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Abstract: Nucleotide-binding oligomerization domain-like (NOD) receptors rely on the interface
between immunity and metabolism. Dietary factors constitute critical players in the activation of
innate immunity and modulation of the gut microbiota. The latter have been involved in worsening or
improving the control and promotion of diseases such as obesity, type 2 diabetes, metabolic syndrome,
diseases known as non-communicable metabolic diseases (NCDs), and the risk of developing cancer.
Intracellular NODs play key coordinated actions with innate immune ‘Toll-like’ receptors leading
to a diverse array of gene expressions that initiate inflammatory and immune responses. There
has been an improvement in the understanding of the molecular and genetic implications of these
receptors in, among others, such aspects as resting energy expenditure, insulin resistance, and cell
proliferation. Genetic factors and polymorphisms of the receptors are determinants of the risk and
severity of NCDs and cancer, and it is conceivable that dietary factors may have significant differential
consequences depending on them. Host factors are difficult to influence, while environmental factors
are predominant and approachable with a preventive and/or therapeutic intention in obesity, T2D,
and cancer. However, beyond the recognition of the activation of NODs by peptidoglycan as its
prototypical agonist, the underlying molecular response(s) and its consequences on these diseases
remain ill-defined. Metabolic (re)programming is a hallmark of NCDs and cancer in which nutritional
strategies might play a key role in preventing the unprecedented expansion of these diseases. A
better understanding of the participation and effects of immunonutritional dietary ingredients can
boost integrative knowledge fostering interdisciplinary science between nutritional precision and
personalized medicine against cancer. This review summarizes the current evidence concerning the
relationship(s) and consequences of NODs on immune and metabolic health.

Keywords: NOD1/2; Toll-like receptors; immunonutrition; innate immunity; cancer

1. Introduction

Today, more than 1600 million people (aged 15 years and more) worldwide are over-
weight or obese and, according to the World Health Organization (WHO), this number
will increase to 2300 million in 2050. Worldwide, hyperglycemia kills some 3.4 million
people a year. In the EU, approximately 60% of adults and 20% of children of school age
are overweight or obese (WHO, (https://www.who.int/, accessed on 1 November 2023).
In the USA, the situation is very similar where being overweight and obese occurs in the
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population in an approximate proportion of 3/4 of adults (>20 years) and 1/5 of children
and adolescents (2–19 years) [1]. The WHO forecasts that deaths from type 2 diabetes (T2D)
will double between 2005 and 2030. In these contexts, the metabolic (re)programming of
certain subphenotypes of immune system components, which are key to inducing obesity
(i.e., innate and macrophage lymphoid cells), is a distinctive stamp in alterations to the
homeostasis of nutrients in which nutritional strategies can play a key role. Data from
epidemiological studies reveal that obesity and T2D significantly contribute to increasing
the risk for a number of cancer types [2]. Overall, a reduction can be seen when considering
dietary risks as the origin of carcinogenic processes [3]. However, it is worth noting the
increasing trend in the incidence of cancer if we consider factors such as weight gain
and metabolic pathologies such as diabetes [4]. Cancer represents a scourge of today’s
societies [1]; there were an estimated 18.1 million cancer cases around the world in 2020.
Of these, 9.3 million cases were in men and 8.8 million in women.

The role of food ingredients, beyond their nutritional value, has been a subject of
an open debate over the past few decades. In this sense, the European Food Safety Au-
thority (EFSA) has issued specific guidelines referring to health claims pertaining to var-
ious foods/food constituents [5] as well as to intestinal immunity and defense against
pathogens [6]. These guidelines stress the need for establishing a cause–effect relationship
and definition of specific functions of the immune system to be improved by foods/food
constituents. Nowadays, most nutritional interventions possess a clear observational per-
spective rather than a hypothesis-driven point of view. Despite significant advances in the
understanding of metabolic diseases such as obesity, type 2 diabetes, metabolic syndrome,
and cancer, dietary recommendations have remained general and, at this point, apply to all
patients regardless of the disease features. In this sense, “Precision nutrition” has emerged
as a discipline with the potential to provide significant contributions to successfully imple-
ment personalized medicine [7,8]. Understanding how a host’s intrinsic features determine
the metabolic variability between individuals is used to tailor specific nutritional strategies
to manage diseases.

