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Abstract: Research on the development of photodynamic therapy for the treatment of brain tumors
has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both
in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits,
such as an improved median rate of survival. The use of photodynamic therapy is characterized
by relatively few side effects, which is a significant advantage compared to conventional treatment
methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy.
Continued research in this area could bring significant advances, influencing future standards of
treatment for this difficult and deadly disease.
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1. Introduction

Gliomas are internal brain tumors originating from neuroglial progenitor cells [1,2].
They are highly heterogeneous tumors that are resistant to treatment [3,4]. Gliomas account
for approximately 80% of the malignant intracranial tumors diagnosed [5–8]. Although
gliomas are relatively rare in the population, they are associated with significant mortality
with a 5-year relative survival rate of approximately 5% [9–12]. Gliomas invade and attack
brain parenchyma, white matter tracts, and perivascular spaces [13]. The glioma tumor
microenvironment (TME) consists of stromal cells, tumor components, and innate and
adaptive immune cells, and these cells, along with the extracellular matrix, regulate and
communicate intracellularly to promote TME formation. The immune microenvironment
plays an important role in the development of glioma [14]. Patients with glioma are usually
diagnosed at the symptomatic stage of the disease [15]. Although there is currently no
cure for malignant glioma, researchers around the world continue to pursue a deeper
understanding of the factors that influence glioma development and response to treat-
ment [16]. Despite advances in neurosurgical technology and techniques, the survival rate
of glioma patients has remained relatively unchanged in recent years, and thus improving
the efficacy of glioma treatment is an urgent task in medicine. The main treatments for
gliomas include surgery, radiotherapy, and chemotherapy [17–21]. Unfortunately, these

Biomedicines 2024, 12, 375. https://doi.org/10.3390/biomedicines12020375 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines12020375
https://doi.org/10.3390/biomedicines12020375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-2661-6570
https://orcid.org/0009-0001-0658-5471
https://orcid.org/0000-0001-6851-5869
https://orcid.org/0000-0003-1284-3809
https://orcid.org/0000-0002-5557-5464
https://doi.org/10.3390/biomedicines12020375
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines12020375?type=check_update&version=1


Biomedicines 2024, 12, 375 2 of 24

methods are often associated with difficulties resulting from incomplete tumor resection
and recurrence [22–24]. In such situations, photodynamic therapy (PDT) is becoming
increasingly popular as an advanced therapeutic strategy, characterized by fewer side
effects, minimal toxicity, and more controlled treatment [24–26]. The first studies on the use
of PDT in high-grade gliomas showed promising results, such as increasing the median
survival and extending the 2-year survival of patients from 18% to 28% [27–31]. In the
initial phase of the development of PDT in oncology, the main goal was the complete
removal of localized tumors, but over time, the clinical application of PDT in cancer treat-
ment began to change [32–36]. Photodynamic therapy can be combined with additional
anticancer therapies used in the clinic [37–43]. Successful treatment of glioma is hampered
by many obstacles, including the immunosuppressive tumor microenvironment, the blood–
brain barrier, and high heterogeneity [44]. Therefore, overcoming sufficient drug delivery
and drug targeting to the glioma area is the key to obtaining an efficient treatment [45].
Continuing research on this innovative approach in the fight against malignant gliomas
is certainly a step in the right direction and may result in further important discoveries.
Novelty in our review refers to the unique perspective regarding the application of PDT in
clinics. Photodynamic therapy addresses some hindrances in glioma treatment, e.g., the
heterogeneous nature of treatment sites, and is in need of improvements in light delivery,
imaging methods for determining PDT efficiency, and treatment planning.

2. Methodology

Publications written in English on the topic of PDT for glioma were searched for in
PubMed and Research Gate. The keywords used for the search were: glioma; PDT; cancer;
and treatment. Our article selection was based on the following criteria: (1) recent major
achievements in this field; (2) current debates; and (3) ideas for future development of PDT
for glioma. The papers not selected for this review included (1) technical reports, (2) papers
not written in English, (3) clinical cases, and (4) PDT performed in vitro.

3. Standard Strategies for the Treatment of Gliomas

The greatest successes in the treatment of brain tumors are achieved by centers that
implement multifaceted treatments of these types of tumors with participation of specialists
in neurosurgery, radiology, pathology, radiation oncology, and neuro-oncology. There are
three established guidelines for glioma treatment: surgery, radiotherapy, chemotherapy,
and targeted therapy [46,47].

3.1. Surgery

The use of surgery in eradicating glioma faces problems of complete resection of
glioma. These current problems are associated with imaging techniques to differentiate
glioma and healthy brain tissue, resection extent, neurological function preservation, and
tumor margin evaluation [48,49].

Despite inevitable recurrences, tumor resection is still an important element in pro-
longing patients’ lives. Technological advances that enable real-time visualization and
quantification of tumorous and non-tumorous tissue are critical for brain tumor surgery [50].
Therefore, surgical planning by carefully observing the relationship between the area of
glioma invasion and the eloquent area of connecting fibers is crucial. Neurosurgeons
typically detect the eloquent area using functional MRI and identify the connecting fiber
using diffusion tensor imaging [51]. Studies suggest that more extensive surgical resec-
tion may be associated with improved life expectancy in both low-grade and high-grade
glioma patients [52,53]. Treatment strategies for patients with intracerebral glioma must
be patient-specific. Studies indicate that maximal resection is desirable in patients with
low-grade gliomas while preserving neurologic function. In patients with high-grade
gliomas, the benefits of aggressive resection are more difficult to confirm. Patients who
are relatively young and have tumors of significant mass are those who benefit most from
aggressive resection [54]. In the recent neurosurgical literature, neurological outcomes
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were most frequently reported, followed by activities of daily living, seizure outcomes,
neurocognitive outcomes, and Health-Related Quality of Life (HRQoL) outcomes following
glioma surgery [55].

