, 2, 3, 5, 6, 7, 8), whose founding member is interleukin
8 or CXCL8, exerts both pro-angiogenic and pro-inflammatory processes. These cytokines
exert their effects via G-protein-coupled receptors, CXCR1/2 [31]. Their activation stimu-
lates protein kinases C, phospholipase C, and the signalling pathways PI3K/AKT/mTOR,
RAS/RAF/MEK/ERK, and NFκB. Activation of the ELR+CXCL/CXCR pathway (i) stim-
ulates tumour cell survival and proliferation, (ii) shapes the microenvironment, and
(iii) promotes the metastatic process. Sunitinib, the reference treatment for renal cell carci-
noma, triggers an inflammatory response following an incomplete autophagy mechanism.
Acute or chronic treatment stimulates the expression of various pro-inflammatory factors
(cytokines, chemokines, and growth factors). The expression of CXCL5, an ELR+CXCL
cytokine, increases in resistant cells, in contrast to cells undergoing short-term sunitinib
treatment. More specifically, CXCL5 is a predictive marker of sunitinib efficacy [32]. The
ELR+CXCL/CXCR1/2 axis thus exerts multiple effects, leading to pro-tumour effects [33]
and the aggressiveness of ccRCC [31].

6. Shaping of the Tumour Microenvironment: Stromal Cells, Immune Cells, and Vessels
6.1. Alternative Vascular and Lymphatic Networks

Because of anti-angiogenic therapies, the emergence of alternative vascular networks
represents a distinctive way to sculpt a pro-tumour environment. While VEGFA stands out
as the most recognised angiostimulatory protein, it is imperative to recognise that angio-
genesis can be instigated by a myriad of growth factors. These encompass angiopoietins,
epidermal growth factors, fibroblast growth factors, hepatocyte growth factors, transform-
ing growth factors, placental growth factors, and stromal cell-derived factor 1.

Therefore, the complex nature of angiogenesis involves a network of diverse growth
factors beyond VEGFA, highlighting the complexity of the processes shaping the tumour
microenvironment after anti-angiogenic interventions. Understanding this intricate inter-
play is crucial for developing targeted strategies that encompass the broader spectrum of
angiogenic mediators to optimise therapeutic outcomes.

In this context, lymphatic networks assume a pivotal role as a major facilitator enabling
tumour growth and dissemination throughout the organism in advanced tumours [34].
This intricate involvement of lymphatic pathways contributes significantly to the formation
of new metastatic sites, emphasising the crucial role played by these networks in the
metastatic cascade. Understanding and targeting the dynamics of lymphatic involvement is
imperative to build comprehensive strategies to impede tumour progression and metastatic
spread [35,36]. However, in low-grade tumours, lymphatic vessels are the primary way to
initiate an anti-tumour immune response in the lymph node by activating T cells. But when
immune cells are exhausted, the lymphatic network contributes to the spread of tumour
cells in addition to metastatic dissemination through the vascular network.

One of the most important drivers of lymphatic development is VEGFC, which exerts
a pro- or anti-tumour role depending on the tumour stage [37]. Experimentally, VEGFC
knockout cells fail to induce the development of experimental ccRCC in immunodeficient
mice, a context that mimics immunotolerance, whereas they induce a rapidly growing
tumour in an immunocompetent context. In this context, anti-VEGFC antibodies also
have important anti-tumour activity as they target both tumour cells and the lymphatic
network [38]. These results underline the ambivalent role of the lymphatic vessels and their
drivers in the tumour context, playing the role of the “good or bad cop”.

Neuropilins (NRP 1 and 2), coVEGF receptors, are also involved in the lymph phan-
giogenesis of tumours. NRP act as receptors for semaphorins and interact with VEGFs,
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especially VEGF-C and VEGF-D. RCC cells highly express the VEGF coreceptors neuropilin
1 and 2 (NRP1/2) [39,40]. Therefore, NRP inhibitors have potent anti-tumour effects on
experimental RCC in immunodeficient or immunocompetent mouse models. Considering
NRPs as immune checkpoints may explain the efficacy of NRP inhibitors targeting tumour
cells, endothelial cells, and exhausted immune cells.