Previous research has largely focused on total calorie intake and an adequate nutrient
intake so as to develop proper immune system response(s) [9]. NCDs share common fea-
tures, such as liver dysfunction and tissue inflammation, where the monocyte/macrophage
population has multifaceted effects [10,11]. Recent findings also provided new insights into
how innate and adaptive lymphocytes operate sequentially and in distinct ways during
normal development to establish steady-state commensalism and lipid homeostasis [12].
Studies on the intricate relationship between the maturation of the intestinal immune sys-
tem and the induction of obesity revealed that innate lymphoid cells (group 2)—ILC2s—are
determinants in the induction of diet-induced obesity [13]. Later research demonstrated
that liver macrophages are determinants in the diet-regulated control of hepatic fat accu-
mulation [14]. In this sense, recent data evidence that dietary nutrients able to promote
beneficial immune response(s)—immunonutritional agonists—can be even more important
determinants of intestinal, liver, metabolic, and cardiovascular health [15]. These effects ap-
pear to be derived from a selective functional differentiation of the monocyte/macrophage
population towards an M1-like phenotype [15]. In addition, recent research also associated
the expansion of ILC2 and ILC3 populations with a reduction in the accumulation of fats
into the liver [16].

Collectively, a critical overview of the scientific literature indicates that NCDs and
cancer require effective nutritional intervention strategies. The latter is preferably based on
immunonutritional agonists enabling the oriented expansion and activity of innate immune
populations. The modulation of immune responses via innate immune pattern recognition
receptors by immunonutritional agonists are strategies that could have determinant influ-
ences on promoting the metabolic and immune health of the gut–liver axis. In particular,
nucleotide-binding oligomerization domain-like (NOD) receptors rely on the interface
between immunity and metabolism. Thus, the integration of signaling molecule regulators
of these receptors constitutes a promising strategy for approaching, with a preventive
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and/or therapeutic intention, immunometabolic diseases such as obesity, T2D and cancer.
A better understanding of these processes can help to integrate the potential use of NODs
in targeted precision nutrition strategies as coadjuvant to the classical pharmacological
treatments (Figure 1).
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Figure 1. Schematic summary of the participation of immunonutritional agonists in interaction with
the nucleotide-binding oligomerization domain-like (NODs) and ‘Toll-like’ (TLRs) receptors and their
implication for non-communicable diseases (NCDs) and cancer.

This review summarizes the current evidence concerning the relationship(s) and con-
sequences of NODs on immune and metabolic health. An extensive search was carried out
to identify as many studies as possible relevant to NOD receptors. Particular efforts were
devoted to compiling human intervention studies as preclinical studies are enormously
informative, but the effects may not be recapitulated in human trials. All relevant studies
are classified according to the reported biomarkers associated with NCDs and cancer, and
to affect the metabolic and innate immune function.

2. Current Challenges in the Nutritional Approach to NODs in NCDs and Cancer

Over the last decade, there has been a significant implementation of nutritional ap-
proaches for NCD and cancer patients [7,17,18]. Only a few of the main drivers respon-
sible for consistent clinical outcomes in diabetes (i.e., type 1, 2, or prediabetes) have
been identified as nutrient-targeted processes [18]. Nutritional obesity management ap-
proaches the modulation of inflammation to improve insulin sensitivity, and consequently
fat accumulation [17]. In 2022, a panel of experts on the nutritional approach for cancer
patients in Spain agreed upon the extended incidence of malnutrition in cancer patients [19].
In general terms, nutritional approaches rely on the energetic and biological value of nu-
trients. The study of interindividual dissimilarities based on exposome heterogeneity
(i.e., genetic/epigenetic, lifestyle, microbiome and behavioral/psychological features) sig-
nificantly contributed to improving disease management [7]. Eminently, these studies
attempted to condition the intensity and severity of potential interactions to augment the
magnitude of the effects attributable to nutrient utilization. There exists a link between im-
munocompetent cells (i.e., the monocyte/macrophage population and ILCs) and functions
and the development of NCDs and cancer [12–14]. However, addressing these processes to
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modulate the oriented activation and function of these immune effectors by foods/food
constituents remains poorly exploited.