3.2. Radiotherapy

The use of conventional radiotherapy (RT) is the mainstay for the treatment of glioma.
Although this methodology is advanced, it is also faced with problems. Despite the use
of radiotherapy, chemotherapy, and surgical resection, glioma retains a poor prognostic
value and no significant improvement in survival rates has been observed over the last
20 years [56].

Fractionated local irradiation is the main way to treat glioma. A standard radiation
dose of 60 Gy is administered in more than 30 fractions of 1.8–2 Gy. The therapy is targeted
at the diseased area with a 1–3 cm margin to effectively treat the infiltrating tumor [52].
Clinical RT was designed to target the majority of remaining glioma cells in healthy brain
tissue with fewer side effects [57]. It is believed that the post-irradiation microenvironment
is not suitable for the survival of cancer cells (tumor bed effect). However, resistance to
radiotherapy remains a serious problem [58]. New techniques for delivering radiotherapy
to the tumor are currently under investigation [59].

3.3. Chemotherapy

Chemotherapy is used before surgery in order to shrink the tumor prior to or after
surgery to destroy the remaining cancer cells. To destroy glioma, high doses of chemo
drugs are administered and, as a consequence, many healthy cells are also destroyed; stem
cells can be transplanted into the patient [60].

Currently, temozolomide and chloroethyl nitroureas are mainly used to treat glioma
with chemotherapy. Unfortunately, drugs administered systemically do not usually achieve
high concentrations in the central nervous system and tumor area, leading to significant
systemic side effects. Side effects of chemotherapy on the central nervous system include
acute encephalopathy, leukoencephalopathy, cerebellar dysfunction, and spinal cord toxic-
ity. Additionally, side effects may also occur in the peripheral nervous system, manifesting
as chemotherapy-induced peripheral neuropathic pain [61,62]. Temozolomide (TMZ) is a
common alkylating chemotherapeutic agent used to treat brain tumors such as glioma and
anaplastic astrocytoma [63]. Temozolomide has a small molecular mass and this alkylating
derivative directly damages brain tumor cells by methylating DNA [64]. The key cytotoxic
effect is the formation of O6-methylguanine, which causes apoptosis, autophagy, and cell
senescence [65,66]. Although TMZ therapy has shown gradual improvement in the treat-
ment of high-grade gliomas, for most patients it is mainly a palliative treatment. In fact, in
newly diagnosed glioma patients, the median survival benefit with TMZ plus radiation
therapy is only 2.5 months compared with radiation therapy alone. Recent studies also
suggest that 60–75% of glioma patients derive no benefit from TMZ treatment [67]. Most pa-
tients do not respond to TMZ during treatment. Activation of DNA repair pathways is the
main mechanism of this phenomenon, which disconnects TMZ-induced O6-methylguanine
adducts and restores genome integrity. Current knowledge in the field of oncology adds
several other new resistance mechanisms, such as the involvement of miRNAs, drug efflux
transporters, gap junction activity, the emergence of glioma stem cells, and the enhance-
ment of cell survival autophagy [68]. Chloroethyl nitroureas (CNU) are DNA alkylating
agents. In clinical practice, the most commonly used CNUs are lomustine, carmustine, and
fotemustine [69].

In patients with WHO grade 4 gliomas and astrocytomas who have relapsed, lo-
mustine chemotherapy is the standard treatment [70]. Lomustine, also known as CCNU,
is an alkylating agent from the nitrosourea family [71,72]. The most common side ef-
fects are thrombocytopenia, with neutropenia and lymphocytopenia occurring less fre-
quently [73–75]. Carmustine is used both in the initial diagnosis of glioma and in the case
of tumor recurrence, both by intravenous administration [76]. The use in clinical practice
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is lower due to particularly long-lasting bone marrow suppression and persistent lung
toxicity [77,78]. The developed biodegradable carmustine wafer may prove significant,
enabling the administration of high doses of drugs [79,80]. Fotemustine has been used in
the treatment of melanoma and is currently being tested for its effectiveness in the treatment
of recurrent malignancy glioma [81].

3.4. Targeted Treatment

Tumor targeting as a novel strategy for glioma and targeted therapy uses drugs or
other substances to identify and destroy cancer cells without damaging normal healthy cell
survival and overall survival [82].

Pathways involved in tumor growth and processes of invasion and angiogenesis
represent the main processes in glioma. The goal is to individualize treatment based on
the specific molecular abnormalities of a given tumor [52]. Most drugs that target growth
and survival pathways as monotherapies have failed to demonstrate survival benefits in
populations of glioma patients. Targeting multiple signaling pathways with multi-target
kinase inhibitors or combinations of single-target kinase inhibitors may increase treat-
ment efficacy [83]. Main targets, including p53, retinoblastoma, and epidermal growth
factor receptor gene, have been demonstrated to be ineffective. Research continues in
immunotherapy-based treatments using immune checkpoint molecules, macrophages, and
dendritic cells within the tumor microenvironment [84]. In recent years, CTLA-4 inhibitors
have shown good effects in cancer immunotherapy. Tremelimumab is a monoclonal anti-
body against CTLA4 that has demonstrated positive responses in many published clinical
trials when combined with the PD-1/PD-L1 blockade. However, in glioma, several studies
have shown that antibodies anti-CTLA-4 and PD-1 show no survival benefit when com-
pared to standard chemotherapy [85–88]. Furthermore, no obvious benefit was obtained
with neoadjuvant nivolumab in resectable glioma [89]. Similarly, a phase III trial comparing
nivolumab (anti-PD-1 blocking antibody) with bevacizumab (anti-VEGF blocking antibody)
in patients with recurrent glioma showed no benefit from nivolumab and resulted in a sim-
ilar median overall survival (mOS 9.8 vs. 10.0 months) [90,91]. Nevertheless, the paucity of
effective antigenic targets remains a significant obstacle to the safe and effective treatment
of gliomas with relatively low mutational load with immunotherapy [92]. Merely reducing
the size of the tumor is not sufficient because recurrence and rapid progression of the
tumor will ultimately kill the patient. There is a trend to incorporate immunotherapy into
multimodal treatments, including radiotherapy and chemotherapy in patients with glioma
because the effects of individual treatments may enhance each other [93]. Bevacizumab
treatment is administered intravenously and this treatment with bevacizumab appears to
not significantly improve overall survival in patients with newly diagnosed glioma [66,94].
The use of bevacizumab with irinotecan is also being investigated [95]. The most common
side effects of bevacizumab include hypertension and leukopenia [96,97]. There is no
evidence of differences in the effectiveness of chemotherapy depending on the age, sex,
histology, functional status, or extent of resection [98].