6.2. Role of Microenvironmental Cells in RCC Aggressiveness

ccRCC primary tumours and metastases are composed of approximately 60% tumour
cells, 10% endothelial cells, 9% tumour-associated neutrophils (TAN), 8% macrophages
(including myeloid-derived-suppressor cells (MDSC)), 7% T lymphocytes (all types), 3%
cancer-associated fibroblasts (CAF), 1% B lymphocytes, 1% dendritic cells, and 1% “natural
killer” (data from TCIA (https://tcia.at/ (accessed on 4 December 2023))). The tumour
microenvironment is rich in cytokines. They are secreted by tumour or stromal cells
(leukocytes, endothelial cells, and fibroblasts) [41] (Figure 2).
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Figure 2. The importance of combining anti-angiogenic drugs and immunotherapies to inhibit the
crosstalk between tumour cells and immune cells.

RCC tumour cells express several tyrosine kinase receptors, including PDGFR, CSF1R,
and c-MET, which are targets of anti-angiogenic drugs such as sunitinib, sorafenib, pa-
zopanib, tivozanib, lenvatinib, and cabozantinib. They also express the VEGF coreceptor
neuropilins (NRP1/2), which can be targeted by specific drugs [42]. VEGFR is also ex-
pressed on T cells, such as NRPs, and its stimulation leads to T cell exhaustion. In addition,
RCC cells express PDL1 and PDL2, TIM3, and CD80/86, which can induce immune toler-
ance by stimulating PD1, galectin 9, and CTLA4, respectively. In addition to their ability to
inhibit tumour angiogenesis, anti-angiogenic drugs, therefore, contribute to the reactivation
of the immune system.

6.2.1. Tumour Cells

Tumour cells can influence the tumour microenvironment and, in particular, the
immune system through surface proteins and the release of specific chemokines.

Immune tolerance is induced by three major families of surface proteins: (i) the
proteins that bind CTLA4: B7-1 (CD80) and B7-2 (CD86), (ii) the proteins that bind PD1:
PDL1 and PDL2, and (iii) the TIM3 binding protein: Gal-9 (Galectin-9). These proteins
expressed by tumour cells bind to their co-receptors expressed by T lymphocytes and
natural killer (NK) cells. This binding depletes lymphocytes and NK and promotes the
differentiation of effector T lymphocytes into regulatory T lymphocytes (Treg) [43]. In
RCC, immunosuppression induced by the expression of PDL1, PDL2, and B7-1 or B7-2
is inhibited by nivolumab (anti-PD1) or ipilimumab (anti-CTLA4) (treatment referred to

https://tcia.at/
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as “immune checkpoint inhibitor therapy”). However, other immunotolerant proteins
(TIM3, LAG3, etc.) are involved in resistance to immunotherapy.

Tumour cells overexpress CXCR1/2 and CXCL1/5/7/8. Elevated levels of CXCL7/8
and CXCR2 within the tumour correlate with poor prognosis in non-metastatic patients [44].
The use of an anti-CXCL7 antibody blocks the growth of experimental RCC in immunocom-
promised mice [44] and CXCL5 stimulates angiogenesis and promotes tumour development
and resistance to sunitinib [32]. Moreover, CXCL5 and CXCL7 correlate with a poor re-
sponse to sunitinib [32,45].

6.2.2. Vascular and Lymphatic Endothelial Cells

Pathological angiogenesis is often associated with resistance to treatment, including
immunotherapy. Tumour cells induce the formation of non-functioning blood vessels. Nor-
malisation of blood vessels using anti-angiogenesis drugs promotes access of anti-tumour
immunotherapies and immune cells to tumours. Numerous clinical studies, therefore,
show better efficacy of immunotherapy in combination with an anti-angiogenic agent.
Endothelial cells physiologically express CXCR1/2, the stimulation of which activates
pro-tumour angiogenesis, a key phenomenon in the development of ccRCC [46]. This
activation compensates for the inhibition of VEGF-dependent tumour vascularisation (by
anti-angiogenic agents, inhibitors of VEGFR receptors). Moreover, lymphatic and vascular
endothelial cells express the Programmed-Death ligand 1 (PDL1), which restricts the T cell
response [47,48] and trans-endothelial cell migration [49].