Preclinical studies have reported opposing results concerning the implication and
role of NOD1 in the promotion and severity of obesity [20,21]. These effects vary from
the protective role of NOD1 deficiency against obesity-induced inflammation and insulin
resistance [20], to a deleterious effect accelerating diet-induced obesity and liver steatosis
in HFD-fed mice [21]. NCDs are characterized by low-grade inflammation. In this context,
peripheral monocytes and macrophages derived from these appear as central players in
the progression of liver dysfunction, worsening or improving the disease. This inducible
population of innate immune effectors acquires a specific phenotype due to the integration
of signals (i.e., immune and metabolic) originating (i.e., tissular and systemic) within the
gut–liver axis. In NCDs, the role played by M1-like macrophages under chronic/sterile
inflammation allows us to consider a situation where NOD1 is subjected to inhibitory
regulation. This assumption is based on reduced macrophage apoptosis derived from
NOD1 deficiency [22], and the contrasting apoptosis-mediated clearance of macrophages
from resolving inflammation [23].

Prior research has shown the key role of intestinal innate immunity in determining
lipid homeostasis and gut microbiota composition [12,15]. These studies revealed deep links
between the immune system and body organ metabolism. While ILC3s have been shown to
exhibit a clear role in the establishment of a tolerable commensal state and influence lipid
homeostasis [12], ILC2s appear as essential determinants of fat absorption [13]. In addition,
taking advantage of preclinical models—deficient in adaptive immune effectors, Rag2−/−

mice and ILCs, Rag2−/−IL2−/− mice—it has been shown that the promotion of an M1-like
phenotype (CD68+F4/80+) of the monocyte/macrophage population was associated with
the expansion of ILC2/3 (i.e., CD117+KLRG+ group ILC2s and CD56+CD117+Nkp46+

group ILC3s) precursors that benefit the control of HFD-induced obesity [16]. The latter
appeared as a consequence of the adaptations of lipid homeostasis, which could not be
associated with changes in the gut microbiota. Altogether, these results are concordant
with the previously reported role as responsible for NOD2 sensing to selectively activate
inflammatory cytokine production from ILC2/3s [24].

Overall, there are substantial knowledge gaps in relation to the integration of NODs
into nutrition strategies, eco-nutritional conditions, immunity, and the specificity of the
effects (Figure 1): (i) understanding food-derived ingredients’ influence on NODs at the
systems’ biology level allowing for the comparison of different sources, (ii) producing new
knowledge on stimulatory and inhibitory effects, as well as (iii) integrating information as
complementary to the classical pharmacological approach. Despite the well-known role of
NOD receptor proteins in the interplay between the microbiota and gastrointestinal immune
adaptations [25], their regulation by foods/food constituents in NCDs is less explored. Most
available information identifies the influence of phytochemicals and extracts of aromatic
and medicinal plants [25,26] as signaling molecule modulators. These compounds may
display the potential to access the cellular plasmatic membrane, thus impairing TLR4
relocation and distribution to lipid rafts [27]. However, the impossibility to control the
effective concentration of these compounds to modulate signaling in an oriented fashion
by directly interacting with the receptors limits their use with a clinical preventive and/or
therapeutic intention.