4. Photodynamic Therapy
4.1. Mechanism of Tumor Destruction Using the PDT Method

Photodynamic therapy employs photosensitizer molecules (PSs) that are selectively
introduced into cancer cells. There are two key mechanisms of action in PDT. In the first
mechanism (Type I), a photon absorbed by a photosensitizer molecule causes its excita-
tion from the singlet ground state to the singlet excited state (PS*). The photosensitizer
then inter-system crosses to the excited triplet state where it can undergo electron transfer
reactions with oxygen or biomolecules in the environment. In the second mechanism
(Type II), the photosensitizer in the excited triplet state transfers energy directly to the
oxygen molecule to produce singlet oxygen (1O2). This ROS is characterized by a short
lifetime and diffusion distance. Singlet oxygen is an electrophile and reacts rapidly with
double bonds and heteroatoms such as sulfur. These reactions oxidatively damage the
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membranes of intracellular organelles such as mitochondria, lysosomes, and the endoplas-
mic reticulum [99–101]. This can promote irreversible destruction of cancer tissue primarily
by apoptosis and/or necrosis (Figure 1). Another mechanism involves anti-vascular effects
with the activation of PSs, provoking destruction of tumor vasculature. The third mecha-
nism involves the activation of the immune response against cancer cells through acute
inflammatory processes and the release of cytokines into the tumor. The advantage of one
pathway over the other depends on the parameters used in therapy and the patient’s health
condition [102–108].
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4.2. PDT in Cancer Treatment

Clinical applications of PDT in dermatology, ophthalmology, urology, gastroenterol-
ogy, gynecology, neurosurgery, and pneumology have shown encouraging results in the
treatment of human cancers [103]. It is less invasive, target-specific, and has reduced cyto-
toxicity towards normal cells and tissues, which translates into fewer side effects [109–111].
Photodynamic therapy is selective as only diseased tissues that have accumulated PSs are
irradiated. The idea of using PDT as a new treatment strategy appeared at the beginning of
the 20th century [112–114]. Photodynamic therapy is a two-step procedure. First, a drug
that absorbs light is administered to the patient. Then, after a period of time called the
drug-light interval, the target tissue is irradiated. The drug is inactive in the dark, but
upon electronic excitation, it transfers energy to molecular oxygen in the Type II process
described previously [109,115–120]. The molecular structure and chemical properties of a
PS determine the required wavelength of light, effective doses, and mechanism of action.
The selection of an appropriate PS is one of the most important factors in achieving the
intended effect [103,121]. Although the results of PDT vary depending on the type of cancer,
its properties make it efficient in therapies [122].

4.3. Photodynamic Therapy in the Treatment of Brain Gliomas

Photodynamic therapy is applied for the treatment of neurological diseases and many
types of brain tumors [123]. Photodynamic therapy has fewer side effects compared to
chemotherapy and radiotherapy on the brain. After administration, the concentration of
PSs is higher in glioma cells than in healthy tissue [31,124]. When combined with surgical
resection, PDT for the treatment of gliomas, or alternatively as a stand-alone treatment
strategy, has had some success in extending median patient survival compared to surgery
alone [125]. The immunological effects of PDT are of particular interest given recent studies
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demonstrating the importance of these processes in glioma [126,127]. However, the use
of this method in the treatment of gliomas also has some limitations. The main drawback
is the development of resistance to PDT in tumors. Several mechanisms are known to
be involved in the development of cellular defense against the cytotoxic effects of PDT,
including activation of antioxidant enzymes, drug efflux pumps, PS degradation, and
overexpression of chaperones [128].

DNA repair may aid in glioma resistance to PDT; however, this has not been further
explored to date [129]. Many biological barriers may have an influence on the results of
glioma PDT [9]. These include technical limitations of light delivery [130]. However, the
problem of delivering light to the tumor, at least in some cases, can be solved by using
implantable devices that enable light delivery during PDT, or near-infrared lasers that
allow tissue penetration of up to 3 cm [9]. The effectiveness of glioma-PDT is based on the
activation of PSs accumulated in the tumor with light. However, insufficient accumulation
of PSs in the tumor severely limits the success of PDT [131]. The blood–brain barrier (BBB)
is a significant limitation of PS transport to the area of postoperative resection, where brain
tumor recurrence most often occurs [132,133]. In order to develop the “ideal photosensi-
tizer”, there is still a need for new photodynamic agents with improved photophysical and
photobiological properties [134]. Recent research has also led to the discovery of profound
genetic heterogeneity among glioma cells that includes the adaptation to ROS. Therefore, tu-
mor heterogeneity and the associated difference in sensitivity to ROS-producing therapeutic
agents must be taken into account when designing PDT protocols to predict outcomes [135].
Moreover, there are no standard guidelines for PDT treatment protocols, and it is known
that the selection of parameters affects the quality of treatment. Further observations are
needed to further assess how PDT will reduce morbidity and mortality [136–138].