6.2.3. Cells of Myeloid Origin: Tumour-Associated Macrophages (TAM),
Tumour-Associated Neutrophils (TAN), and Myeloid-Derived Suppressor Cells (MDSC)

They originate from the common myeloid progenitor [50]. TAM and TAN can be anti-
tumour (type 1) or pro-tumour (type 2). In ccRCC, they are mainly pro-tumour (type 2) [51].
MDSCs play an important role in the escape of tumour cells from the immune system.
They are in an immature state and can suppress T-cell responses. There are two subpop-
ulations of MDSCs: (i) monocytic MDSCs (M-MDSCs) decrease the amount of available
L-arginine and thus inhibit the formation of a functional TCR and the proliferation of
T-lymphocytes; (ii) granulocytic MDSCs (G-MDSCs) suppress the response of CD8+T-
lymphocytes by producing reactive oxygen species (ROS). Like TANs and TAMs, MDSCs
inhibit the innate immune system, promoting tumour angiogenesis and metastasis. The
primary target immune cell population inhibited by MDSCs are T cells. MDSCs primarily
target and inhibit T cells through various mechanisms such as activation and proliferation
inhibition, induction of anergy, apoptosis-driven T cell depletion, and homing blockade.
These mechanisms, which have been discussed in detail in recent articles [52–55], can
be divided into five categories: (i) secretion of immunosuppressive molecules (e.g., IL-6,
IL-10, TGF-β, ROS, NOS, PD-1, PD-L1, CTLA-4, VEGF); (ii) degradation of metabolites
critical for T cell functions; (iii) manipulation of chemotactic molecules that control T cell
homing; (iv) induction of immunosuppressive cells, such as T regulatory (Treg) cells; and
(v) alteration of adenosine metabolism by expression of ectoenzymes. Therefore, MDSCs
appear to be an important target for overcoming resistance to immune checkpoint inhibitor
therapy [56], and targeting IL6 with existing therapeutic antibodies may, therefore, improve
the efficacy of immune checkpoint inhibitor therapy [57]. Finally, all these cells express
PDL1 on their surface. Resistance to immunotherapy has been associated in preclinical
models of colorectal and breast cancer with an accumulation of circulating MDSC as well as
with the presence of TAM, TAN, and MDSC in the tumour [58]. ELR+CXCL produced by
tumour cells bind to CXCR1/2 expressed by TAM, TAN, and MDSC and thus promote their
activation and retention in the tumour [59]. Cells of myeloid origin also secrete ERL+CXCL,
which promotes autocrine activation and attraction. Targeting cells of myeloid origin is a
promising therapeutic approach to overcome immunosuppression and increase the efficacy
of immunotherapy [60].
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6.2.4. Cancer-Associated Fibroblasts (CAF)

TGFβ, PDGF, and the various interleukins (IL6, ELR+CXCL, etc.) induce the differen-
tiation of tumour fibroblasts into CAF. CAF produce numerous cytokines (IL6, IL8, IL10,
TNFα, TGFβ, etc.) and promote the attraction of cells of myeloid origin (TAM, TAN, MDSC)
and the differentiation of myeloid cells into MDSC in the TME [61]. In addition, CAF pro-
mote the attraction of T lymphocytes and stimulate their differentiation [62,63]. Studies
have shown that CAF-derived factors such as TGFβ and IL6 can influence the balance
between Treg (inhibition of immune responses) and T helper 17 (Th17) (autoimmunity and
inflammation). For example, TGFβ is known to promote Treg differentiation, while IL6 can
inhibit Treg differentiation and promote Th17 differentiation [64,65]. They also generate a
collagen matrix that prevents T cells from invading the tumour. The presence of CAF has
been associated with insensitivity to immunotherapy in preclinical models of colorectal
and pancreatic cancer [66]. CAF express CXCR2 and produce substantial amounts of
ERL+CXCL. This production has been linked to the attraction of cells of myeloid origin in
tumours involved in the establishment of immune tolerance [66,67].

7. Combination of Anti-Angiogenics and Immunotherapies: The Holy Grail for Clear
Cell Renal Cell Carcinoma?
7.1. Unlocking the Potential: The Rationale for Immunotherapies in Clear Cell Renal Cell Carcinoma

The development of immunotherapies has revolutionised the therapeutic landscape
for various types of cancer, particularly ccRCC. As mentioned earlier, anti-angiogenic drugs
were the first treatments to extend progression-free survival by months or years in patients
whose prognosis was very poor before 2007 and the approval of anti-VEGF antibodies and
pharmacological inhibitors of tyrosine kinase receptors.