3. NOD/NLR Signaling: Implications for NCDs and Cancer

Elegant reviews have compiled information concerning the structure and gene encod-
ing for NODs [28,29]. NOD1 and NOD2 are located in the cytoplasm and are composed
of an LRR ligand-binding domain, an oligomerization domain with NACHT homology,
and a caspase recruitment domain (CARD) that transmits the signal. Despite these sig-
nificant advances and improvements in the understanding of the genetic basis for these
receptors, their importance in NCDs and cancer could be underscored by the fact that
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single-nucleotide polymorphisms (SNPs) occurring in different subpopulations of patients
have been barely elucidated [30,31]

NOD1/2 and NOD-like receptors (NLRs) belong to the superclass of pattern recogni-
tion receptors (i.e., PAMPs, DAMPs), among which are also the innate immune ‘Toll-like’
receptors (TLRs). Pattern recognition receptors play key roles in determining the function
and activity of innate immune effectors. Both NODs/NLRs and TLRs are well-recognized
mediators of the immune and metabolic imbalances occurring in NCDs and cancer [32–34]. It
is well known that microbial peptidoglycans—γ-D-glutamyl-meso-diaminopimelic acid
and muramyl dipeptide—act as the prototypical agonist of NODs, and despite the known
and described functions as microbial sensors, they also affect the development of extrain-
testinal diseases and cancer [35]. For example, NOD1/2 activation and deficiency as well
as the intake of a diet rich in lipids and certain signals of cellular damage are closely
related to cell proliferation and the response(s) to chemotherapy in hepatocellular car-
cinoma (HCC) [32]. The balance between the anti/pro-tumor consequences from NOD
signaling appears to depend on several factors (i.e., the type and stage of the tumor, the
microenvironment, and the interactions between the cells of the immune system) [36]. The
convergence between NODs/NLRs and TLRs may constitute the way to integrate the
different stimuli determining the underlying signaling and the receptors’ contribution to
disease development.

Recent work identified the participation of Rho GTPases as part of the molecular
signaling associated with NODs [37]. In humans and mice, the widespread expression
of Rho kinases, which represent target molecules in regulating metabolic function and
energy storage, is known [38]. A clear example of the importance of NCDs is that molecules
such as Rac1 play important positive roles in insulin-stimulated glucose uptake. The
latter effect constitutes a possible link between obesity and T2D. Rac1 also represents
a regulator of cell migration and a potential target for cancer therapy and contributes
to the maximal activation of STAT3 in IFN-γ stimulation. Rho kinases are also relevant
players in cancer and neurodegeneration [39]. Not surprisingly, Rho kinases, also exert
various activities to effectively modulate the immune system and have been identified as
potential therapeutic targets in cancer immunotherapy [40]. Protein kinase inhibitors can
be found in several foods where bioactive compounds displaying inhibitory activity occur
naturally [39]. Unfortunately, the inhibitory role appears unspecific and reversible, as in the
case of polyphenols. In addition, some of these activities have their origin in both bacterial
production and their metabolic capacities [41]. Notwithstanding, recent work has shown
the potential of serine-type protease inhibitors to up-regulate the Rho GDP-dissociation
inhibitor in macrophages via interaction with TLR4 (MyD88-independent) signaling [42].
This effect was accompanied by the downregulatory effect of several glycolytic mediators,
thus allowing us to hypothesize a negative regulatory effect on NOD signaling. Collectively,
these observations suggest that imbalances of cellular metabolic homeostasis are sensed by
NOD1/2, thereby contributing to the early glycolytic reprogramming of human monocyte-
derived macrophages [33]. The implication of NOD2 in the production of type I interferons,
associated with the interconnected signaling with TLRs, could be responsible, at least
in part, for boosting the loss of regulatory capacity on the proinflammatory processes
in NCDs.

A direct consequence of the metabolic imbalances occurring during NCDs and cancer
is increased stress on the endoplasmic reticulum [43]. This organelle plays a critical role in
the development of NCDs and cancer since the maintenance of its homeostasis is essential
in the regulation of TLR4 expression. In this context, the capacity of NOD1/2 for sensing
ER stress may also be of relevance for these pathologies in which the receptors could
significantly influence the organelle’s function. ER stress has been identified as a central
feature of the peripheral insulin resistance occurring in T2D [44]. In obesity, increased
and sustained concentrations of fatty acids in the peripheral bloodstream contribute to
establishing lipotoxic stimuli and a chronic inflammatory state impairing ER stress [45]. A
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clear consequence of these homeostatic alterations is the activation of the unfolded protein
response (UPR), commonly upregulated in cancer [46].