4.4. Nanoparticles for Glioma and PDT

To improve the results of brain tumor treatment, the use of nanoparticles containing
a photosensitizer may be a promising strategy [9,139,140]. They are characterized by
low cytotoxicity and excellent light absorption, which make them excellent agents for
improving multifunctionality for imaging and treatment [141,142]. Numerous studies are
currently underway to discover a nanoparticle with optimal properties for the treatment
of glioma. Comincini et al. developed nanoparticles equipped with the photosensitizer
berberine and showed that PDT using this system was responsible for an increase in
early and late apoptosis of cancer cells without detecting any cytotoxic effect on healthy
tissue [143]. Liu et al. constructed glycolipid-like micelles containing indocyanine green and
demonstrated that it has the ability to improve drug delivery to neovascular endothelial
cells and tumor cells and increase the effectiveness of phototherapy [144]. Teng et al.
created nanoparticles by combining Indocyanine-Green with Chlorin-e6 on the surface of
superparamagnetic iron oxide nanoparticles (SPIONs) and showed that they significantly
increased local control of recurrent cancer and that they could be detected by NIR imaging,
creating the potential for their use also in surgical oncology [145].

Research on upconversion nanoparticles (UCN) with covalently attached PSs has been
conducted [146–157]. Upconversion nanoparticles are nanotransducers (NT) that absorb
near-infrared light (NIR) and emit visible light (fluorescence) at wavelengths absorbed
by PSs.

4.5. Photosensitizers Used in PDT

Obtaining new photosensitizers is a promising direction of research on photodynamic
therapy (PDT) used in the diagnosis and treatment of cancer. However, for a photosensitizer
to be effectively used in PDT, it must meet many important criteria. Here are the key
conditions that such a photosensitizer should meet:

1. Selective accumulation in cancer tissue: One of the main factors influencing the
effectiveness of PDT is the ability of the photosensitizer to selectively accumulate in
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cancer cells. An effective photosensitizer should preferentially accumulate in tumor
tissue, minimizing absorption in healthy structures.

2. Availability and chemical properties: It is important that the photosensitizer is readily
available as a pure compound and its exact chemical properties, such as reactivity
and stability, should be thoroughly tested and documented. This ensures control over
the synthesis process and guarantees safety and effectiveness of use.

3. No phototoxic effect in healthy tissue: It is extremely important that the photosensi-
tizer does not cause a phototoxic effect in healthy tissue. This means that its effect
should only be controlled and activated in the presence of light in the affected area.

4. High absorption coefficient in the range of 600–800 nm: the effectiveness of PDT is
related to the absorption of light by the photosensitizer in the appropriate spectral
range, most often in the range of 600–800 nm.

5. No overlap of absorption bands with other tissue components: The absorption band of
the photosensitizer should not overlap the absorption bands of endogenous pigments
such as melanin or hemoglobin, or the absorption bands of water in the near-infrared
region. This avoids disruptions in the action of the photosensitizer.

6. Efficient production of 1O2 or radicals: the photosensitizer should have a high quan-
tum yield of 1O2.

7. Optimal pharmacokinetic properties: the photosensitizer and its photoproducts
should have appropriate pharmacokinetic properties, such as degradation, excre-
tion, and bioavailability to ensure the effectiveness of the therapy.

8. Low side effects and easy elimination from the body: the therapeutic value of a
photosensitizer is greater if it does not cause significant side effects and is easily
eliminated from the body to avoid long-term toxic effects after PDT therapy.

Figure 2 shows characteristics of an ideal photosensitizer.
Meeting these criteria is crucial for the effectiveness and safety of using photosensitiz-

ers in photodynamic therapy, especially in the context of cancer treatment [158–163]. The
historical development of photosensitizers in three subsequent generations is important in
the context of PDT, bringing hope for further increasing its effectiveness and minimizing
possible side effects.

First-generation PSs demonstrated effective PDT in the treatment of glioma [164,165]
as well as limitations in the treatment of glioma resulting from their structure. First-
generation PSs are limited not only by their low therapeutic effectiveness and low quantum
yield of singlet oxygen [165]; first-generation PSs exhibited several limiting features that
hampered their usefulness in the treatment of glioma. Therefore, it was justified to develop
second-generation photosensitizers to increase the effectiveness of photodynamic therapy
for glioma. Photosensitizers of the second generation have more efficient ROS production
and enhanced tumor selectivity with limited adverse effects [166].

The first generation of photosensitizers includes porfimer sodium and hematoporphyrin-
pioneered PDT. Although they are effective, they have limitations related to selectivity,
and side effects in healthy tissues have been significant. In response to these limitations,
second-generation photosensitizers were developed, such as derivatives of chlorin, bacteri-
ochlorins, and phthalocyanines. They are characterized by stronger absorption in the deep
red region of the spectrum, which allows for activation in deeper tissue and a more targeted
effect on cancerous areas. This significantly increased the effectiveness of PDT. However,
the greatest progress has been made in the case of third-generation photosensitizers. By
combining photosensitizers with biomolecules or encapsulating them in carriers, it has
become possible to significantly increase the selectivity of PDT towards cancer cells. These
photosensitizers can target specific molecules or structures in cancer cells to overcome
side effects [167–170]. In particular, 5-ALA has gained recognition as a beneficial photo-
sensitizer in gliomas [171–175]. As a porphyrin precursor, 5-ALA is metabolized through
the heme biosynthetic pathway to produce protoporphyrin IX (PpIX), a tumor-selective
photosensitizer [98,176,177]. The high tumor selectivity for fluorescent protoporphyrin
IX (PpIX) accumulation after systemic administration of 5-ALA enables intraoperative
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fluorescence guidance [178–181]. The advantages of 5-ALA over other photosensitizers
are compelling. Numerous studies highlight the effectiveness of 5-ALA-based PDT in the
treatment of gliomas, achieving cytotoxicity levels up to 80% in vitro and high tumor speci-
ficity [172,173,182–185]. PDT using 5-ALA has been shown to be safe at doses of 90 mg/kg
or less followed by irradiation of rat brains with light intensity of 100 J/cm2 [186].
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5. Application
5.1. In Vivo Photodynamic Therapy
5.1.1. In Human