Immune checkpoint inhibitor therapy was first used in the second line after a relapse
on anti-angiogenics. A phase III clinical trial showed improved overall survival and fewer
grade 3 or 4 adverse events compared to everolimus [68]. At the molecular level, this
almost empirical administration of immune checkpoint inhibitor therapy was rationalised
by the immunological detection of PDL1 in tumour samples from patients treated with
either sunitinib or bevacizumab. Infiltration of Tregs in these tumours was also increased
when resistance to anti-angiogenic treatments occurs [69–71]. This landmark publication
demonstrated that anti-angiogenic therapies inhibit tumour vascularisation but form an
immune-tolerant landscape that leads to further tumour progression.

Another pivotal discovery made by Voron et al. underscores that VEGFA, generated
within the tumour microenvironment, activates VEGF receptor 2 on T cell surfaces. This ac-
tivation, in turn, triggers the expression of various immune checkpoints, including CTLA4,
PD1, LAG3, and TIM3 [72]. In experimental tumour settings where anti-angiogenic drugs,
including TKIs or anti-VEGF antibodies, demonstrated efficacy, a notable outcome emerged:
there was a discernible reduction in the expression of immune checkpoints on the surface
of T cells. This intriguing finding suggests a potential interplay between the effectiveness
of anti-angiogenic therapies and the modulation of immune regulatory mechanisms. The
observed decrease in immune checkpoint expression highlights a dynamic connection be-
tween angiogenesis inhibition and immune response regulation. Therefore, anti-angiogenic
therapies inhibit tumour neo-vascularisation but also prevent immune tolerance (Figure 3).

Finally, a very important concern is driving immune cells to the tumour. The original
hypothesis was that inhibiting the development of blood or lymphatic vessels should
be a fallacy. However, several publications suggest that anti-angiogenic drugs do not
destroy blood or lymph vessels but normalise them to promote better blood flow or lymph
drainage. This theory, put forward by R. Jain, partly explains the relatively low efficacy of
anti-angiogenic drugs as the sole therapy [73]. For this reason, the anti-VEGF antibodies
bevacizumab/Avastin have been combined with conventional therapy in the pivotal clinical
trials for colorectal cancer [74], lung cancer [75], breast cancer [76], renal cell carcinoma [77],
and ovarian cancer [78]. The same principle is applied to the combination of anti-angiogenic
and immunotherapies.
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Figure 3. Cells involved in the pathological process in the tumour microenvironment and the
strategies to combat them. Cells of the tumour microenvironment, including MDSCc, TAM, M1
and M2, llymphocytes T reg, and CAFs. The different solutions considered are presented, including
CXCR2 inhibitors, immunotherapies, such as PD1, and anti-PDL1 and anti-PDL2.

7.2. Optimising Therapeutic Synergies: Strategic Combinations and Future Trajectories

Given the great impact of combinations of immunotherapies in melanoma patients,
the same questions arise for ccRCC. Which was the best therapeutic regimen: a combination
of immunotherapies or a combination of anti-angiogenic with immunotherapies?

Therefore, several clinical trials were conducted in ccRCC to evaluate the differ-
ent combinations. The first trial looked at the combination of immunotherapies used in
melanoma, ipilimumab (anti-CTLA4), and nivolumab (anti-PD1) [79]. This combination
shows better outcomes in overall survival and objective response rate than the current
standard treatment with sunitinib. Then, several combinations of anti-angiogenic drugs
and ICI were studied, including bevacizumab (anti-VEGF)/atezolizumab (anti-PDL1) [80],
axitinib/pembrolizumab (anti-PD1) [81], and axitinib/avelumab (anti-PDL1) [82]. Of
these three combinations, axitinib/pembrolizumab proved to be the best and became the
standard first-line treatment. More recently, two other combinations of anti-angiogenic
therapies with ICI have achieved impressive results. Cabozantinib/nivolumab [83] and
lenvatinib/pembrolizumab [84] outperformed sunitinib in phase III clinical trials.

But in this rapidly changing landscape, what is the best strategy? A seminal piece of
work has been the discovery of genetic subgroups that are better suited to anti-angiogenic
therapies or immunotherapies [85] or alternative treatments [86]. A clinical trial highlights
the importance of specific biological markers in predicting patients’ suitability for such
treatments [87]. Despite these major improvements, ccRCC is still not curable.