A critical revision of the scientific literature, concerning the influence of food ingredi-
ents on NOD/NLR expression, shows their potential to partially, either with a down-/up-
regulatory effect, affect NODs/NLRs [42,47]. In addition, both Gram (+) and (−) bacteria
release extracellular vesicles, but knowledge of the genus Lactobacillus and Bifidobacterium
remains poor and comprehensive and integrated knowledge is needed to understand their
capacity to activate/control NOD signaling. Similarly, compelling revisions can be found re-
garding the potential of naturally occurring bioactive compounds (i.e., mostly polyphenols
and associated molecules) displaying inhibitory activity in regard to protein kinases sensed
by NODs [48]. However, a common gap in knowledge is that the exact mechanism remains
to be elucidated. These aspects limit the attribution of added value to food ingredients as
modulators of the NOD/NLR axis with a preventive or therapeutic intention.

4. Immunonutritional Interventions on NOD Signaling

The innate immune system is deeply and complexly linked not only to immune, but
also to metabolic homeostasis, and thus associated with different diseases [49]. Despite
preclinical mouse models having provided a way to study human innate immune pathways,
many cases lacking translation to humans can be found, which is most likely attributable to
developmental and evolutionary aspects [50]. The divergence of NODs between humans
and mice appears to not be so extensive in the inflammasome-forming NLRP and IPAF
subfamilies [51]. Otherwise, different genomic content in the TLRs as well as regulated
response(s) in mouse and human macrophages has been reported. Thus, immune and
metabolic processes in NCDs [52–55] and cancer [56] can be exacerbated during disease
development. These differences can have significant implications for devising the potential
of immunonutritional strategies to influence NODs.

The scientific literature reveals scarce information from patients concerning the in-
volvement of specific NODs in NCDs [57,58]. NOD1/2 were shown to be up-regulated
(mRNA) in monocytes from patients with T2D. This result allows us to hypothesize that nu-
trient utilization by monocytes is going to be affected in such a way that insulin resistance
is increased thereby signaling events that promote an inflammatory phenotype [59]. Syner-
gistic effects between NOD-like receptors (NLRs) and TLRs in human B lymphocytes [60]
have been reported. Thus, immunometabolic adaptations in the myeloid population pro-
mote a cascade of events involving adaptive T-cells [61] leading to increased, ultimately
aberrant and uncontrolled, inflammatory processes. In obese individuals, it was shown
that NLRP3 activation could be attenuated by acutely raising the plasmatic concentration of
β-hydroxybutyrate with the ingestion of exogenous ketones [58]. This effect was reflected
in the decreased production of plasmatic IL-1β. Together with IL-1α, these cytokines
significantly contribute to the promotion of insulin resistance impairing the function of
adipocytes in promoting inflammation. In addition to low-grade inflammation, NCDs [62]
share other features such as imbalances in the composition of the gut microbiota, which
have also been associated with cancer [63]. In this sense, patients suffering from intestinal
metaplasia display a modified cluster of microbes after H. pylori eradication [64]. Despite
the abundance of pathogenic bacteria and the presence of oral microbes enabling the pro-
duction of peptidoglycan(s), decreased NOD-like signaling was found. This effect appears
to contrast with that expected from the endotoxin-like properties of the peptidoglycan(s)
from pathogens. The microbial cluster of these patients was composed of, among others,
members of the Prevotella, Rothia, and Granulicatella genera, which could represent a good
source of butyrate-producing bacteria [65,66]. It is worth noting the butyrate-induced
effects limiting natural killer (NK) cell function [67], which could allow hypothesizing
this effect to explain, at least in part, the reported data on patients suffering intestinal
metaplasia. It is known that NK cells play a dual role, and in cases of immune evasion
even help promote metastases [68]. This hypothesis could also be supported by the anti-
inflammatory effects derived from probiotic administration. Despite the widespread use of
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probiotics, most of which include the Bifidobacterium and Lactobacillus genera producing
peptidoglycans, there is scarce information from controlled trials concerning their direct
association either with the expression or modulation of NODs and NOD-like receptors
(NLRs). In this regard, we can hypothesize that the production of peptidoglycan hydrolases
by these genera could present a different activity than those produced by Gram (−) bacteria.
Thus, despite the generation of ligands for NOD2 by Gram (+) bacteria [69], the signaling
of this receptor results in effects that may not synergize with TLRs, which would partly
explain the absence of inflammatory effects (Figure 2). Otherwise, a significant bulk of
scientific reports exists confirming that cytokine production and innate immune as well
as adaptive cells are modulated by lactobacilli and bifidobacteria resulting in improved
regulatory immune responses [70].
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domain-containing proteins (NOD) and Toll-like receptors in human immune and metabolic systems
and their main agonists. meso-DAP, γ-D-glutamyl-meso-diaminopimelic acid; MDP, muramyl
dipeptide; TAB1, mitogen-activated protein kinase kinase 7-interacting protein-1; Rip2, receptor-
interacting protein 2.