Perria and colleagues were the first to use PDT for glioma. Many neurosurgeons
began treating glioma patients with PDT [187–193]. Fluorescence-guided tumor resection
followed by PDT has been observed to prolong mean survival in patients diagnosed with
glioma [194–197]. One of the first randomized, controlled trials of PDT in the treatment
of malignant gliomas, conducted by Muller and Willson, included 43 glioma resections
followed by PDT with photophrin, as well as a control group of 34 patients who underwent
tumor resection without PDT. Median survival was 11 months in the treated group and
8 months in the control group. An increase in median survival after PDT by 38% and a
higher 6-month survival rate in the treated group were demonstrated [31,196,198]. In the
phase II study conducted by Kostron et al., after obtaining informed consent, 26 patients
diagnosed with recurrent WHO grade IV glioma were treated with PDT using the PS
Foscan (biolitec Pharma, Jena, Germany). Before treatment, all cancers were progressing
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and standard therapeutic options (irradiation, chemotherapy) had been exhausted. After
aggressive fluorescence-guided resection (macroscopically completed in 75% of cases),
intraoperative PDT was used. The median time to progression after surgery was 6 months,
the median survival was 8.5 months, and the 2-year survival rate was 15%. Compared
to matched controls, significantly improved survival outcomes were demonstrated in the
treated group [196,199].

One study assessed the effect of photodynamic therapy and a monoclonal antibody
against the vascular endothelial adhesion molecule on glioma growth in vivo. Seven days
after implantation of glioma cells, adult male rats with glioma were randomly assigned to
study groups as follows: (1st group) PDT + anti-vascular endothelial adhesion molecule
monoclonal antibody, (2nd group) PDT, (3rd group) anti-vascular endothelial adhesion
molecule monoclonal antibody, and (4th group) control. Eight days after implantation, the
photosensitizer, hematoporphyrin monomethyl ether was administered, followed by PDT.
In the following days, from day 8 to day 16, anti-vascular endothelial adhesion molecule
monoclonal antibody was administered intravenously every other day. After 21 days, five
rats were selected to be sacrificed and examined. The survival and tumor volume of the
remaining 10 rats in each group were recorded. In the 3rd group after PDT, inhibition of
tumor growth (67.2%) was noticed and prolongation of survival (89.3%) was observed.
These effects were even more pronounced in the PDT + monoclonal antibody against
vascular endothelial adhesion molecule group. It was found that PDT in combination
with a monoclonal antibody against the vascular endothelial adhesion molecule effectively
inhibits glioma growth and prolongs survival [200].

In 2013, Muragaki and colleagues conducted a study to evaluate the effectiveness
of PDT using sodium talaporfin with the use of a 664-nm semiconductor laser. These
studies were conducted in patients with primary malignant parenchymal brain tumors.
Twenty-seven people were included with recurrent glioma and received a single dose of
PDT with talaporfin sodium before surgery. After surgery, the area after resection were
irradiated with a semiconductor laser with a wavelength of 664 nm between 22 and 27 h
after PS delivery. This study was performed on 22 patients. A 12-month survival (more
than 95%), 6-month progression-free survival (91%), and 6-month local progression-free
survival (91%) were noticed. Incorporating intraoperative PDT into a combined treatment
strategy may have a positive impact on average survival, especially in patients with newly
diagnosed glioma [201].

A randomized, controlled phase III trial by the Eljamel Group evaluated fluorescence-
guided resection using 5-ALA and Photofrin in repetitive PDT where 27 patients were
recruited. There were 13 people in the study group with an average survival of 52.8 weeks
and 14 people in the control group with an average survival of 24.6 weeks. There were
no differences in complications and hospital stays between these groups. The average
time to cancer progression was 8.6 months in the study group compared to 4.8 months
in the control group. Therefore, it was shown that 5-ALA and Photofrin fluorescence-
guided resection and repeated PDT provided a significant improvement in survival without
additional risk to glioma patients [202]. A study by V. Turubanova and her team represents
a significant step in understanding the potential of PDT in the context of murine glioma and
fibrosarcoma. They used PSs such as a mixture of di-, tri-, and tetrasubstituted fractions of
aluminum phthalocyanine and photodithazine (bis-N-methylglucamine salt of chlorin e6)
in the induction of cancer cell death in response to light irradiation with a wavelength of
615 to 635 nm at a light dose of 20 J/cm2.

In Parkinson’s disease, PS accumulates mainly in the endoplasmic reticulum and the
Golgi apparatus. Parkinson’s disease PDT-induced cell death was inhibited only by zVAD-
fmk. The most interesting aspect of this study is that dying tumor cells induced by PDT
using both PS and PD emitted specific molecular signals such as calreticulin, HMGB1, and
ATP. Moreover, these cells were bone marrow-derived dendritic cells (BMDCs). Importantly,
dendritic cells matured, became activated, and began to secrete interleukin 6 (IL-6) [203].
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A study by Sheng-Li Hu and colleagues contributed to research on the therapeutic
potential of PDT in the context of the treatment of C6 glioma, which is important due to its
aggressive nature in the context of brain tumors. The aim of this study was to thoroughly
understand the effect of PDT on the homeostasis of calcium (Ca2+) and potassium (K+) ions
in C6 glioma cells and what mechanisms influence the survival of these cells.