Biomedicines 2024, 12, 385 11 of 22

Undoubtedly, further studies are imperative to elucidate this pivotal question and
uncover additional mechanisms that contribute to patient relapse. The pursuit of a com-
prehensive understanding in this area is essential for improving treatment strategies and
enhancing our capability to deal with the complexities linked to patient outcomes. The
quest for deeper insights into the factors influencing relapse will pave the way for more ef-
fective and personalised interventions. In this context, numerous studies have highlighted
the connection between immunotherapy resistance or relapse and the presence of fibrosis.
The tumour microenvironment (TME) emerges as a key player in the development of
acquired resistance to immunotherapy, with fibrosis constituting a notable and influential
component within the TME.

8. Unlocking the Therapeutic Synergy: Integrating Anti-Angiogenics, Immunotherapies,
and Anti-Fibrosis in the Pursuit of Optimal Management for Clear Cell Renal
Cell Carcinoma
8.1. Fibrosis, Resembling a Powerful Catalyst, Actively Fuels and Propels the Growth of Tumours

Renal fibrosis emerges because of chronic kidney disease (CKD), presenting an unre-
solved medical challenge that represents an unmet medical need.

CKD is a progressive condition that affects >10% of the general population worldwide,
amounting to >800 million individuals [88]. Despite several trials, CKD remains incurable
without real improvement with anti-TGFβ, pirfenidone, galectin antagonist, and antibodies
against αvβ6 integrin [89]. All fibrotic diseases, including CKD, are characterised by the
progressive accumulation of extracellular matrix (ECM) components, leading to organ
failure. Fibrosis, a consequence of the chronic inflammatory process, creates a conducive
environment for tumour development, emphasising its pro-tumourigenic properties. Un-
derstanding and targeting the mechanisms behind fibrosis is crucial for devising strategies
that impede its supportive role in tumour progression.

Fibrosis is a common feature frequently observed in ccRCC. Intratumoural fibro-
sis is a histologic manifestation of fibrotic tumour stroma, and its presence in ccRCC
has been associated with poor prognosis and cancer aggressiveness. Intratumoural fi-
brosis is positively correlated with the histological grade of ccRCC and intratumoural
inflammation [90,91]. The interaction between cancer cells and fibrotic stroma is intricate
and reciprocal, involving dysregulations from multiple biological processes.

8.2. Fibrosis: A Key Contributor to Immunotherapy Resistance?

While the limited success of immunotherapy in cancer treatment has traditionally been
attributed to intrinsic tumour characteristics, such as low immunogenicity, a diminished
mutational burden, and a compromised host immune system, recent analyses of clinical
trial results across various cancer types reveal a common thread: tumours with substantial
fibrotic stroma often exhibit suboptimal or negligible responses to treatments [92].

The TME is predominantly composed of a fibrotic stroma, primarily composed of
connective tissue. CAFs actively drive significant remodelling in this stroma, contributing to
the accumulation of an excessive ECM. Both elements of the fibrotic connective tissue—the
cellular component dominated by CAFs, and the non-cellular aspect characterised by a
rigid ECM—contribute to the establishment of an immunosuppressive microenvironment
and serve as a physical impediment to effective drug infiltration. Consequently, this dual
impact decreases the efficacy of anti-tumour immunotherapies.

8.3. Inflammatory Environments and Fibrosis: Unraveling the Complex Interplay

When epithelial and endothelial cells become compromised due to either treatment
or chronic inflammation, they release chemotactic factors, initiating the recruitment of
inflammatory macrophages and neutrophils to the affected site. These recruited cells
subsequently release reactive oxygen species (ROS), cytokines, and chemokines, activating
mesenchymal cells. This activation leads to the production of ECM and further amplifies the
synthesis of pro-inflammatory cytokines and angiogenic factors, creating an environment
conducive to the development of cancerous lesions.
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Furthermore, the accumulation of senescent cells during ageing, along with the release
of various senescence-associated secretory phenotypes (SASP), plays a crucial role in the
initiation of fibrosis and tumourigenesis. Signalling cascades triggered by TGFβ, involving
cytokines and pro-fibrotic factors, emerge as significant therapeutic targets. Despite this,
specific therapies capable of halting or reversing fibrosis remain elusive. Epidemiological
studies have established a clear link between fibrosis, cancer, and resistance to therapy [93].