Currently, most of the prominent information concerning the key role of NODs and
NLRs in immunity and metabolism has come from preclinical models [71,72]. In addition
to identifying the different signaling pathways and interaction with PAMPs and DAMPs,
studies have demonstrated the enormous involvement of these receptors in different
immunonutritional-based processes and diseases, including cancer [73–75]. These studies
constitute good examples of the many immune and metabolic diseases associated with
NODs and NLRs. Prior research defined the protective role of NOD1/2 deficiency from
HFD-induced inflammation, lipid accumulation, and peripheral insulin intolerance [20].
Further studies also defined an active role for NOD1 in the inflammatory environment
associated with both experimental and human diabetic cardiac disease [76]. In addition,
recent data point out the protective function of NOD1 reducing low-grade inflammation
and thereby obesity development [21]. Alterations in glucose metabolism have been pre-
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viously identified as a major driver of B cell lymphopoiesis and function [77]. Recently, a
key—microbial ligand-independent—role has been demonstrated for NOD1in regulating
proliferative response(s) in adaptive immunity [75]. Notably, the latter response(s) were as-
sociated with NOD1-mediated contrasting effects preventing colitis, while impairing T cell
maturation and activity. Thus, important consequences during anti-tumoral immunity de-
velopment can be expected. A clear example is the recently described microbiota-dependent
activation of CD4+ T cells inducing the CTLA-4 blockade via Fcγ receptors [78]. However,
the Bifidobacterium and Lactobacillus genera prevent immunological alterations, generally
causing severe inflammation, associated with the activation of CTLA4 [79,80]. Supplemen-
tation with probiotics can help to integrate the diverse biological response(s) derived from
NOD/NLR activation, PAMPs, and DAMPs, the lack of activation by their peptidoglycan(s),
but control of the proinflammatory milieu and TLR signaling (Figure 2). This speculation
could be supported by in vivo studies using a probiotic mixture (i.e., Bifidobacterium strains
and Lacticaseibacillus rhamnosus) as a supplement for preterm infants, where it was proven
effective in reducing the level of calprotectin as well as IFN-γ and IL-22 [81], the latter
mediating the synergic and inhibitory effects, respectively, of NOD activity and expression.
The administration of prebiotic inulin, which increased the abundances of Akkermansia
and Bifidobacterium that was reflected in a decrease in the ratio Firmicutes/Bacteroidetes, was
shown to cause the down-regulation of NLRP3 [82]. Also, some other symbionts such as
Bacterioides fragilis, Enterococcus fecalis, and Lactobacillus plantarum have been identified as
microbes that do not induce the NLRC4-dependent release of IL-1β [83].