This study identified five experimental groups of C6 glioma cells:

1. A control group that did not undergo any form of treatment or radiotherapy.
2. A group in which cells were treated with a hematoporphyrin derivative (HpD) at a

concentration of 10 mg/L but not irradiated with light.
3. PDT group in which cells were treated with HpD (10 mg/L) and irradiated with light.
4. PDT&CNQX group, in which cells were treated with HpD (10 mg/L) and the AMPA

glutamate receptor antagonist, i.e., CNQX (at a concentration of 50 mol/L), and then
subjected to PDT.

5. HpD&CNQX group in which cells were treated with HpD (10 mg/L) and CNQX
(50 mol/L) but not irradiated with light.

The research results clearly showed that PDT causes a significant inflow of calcium ions
(Ca2+) into C6 glioma cells and an outflow of potassium ions (K+), which ultimately leads to
the death of these cells. An interesting finding was that treatment with an AMPA receptor
antagonist (CNQX) before PDT partially blocked these changes in ion homeostasis while
increasing cell survival. These observations suggest that disturbances in the homeostasis of
calcium and potassium ions play a key role in the mechanisms of action of PDT on C6 glioma
cells. This discovery is important for further understanding the complex mechanisms of
action of PDT and its role as a potential therapeutic method in the treatment of glioma
and other brain tumors [204]. The study by Deng-Pan Wu and his team focused on the
therapeutic potential of PDT in the treatment of glioma. Intercellular communication
(GJIC) was studied, in which the Connexin (Cx)43 protein plays a key role. Intercellular
communication plays an important role in transmitting signals leading to apoptosis, i.e.,
programmed cell death, which may increase the effectiveness of therapies, including
chemotherapy and gene therapy. The study results showed that Cx43-mediated GJIC
significantly increases PDT phototoxicity, both in laboratory conditions (in vitro) and in
living organisms (in vivo). This finding is significant and suggests the potential of using
GJIC to improve the effectiveness of PDT. Of particular interest is that GJIC with Cx43
significantly increases PDT phototoxicity in U87 glioma cells that express Cx43. Blocking
Cx43 expression had a negative impact on this effect. Additionally, the presence of GJIC
with Cx43 contributed to a reduction in tumor diameter and mass after PDT using the
PS Photofrin. The effectiveness of PDT with GJIC with Cx43 has been linked to the
activity of stress signaling pathways such as the generation of ROS, calcium, and lipid
peroxide. These observations suggest that the presence of GJIC, especially involving
Cx43, may significantly increase PDT phototoxicity, which is important in the context of
glioma treatment. This discovery opens prospects for further development of therapeutic
strategies that aim to increase Cx43 expression or enhance GJIC function with Cx43. This,
in turn, may lead to an increase in the sensitivity of cancer cells to PDT and improve
its effectiveness as a therapeutic method. It is also worth noting that blocking Cx43
expression or GJIC function with Cx43 may influence the development of tumor cell
resistance to PDT [205]. The aim of the study by R. Kammerer and colleagues was to
investigate changes in the transcriptome of human glioma cells (U87, U373) after non-
lethal dynamic phototherapy (PDT) both in vitro and in vivo. The results of the study
showed that after PDT, the most increased gene expression encoded proteins related to
pathways activated by cellular stress and proteins involved in cell cycle arrest. This
response resembled that of cancer cells to high-dose PDT. As a result, PDT affected glioma
cells by activating stress response pathways, which led to the inhibition of their cell cycle.
However, there were other important observations. Cancer cells after immortalized PDT
significantly upregulated a number of immune-related genes, including chemokine genes
(CXCL2, CXCL3, IL8/CXCL8) as well as genes encoding interleukin-6 (IL-6) and its receptor
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(IL6R). These genes can stimulate inflammatory responses. Of note, IL-6 and IL6R may
also influence tumor growth. Therefore, these results suggest that PDT may support the
immune response against the tumor even if it is unable to completely eliminate it through
phototoxic mechanisms alone. However, there is also the potential to stimulate autocrine
loops that promote tumor growth, as seen in increased expression of IL-6 and its receptor.
His finding suggests that despite the beneficial effects of PDT on the immune system, there
may also be a risk of stimulation of tumor growth by nonlethal PDT.