In the context of cancer aggressiveness, ELR+CXCL chemokines (CXCL1, 2, 3, 5, 6, 7, 8)
and their receptors CXCR1/2 play a pivotal role [94]. Their activation stimulates fibrosis by
initiating mesenchymal cell and neutrophil migration. In ccRCC, the ELR+CXCL/CXCR1/2
axis promotes tumour cell proliferation and angiogenesis, mirroring observations of CKD
with a similar endpoint of chronic inflammation and the development of cancer-associated
fibroblasts. These effects are further induced by TKIs targeting the VEGF/VEGFR pathway
and contribute to resistance against anti-angiogenic drugs designed to target VEGF and its
receptors [44]. Additionally, VEGFC, a significant driver of lymphangiogenesis produced
by tumour cells and M2 macrophages, not only induces resistance to anti-angiogenics but
also plays a crucial role in fibrosis through crosstalk with TGFβ [95]. ELR+CXCL further
induce lymphangiogenesis via VEGFC [96]. Genetic disruption of VEGFC or its targeted
inhibition has been demonstrated to inhibit the growth of anti-VEGF/VEGFR-resistant
ccRCC [37,97]. VEGFC’s involvement in driving fibrosis through crosstalk with TGFβ
underscores its pivotal role [95].

The stiffness of the matrix is determined by a balance between ECM degradation and
build-up. During tumour progression, different cell types (tumour cells, macrophages,
fibroblasts, etc.) continuously produce matrix-crosslinking enzymes such as matrix metallo-
proteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) to promote ECM re-
modelling. In humans, 24 MMPs are currently known, classified according to their preferred
substrates, including collagenases (MMP1, 8, 13) and gelatinases (MMP2, MMP9) [98].
TIMPs serve as natural inhibitors of MMPs and traditionally hinder ECM degradation [99].
In ccRCC, the balance between MMPs and TIMPs is disturbed and shifted towards
MMPs [100]. Serum levels of MMP2 and MMP9 have been found to be significantly
elevated in tumour tissue and urine samples from ccRCC patients [101,102]. Elevated
serum levels of MMP2 and 9 have also been found in CKD patients [103]. Numerous
studies indicate a detrimental role of MMPs in both early and later stages of kidney disease,
particularly with their ECM-degrading properties during scarring and fibrosis [104,105].
Peptides upregulated in renal pathologies, such as angiotensin-II, contribute to renal fibrosis
by influencing MMP expression, thereby affecting crucial remodelling processes [106,107].
MMPs play a multifaceted role in kidney disease, involving cell migration, cell–cell and cell–
matrix adhesion, as well as the release and activation of extracellular matrix-bound growth
factors and cytokines. Several of these functions have been implicated in the initiation and
progression of CKD and kidney fibrosis [108].

9. Connective Tissue Growth Factor (CTGF)—The Essential Link between VEGFC,
Lymphangiogenesis, and Fibrosis
9.1. CTGF and Its Multifaceted Role

Factors induced by TKI treatment contribute to the establishment of a persistent
inflammatory environment that promotes and sustains the fibrotic state. Such a link
between fibrosis and TKI treatment has been elucidated in the context of lung disease [109].
Identifying the key factors involved in ccRCC fibrosis is essential to prevent relapse and
treatment failure.