Obesity and T2D result in enhanced oxidative damage to circulating lipoproteins in
the plasma, playing a key role in the pathogenesis of the diseases. It is not surprising that
molecular components of LDL such as phospholipids as well as parts of the cell membrane
become oxidized (oxPLs), thus exerting critical functions as immunomodulatory (DAMPs)
signals [84]. These oxPLs can interact with CD14 and be recognized by CD36 accessing the
cytosol to activate caspases 1 and 11, the NLRP3 regulators [85]. In addition, in vitro studies
have also shown the role of oxPLs in inducing the chemotaxis and intracellular calcium
influx in natural killer (NKs) cells [86] and the release of IL-6 in human monocytes [87]. It is
worth noting here that NOD-like receptors may directly mediate signaling at the endoplas-
mic reticulum affecting calcium influx [34]. These signals end up in the development of an
inflammatory milieu and could drive the hyperactivation of innate lymphoid cells (ILCs)
group 1, which includes the conventional and unconventional subsets of NK cells. Notably,
ILCs aggravate adipose tissue fibrosis and the development of diabetes in obesity [88].

From an immunonutritional perspective, n-3 PUFAs represent important food ingredi-
ents with the potential to improve, at least in part, NCD-associated immune and metabolic
imbalances alleviating obesity, T2D, and metabolic syndrome, and they could also slow
down tumor growth and increase the efficacy of chemotherapy. In particular, n-3 PUFAs
have been shown to be effective in inhibiting NF-kappaB and IL-8 expression induced
by NOD receptors in HCT116 [89]. So far, the results derived from the administration of
n-3 PUFAs in humans on the expansion and activation of the immunological effectors of
the innate branch—NKs and macrophages—are not conclusive. The scarce literature on
the matter reveals the variability of biological responses and their meaning [90–93]. The
consumption of n-3 PUFAs had a significant influence on the functional polarization of the
macrophage population in adipose tissue, promoting a drift toward its M2 subphenotype
while reducing insulin resistance [93]. Recent research suggests that the body’s composition
in PUFAs appears to be associated with TLR4 signaling [16–94]. The latter is attributed to a
protein fraction (~30 kDa MWCO) isolated from C. quinoa with advantageous effects, either
in healthy or cancer-developing mice—improving mechanisms to control inflammatory
processes and liver macrophage and ILC expansion in animals under HFD. These results
allow us to hypothesize that the derivation of signaling in TLRs can condition and modify
the severity and orientation of NOD control over metabolic and immunological responses.
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5. Conclusions and Future Perspectives

While significant progress has been made to better understand the role of NODs/NLRs
in human diseases, immunity, and inflammation, the relation to NCDs and the interaction
with immunonutritional compounds remain poorly defined from a biomedical point of view.
A critical review of the literature clearly shows the scarcity of existing information, and
the non-specific effects of food/food-derived ingredients in interactions with NOD/NLR
receptors. Lacking ‘defined’ and ‘oriented mechanism(s)’ limits the use of food with a
preventive and/or therapeutic intention further than considering their nutritional profile.
It remains to be understood how these receptors differentiate between peptidoglycan from
pathogenic bacteria and beneficial probiotics. In addition, how NODs/NLRs integrate
the stimuli and TLR-derived signaling enabled by immunonutritional compounds needs
to be elucidated. Altogether, only in conjunction with the dynamics of immune and
metabolic alterations occurring at NCDs can the role, worsening or improving disease, be
elucidated. A better understanding of their molecular implication and influence on innate
immune effector cells—myeloid monocytes/macrophages and the expansion of ILCs—can
significantly contribute to control and/or intervention in NCDs and cancer (Figure 1). The
use of biocompatible vesicles could help in improving the bioavailability of biofunctional
food compounds to influence the activity of NODs/NLRs.

NCDs and cancer could benefit from early and preventive immunonutritional strate-
gies, which result in less aggressive to physiological processes. Although NODs/NLRs
have been considered in various clinical interventions, improved research into immunonu-
tritional trials is needed along with large-scale studies. The integration of this knowledge
and the definition of the lack of understanding will significantly contribute to paving the
way to transdisciplinary interventions, enabling nutrition precision interventions with a
preventive or therapeutic intention in regard to immune and metabolic imbalances leading
to NCDs and cancer. Understanding the role of NODs/NLRs may represent an important
molecular checkpoint for devising effective strategies for the innate immune control of
these diseases.
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