Therefore, the study highlights the complexity of PDT interactions with tumor cells and
the need for further research on optimal therapeutic strategies and control of inflammatory
responses in the context of PDT treatment of glioma [206]. The study by Fisher and
colleagues represents an important step in PDT research in the context of treating glioma, an
aggressive brain tumor. The aim of the study was to determine whether mild hypothermia
could influence the effectiveness of PDT by increasing the killing of glioma tumor cells while
protecting normal neuronal structures. The study consisted of in vitro studies conducted on
neuronal cells and in vivo studies conducted on rat models. The results of in vitro studies
showed that hypothermia significantly increases the survival of neuronal cells after the use
of PDT. In vivo studies in rats confirmed that hypothermia has a protective effect on neural
structures after PDT, as reflected in T2 mapping results that showed a reduction in the
volume of edema and inflammation in the brain. One of the key results was an increase in
protoporphyrin IX (PpIX) fluorescence in brain tumors after hypothermia. This, in turn, had
a beneficial effect on the survival of rats after PDT. Histological and immunohistochemical
analysis showed that hypothermia was an effective method of protecting normal brain
structures during PDT. The conclusions from this study suggest that mild hypothermia may
significantly improve the effectiveness of photodynamic therapy in the treatment of glioma.
Hypothermia may protect neural tissues and simultaneously increase the phototoxicity
of PDT, leading to the longer survival of rats after treatment. This discovery is of great
importance and opens the prospects for further research on the use of hypothermia as an
effective therapeutic strategy in the treatment of glioma [207]. Zhang’s study used cell
membranes to encapsulate indocyanine green (ICG) nanoparticles (SLNP/ICG), referred
to as SLNP/ICG@M, for targeted glioma PDT. Moreover, SLNP/ICG@M produce a large
amount of ROS under NIR irradiation. SLNP/ICG@M with NIR irradiation can activate
the mitochondrial-mediated apoptosis pathway [208]. It is known that high concentrations
of cellular glutathione (GSH) in cancer cells can reduce the ability of PDT to selectively
destroy the tumor, so it is necessary to find a way to improve the therapeutic ratio of PDT
in brain tumors. In a study by F Jiang et al., PDT using Photofrin as a photosensitizer
combined with administration of buthionine sulfoximine (BSO), an agent that depletes
glutathione levels in BSO cells, was performed in male intracerebral U87 and healthy
Fisher rats. In tumor-bearing U87 rats, in vivo treatment with the PDT-BSO combination
showed significantly greater tumor necrosis than individual treatment [209]. In the study by
Yi et al., 24 rats with subcutaneously implanted C6 rat glioma of similar size were randomly
divided into 3 groups: group 1—receiving 5-ALA-PDT, group 2—laser irradiation, and
group 3—sham procedures but no treatment. Compared with groups 2 and 3, the volume
of tumor grafts was significantly reduced (p < 0.05), MVD was significantly reduced
(p < 0.001), and cell necrosis was significantly increased in group 1. The underlying
mechanism may involve increasing cell necrosis but not inducing cellular apoptosis, which
may result from the destruction of tumor micro-vessels [210]. Clinical trials have shown
that PDT significantly increases the median survival of patients with gliomas. Experimental
studies have shown that increasing the optical energy and PS dose leads to an increase
in the volume of tumor necrosis. However, increasing the dose of light delivered to the
tumor may increase the risk of causing permanent neurological deficits. In the study by
Zheng et al., the neuroregenerative effect of atorvastatin on PDT was examined. However,
atorvastatin significantly reduced PDT-induced cell damage. To further investigate the
mechanisms underlying atorvastatin-mediated reduction in functional deficits, the effects of
atorvastatin on angiogenesis and synaptogenesis were examined. Atorvastatin was found
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to significantly induce angiogenesis and synaptogenesis in PDT-damaged brain tissue [211].
The effectiveness of PDT is known to be induced by ROS production, dependent on hypoxia.
Moreover, hypoxia activates sodium hydrogen exchanger 1 (NHE1), which is an essential
component of tumor progression and metastasis. The study by Hou et al. showed that PDT
significantly inhibited primary tumor growth. These results suggest that PDT with DHA
may increase total ROS levels to attenuate glioma invasion and migration by suppressing
NHE1 expression. The study by Kuiyuan Hou et al. showed that PDT significantly inhibited
primary tumor growth, whereas PDT in synergy with DHA also inhibited recurrent tumors
and improved overall survival by regulating the ROS-NHE1 axis. No visible side effects
were observed. These results suggest that PDT with DHA may increase total ROS levels to
attenuate GC invasion and migration by suppressing NHE1 expression [212].

In the study by Terzis et al., the effect of PDT on glioma cells (GaMg and U-251 Mg)
was checked. Directional cell migration and spheroid growth were determined for both cell
lines exposed to increasing laser output power (15–35 J/cm2) at Photosan-3 photosensitizer
concentrations of 5 and 7 micrograms/mL. This effect occurred within the first 4 days after
exposure to the drug. Spheroids from both cell lines also showed drug dose- and laser-
power-dependent growth inhibition that became apparent after a 6-day lag period. During
this period, the outer layers of the spheroid cells disintegrated. The remaining spheroid
tissue was unable to migrate and regrow under the highest laser energy (30–35 J/cm2,
5 and 7 micrograms/mL Photosan-3). However, these spheroids have demonstrated the
ability to invade when confronted with normal brain cells aggregated in vivo [213]. Table 1
presents examples of clinical studies with some PSs in glioma.

Table 1. Characteristics of selected clinical studies (with PS applied, excitation wavelength and
treatment window).

Article Photosensitizer Excitation
Wavelength (nm) Treatment Window

[214]

Porfimer Sodium 630 48–150 h

[215]

[216]

[217]

[218]

[219] Hematoporphyrin
derivative [HpD] 408, 510, 630 24–48 h

[218]

[220] Dihematoporphyrin ether [DHE] 395, 630 24–72 h

[221]

5-Aminolevulinic Acid 410, 510, 635 4–8 h[222]

[218]

[218] Talaporfin sodium 664 12–26 h

[223] Temoporfin
[m-THPC; m-tetrahydroxyphenylchlorin] 652 48–110 h

[218]

[224]
Boronated protoporphyrin [BOPP] 630 24 h

[218]

[214]

Benzoporphyrin derivative [BPD] 680–690 15–30 min[225]

[226]
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5.1.2. In Animal Model

The study by Han-Wen Guo and colleagues used a low fluence rate and implemented
long-term photodynamic therapy (PDT) in a mouse model of human glioma using an
organic light-emitting diode. A single dose of 5-aminolevulinic acid (ALA) was used as a
photosensitizer. Tumor volume was monitored by bioluminescence imaging and animal
survival time was recorded. It was found that in animals with comparable tumor volume
before and immediately after irradiation, the mean overall survival of mice subjected to
PDT was 40.5 ± 9.2 days, which significantly exceeded the survival time of control mice
(26.0 ± 2.0 days) [227].