As previously mentioned, sunitinib exposure induces an inflammatory secretome.
Among the different cytokines produced, CTGF (connective tissue growth factor) is highly
induced in resistant cells to sunitinib [32]. CTGF, a secreted protein belonging to the
CCN family (CYR61 (cysteine-rich61)/CTGF (connective tissue growth factor)/N OV
(nephroblastoma overexpressed)), stands as the second member, also recognised as CCN2.
Across the CCN family, shared molecular structures include the IGF binding domain, von
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Willebrand factor C (VWC) domain, thrombospondin type 1 domain, and the C-terminal
domain. Notably, the TSP domain and C-terminal domain engage with diverse integrins,
such as integrin α6β1, αvβ3, or α5β1, orchestrating key signalling pathways such as
MAPK, WNT, NFκB, and ERK. The VWC domain plays a pivotal role in fibrosis and
apoptosis, driven by its interaction with TGFβ. Creating a complex web of interactions,
CTGF establishes a positive feedback loop with various cytokines like TGFβ, VEGF, and
integrins, leading to diverse fibrotic diseases. CTGF, a versatile growth factor, is impli-
cated in various biological processes such as wound healing, inflammation, cell adhesion,
chemotaxis, apoptosis, angiogenesis/lymphangiogenesis, and fibrosis (Figure 4). Its impact
extends to the proliferation of tumour cells, where increasing evidence highlights CTGF’s
involvement in cancer initiation, progression, and metastasis. By driving cell proliferation,
migration, invasion, drug resistance, and epithelial–mesenchymal transition (EMT), CTGF
emerges as a key player in the complex landscape of cancer biology. Moreover, CTGF’s
influence extends to the tumour microenvironment, contributing to angiogenesis, inflam-
mation, and the activation of CAF across various nodal sites. Identified as an oncogene in
multiple cancers, including melanoma [110], chondrosarcoma [111], acute lymphoblastic
leukaemia [112], and pancreatic cancer [113], CTGF’s clinical relevance is underscored
by its positive correlation with bone metastasis [114], glioblastoma growth [115], poor
prognosis in oesophageal adenocarcinoma [116], aggressive behaviour of pancreatic cancer
cells [117], and invasive melanoma [118]. Clinically, CTGF expression emerges as a reliable
indicator of progression, poor prognosis, and metastasis across diverse cancers. Its role in
promoting chemoresistance in breast [119] and ovarian cancers [120] adds another layer
to its significance. Moreover, mice lacking the CTGF gene exhibit defects in angiogenesis
and vascular integrity, underscoring the pivotal role of CTGF in these processes [121]. Con-
versely, transgenic mice overexpressing CTGF display enhanced renal fibrosis following
events such as unilateral ureteral obstruction.
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(integrins, HSPGs, EGFR), extracellular matrix proteins (fibronectin, aggrecan), and cy-
tokines (IL1, IL6), CTGF emerges as a pivotal player in various physiological processes. It
contributes significantly to cell adhesion, extracellular matrix production, tissue wound
repair, and angiogenesis. However, the dual nature of CTGF becomes evident in its in-
volvement in pathological contexts. It is implicated in inflammation, fibrosis (e.g., lung,
kidney), abnormal angiogenesis, and various cancers, including breast and lung cancer.
This comprehensive overview highlights the diverse roles and contextual implications of
CTGF in health and disease.

9.2. CTGF, Fibrosis, and Therapeutic Implications

The interaction between intratumour fibrosis and tumours, promoting growth and spread,
is now well-established. Fibrosis induces metabolic changes in tumours and surrounding
microenvironmental cells, alters cell adhesion through the expression of fibronectin and colla-
gen, and through the balance of MMPs and TIMPs, which are involved in the degradation of
the ECM components. Fibrosis also facilitates immune escape by diminishing T lymphocyte
interaction with tumour cells. The pro-fibrotic role of CTGF was first demonstrated in 1999
by Mori and colleagues [122], who showed that subcutaneous injection of CTGF and TGFβ
induced long-term fibrotic tissue. Furthermore, studies indicate that CTGF is highly expressed
in systemic sclerosis, a disease characterised by severe fibrosis affecting various organs such as
the skin, digestive tract, lung, and heart. The use of a monoclonal antibody specific for CTGF
attenuates skin fibrosis in a murine model of systemic sclerosis [123]. In cancer, CTGF has been
associated with poor prognosis in mesothelioma, particularly when expressed by CAFs. A
CTGF-specific monoclonal antibody was effective for mesothelioma in a murine model [124].
Finally, in the context of chronic kidney conditions in humans, CTGF plays a crucial role in
promoting the extension of tissue fibrosis, as evidenced by its strong correlation with cellular
proliferation and matrix accumulation.

Lymphatic vessels play a central role in fibrotic diseases. VEGFC, VEGFD, and VEGFR3
are key molecules involved in lymphangiogenesis. Human kidney biopsies have shown an
increase in lymphatic vessels in fibrotic territories, particularly in CKD [125]. CTGF trigger the
production of VEGFC, essential for fibrosis and metastatic dissemination following resistance to
anti-angiogenic drugs [34]. VEGFC interacts with the full-length form of CTGF, which limits its
ability to stimulate lymphangiogenesis [126]. These two antagonistic results probably indicate
negative retrocontrol. Therefore, metalloproteinases associated with the tumour environment
by maturating CTGF liberate VEGFC to stimulate lymphangiogenesis [126]. CTGF knockdown
led to a decrease in VEGFC expression and lymphangiogenesis, accompanied by a significant
reduction in fibrosis in a model of obstructive nephropathy [126]. Furthermore, in a model of
peritoneal fibrosis, the number of lymphatic vessels and VEGFC increased, and this effect was
reversed using a TGFβ inhibitor [127]. Additionally, TGFβ can induce the expression of CTGF
in mesangial cells and renal tubular epithelial cells [128]. CTGF appears to enhance lymphan-
giogenesis through the phosphorylation of ERK, depending on the interaction between αvβ5
and αvβ3 [129].

MMPs and TIMPs emerge as pivotal contributors to the pathogenesis of fibrosis.
The overexpression of CTGF increases MMP2 and MMP3 expression and promotes cell
migration [130,131]. Notably, MMP1 and MMP13 cleave full-length CTGF into N-terminal
and C-terminal fragments, both possessing similar molecular weights [132,133]. The cleav-
age of full-length CTGF into these fragments demonstrates enhanced potency in inducing
hepatic fibrogenesis. Specifically, the N-terminal fragment of CTGF mediates myofibrob-
last differentiation and collagen synthesis and functions as a downstream mediator of
TGFβ [134,135]. Conversely, the C-terminal fragment is implicated in stimulating fibroblast
proliferation [135]. This intricate interplay highlights the diverse roles of CTGF and its
processing by MMPs in the complex cascade of events leading to fibrosis.

CTGF full length and N and C-terminal fragments play a significant role in fibrosis. It
is a central mediator of tissue remodelling and fibrosis, and its inhibition can reverse the
process of fibrosis. However, the role of CTGF and the therapeutic efficacy of targeting
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CTGF in renal cancer progression and metastasis are still unknown and require further
investigation. In ccRCC, CTGF has been found to be overexpressed in tumour tissues [136].
Therefore, targeting CTGF may represent a promising strategy in cancer, particularly in
ccRCC, where intratumoural fibrosis might lead to cancer aggressiveness and is related to
poor prognostic parameters, including Fuhrman nuclear grade, intratumour necrosis, and
lymphovascular invasion.

10. Conclusions

In general, the overall fibrotic response plays an important role, both directly and indi-
rectly, in compromising the efficacy of treatment and immunotherapy. The interactions between
the elements of a fibrotic response, the tumour cells, and the immune cells are complicated and
highly interconnected. Ultimately, the question of whether tumour-associated fibrosis impedes
the activity of cytotoxic immune cells and/or enhances the activity of immunosuppressive
regulatory immune cells will determine the success or failure of immunotherapy. Therefore,
many ongoing studies focus either on fibrosis itself or on signalling molecules that promote
fibrosis. One particularly well-researched signalling molecule with significant therapeutic
potential is TGFβ. Since TGFβ signalling contributes to the maintenance of fibrotic responses
and hyperactivation of CAFs and can directly impact immune cell functions, the develop-
ment of anti-TGFβ antibodies and/or TGFβ inhibitors in combination with conventional
immunotherapies is currently being explored. However, it is important to note that blocking
TGFβ may have conflicting effects on clinical outcomes, as it is a pleiotropic molecule that has
both tumour-promoting and tumour-inhibiting functions. Other strategies target structural
elements of the ECM, such as collagen or collagen cross-linking enzymes, fibronectins, etc., or
cytokines, chemokines, or other non-structural proteins, such as members of the CCN family,
like CTGF [137]. Targeting CTGF may represent a promising strategy in cancer, particularly in
clear-cell renal cell carcinoma (Figure 5).
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11. Future Directions

The intricate role of CTGF in the complex interplay between fibrosis, pre-tumoural
conditions, and the emergence of aggressive metastatic diseases remains a subject of intense
investigation. The question of whether CTGF serves as the primary driver of metastasis
or is a consequence of VEGFC overexpression, a pivotal mediator of lymphangiogenesis,
underscores the need for deeper exploration.

Despite initial optimism, recent findings from clinical trials, such as NCT04371666
for Duchenne muscular dystrophy and Phase III trials (NCT04419558, NCT03955146)
targeting Idiopathic Pulmonary Fibrosis (IPF), have tempered expectations. The anti-CTGF
therapy using the humanised antibody pamrevlumab showed limited efficacy in inhibiting
fibrosis, even in well-tolerated treatments. Ongoing research, exemplified by the current
phase III clinical trial (NCT03941093) focusing on metastatic pancreatic cancer with results
expected in 2024, further highlights the challenges associated with harnessing CTGF as a
transformative treatment for highly fibrotic disorders.

In light of these findings, it is clear that the development of CTGF-based therapies
requires a more nuanced and comprehensive understanding of their mechanisms and
potential limitations. Moving forward, a concerted effort in research and development is
essential to refine existing theories and establish a solid foundation for the potential clinical
application of CTGF-targeted treatments in highly fibrotic disorders.
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