Another study assessed the effects of photodynamic therapy on glioma and brain
tissue. Following clinically relevant doses of PDT, reductions in tumor volume, glioma
cell proliferative activity, and vascular endothelial growth factor expression were observed
in the tumor area and adjacent brain tissue for 7 days. Twenty athymic mice underwent
implantation of glioma cells. Fifteen mice were administered Photofrin intraperitoneally
on day 6 after tumor implantation and then subjected to laser therapy with different optical
doses (40 J/cm2, 80 J/cm2, and 120 J/cm2) after 24 h post Photofrin injection. The remaining
five tumor-bearing mice served as controls. All animals were sacrificed 14 days after tumor
implantation. It was found that the tumor volume in the group of mice receiving 80 or
120 J/cm2 was significantly smaller than in the control group. Vascular endothelial growth
factor immunoreactivity in adjacent brain tissue increased significantly in mice treated with
120 J/cm2 PDT compared to the control group, as well as in mice treated with Photofrin
and lower optical doses. No significant differences in glioma cell proliferation and vascular
endothelial growth factor expression in the tumor area were observed between groups.
These results suggest that PDT is effective in tumor shrinkage, especially with higher
light doses, and PDT-induced vascular endothelial growth factor expression in adjacent
brain tissue may be associated with tumor recurrence. Therefore, combining PDT with
antiangiogenic drugs may be an effective strategy for the treatment of glioma [228]. In order
to evaluate the effectiveness of the synthesized nanoparticles dedicated to PDT glioma,
athymic mice were bred. Glioma was induced by subcutaneous injection of U87-MG cells.
PDT was performed 15 days after implantation. CPN was administered intravenously and
intratumorally. Mice treated with a single i.t. or intravenous CPN administration showed
strong tumor growth inhibition for 10 days after PDT treatment. Tumors from the PBS
control or nonirradiated CPN groups reached more than twice their initial volume [229].

Human monocyte cells (THP-1) and mouse monocytes isolated from bone marrow
(mBMDM) were used as covert CPN carriers to penetrate glioma spheroids and an ortho-
topic tumor model. The success of PDT using this cell-mediated targeting strategy was
determined by its effect on spheroids. CPNs did not affect monocyte viability in the absence
of light and did not show nonspecific release after cell loading [230].

6. PDT Glioma Current Clinical Research

Photodynamic therapy is approved by the US Food and Drug Administration (FDA)
for the treatment of premalignant diseases and malignancies such as actinic keratosis,
Barrett’s esophagus, esophageal cancer, and non-small cell lung cancer [171]. Many of
the novel concepts and strategies for using PDT in the treatment of glioma are in the
in vitro experimental phase, still requiring extensive evidence of effectiveness studies
before clinical application [9]. A study by Vermandel et al. examined the safety and
efficacy after intraoperative treatment of glioma with photodynamic therapy (PDT) after
administration of 5-ALA acid and maximal resection in 10 patients with newly diagnosed
glioma. There were no serious adverse events, and it was shown that this strategy could
help reduce the risk of recurrence by targeting residual tumor cells in the resection cavity, as
the 12-month recurrence-free survival rate was 60% [231]. An ongoing study in Germany is
evaluating stereotactic biopsy followed by 5-ALA-based stereotactic PDT and the feasibility
of 5-ALA in stereotactic interstitial PDT in a subset of adult glioma patients [9]. The only
fluorescence-guided glioma surgery agent approved by the FDA [232] is 5-ALA.
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In Scotland, over 365 brain treatments were performed in patients using 5-ALA and
Photofrin intracavitary PDT with a balloon diffuser and a diode laser with a wavelength
of 630 nm. Of these treatment cases, 143 had no adverse effects (Figure 3). Adverse
events were reported in seven patients: three patients developed deep vein thrombosis
(DVT), two patients experienced skin photosensitivity due to lack of light protection, two
patients experienced cerebral edema after PDT, one patient experienced skin necrosis and
cerebrospinal fluid leakage, and in one patient the balloon diffuser ruptured due to poor
catheter attachment [124,170].
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These side effects are no different from those occurring during other therapies [233,234].
Research conducted on 20 patients treated with HPD and 630 nm light revealed five ex-
pected skin photosensitivities, none of which were serious adverse events [233–235]. Only
2 of 136 patients treated with HPD-PDT in Australia (2%) reported excessive sunburn asso-
ciated with skin photosensitivity [236]. In both cases, they did not follow the recommended
instructions. The main side effect associated with treatment is short-term hypersensitivity
of the skin and retina to light after the administration of a PS [196].

7. Conclusions

Research on PDT in the treatment of gliomas is a fascinating area of medical research
that opens new perspectives in the fight against this aggressive form of brain cancer. Pre-
vious and current in vivo studies and patient clinical experiences show promising results
with PDT as an effective and increasingly popular therapeutic option in the treatment
of gliomas. The most important finding from this study is the significant improvement
in median survival for patients who received PDT as part of their treatment. Prolonged
progression-free survival has been observed in many cases, which is an important step
in the fight against this serious disease. These results suggest that PDT may provide a
valuable alternative to traditional glioma treatments such as surgery, radiotherapy, and
chemotherapy, which are often associated with significant side effects and limited effective-
ness. Additionally, research on PDT has shown that this therapy can stimulate the body’s
immune response against cancer cells. This finding is particularly promising because it
highlights the potential of PDT as a tool to induce a defense response against gliomas,
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which may further aid in tumor elimination. It is worth emphasizing that the results of
in vivo studies on animal models and clinical studies on patients unanimously suggest
the benefits of using PDT in the treatment of gliomas. This is important evidence of the
promising nature of this therapy and its potential to change the standards of treatment
for this difficult disease. Although the results of these studies are encouraging, further
research is necessary to optimize PDT parameters, including the selection of appropriate
photosensitizers, light parameters, and combination treatment strategies. Moreover, a key
challenge is to adapt PDT to the individual patient’s case, taking into account differences
in disease stage and molecular caesuras. These conclusions emphasize the importance of
continuing research on PDT as a promising therapeutic strategy for patients suffering from
gliomas. Further development of this field of medicine may bring significant benefits to
patients in the form of improved quality and length of survival, as well as influence future
standards of treatment of this difficult and fatal disease.
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