
Citation: de La Harpe, R.; Zagkos, L.;

Gill, D.; Cronjé, H.T.; Karhunen, V.

Cerebrospinal and Brain Proteins

Implicated in Neuropsychiatric and

Risk Factor Traits: Evidence from

Mendelian Randomization.

Biomedicines 2024, 12, 327.

https://doi.org/10.3390/

biomedicines12020327

Academic Editor: Víctor M. Rivera

Received: 6 January 2024

Revised: 25 January 2024

Accepted: 27 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Cerebrospinal and Brain Proteins Implicated in Neuropsychiatric
and Risk Factor Traits: Evidence from Mendelian Randomization
Roxane de La Harpe 1,* , Loukas Zagkos 2 , Dipender Gill 2 , Héléne T. Cronjé 3 and Ville Karhunen 4,5

1 Unit of Internal Medicine, Department of Medicine, University Hospital of Lausanne,
1011 Lausanne, Switzerland

2 Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London,
London SW7 2BX, UK; l.zagkos@imperial.ac.uk (L.Z.); dipender.gill@imperial.ac.uk (D.G.)

3 Department of Public Health, Section of Epidemiology, University of Copenhagen,
1165 Copenhagen, Denmark; toinet.cronje@sund.ku.dk

4 Research Unit of Mathematical Sciences, Faculty of Science, University of Oulu, Fi-900014 Oulu, Finland;
ville.karhunen@oulu.fi

5 Research Unit of Population Health, Faculty of Medicine, University of Oulu, Fi-900014 Oulu, Finland
* Correspondence: roxane.de-la-harpe@chuv.ch; Tel.: +41-792284384

Abstract: Neuropsychiatric disorders present a global health challenge, necessitating an understand-
ing of their molecular mechanisms for therapeutic development. Using Mendelian randomization
(MR) analysis, this study explored associations between genetically predicted levels of 173 proteins
in cerebrospinal fluid (CSF) and 25 in the brain with 14 neuropsychiatric disorders and risk factors.
Follow-up analyses assessed consistency across plasma protein levels and gene expression in various
brain regions. Proteins were instrumented using tissue-specific genetic variants, and colocalization
analysis confirmed unbiased gene variants. Consistent MR and colocalization evidence revealed that
lower cortical expression of low-density lipoprotein receptor-related protein 8, coupled higher abun-
dance in the CSF and plasma, associated with lower fluid intelligence scores and decreased bipolar
disorder risk. Additionally, elevated apolipoprotein-E2 and hepatocyte growth factor-like protein in
the CSF and brain were related to reduced leisure screen time and lower odds of physical activity,
respectively. Furthermore, elevated CSF soluble tyrosine-protein kinase receptor 1 level increased lia-
bility to attention deficit hyperactivity disorder and schizophrenia alongside lower fluid intelligence
scores. This research provides genetic evidence supporting novel tissue-specific proteomic targets for
neuropsychiatric disorders and their risk factors. Further exploration is necessary to understand the
underlying biological mechanisms and assess their potential for therapeutic intervention.

Keywords: neuropsychiatric traits; genetically predicted proteins; cerebrospinal fluid proteins; brain
proteins; plasma proteins; brain gene expression proteins; Mendelian randomization; causal inference;
tissue-specific proteomic target

1. Introduction

Mental disorders affect one in every eight people around the world and represent a
substantial burden on public health. Approximately 5% of the global years of life lost to
disability are accounted for by mental disorders, with more than 125 million years lost in
2019 alone [1]. The development of effective therapies for mental disorders is challenging
due to their complexity and heterogeneous aetiology and clinical presentation [2]. Liability
to these disorders is determined by a complex interaction of distinct and shared genetic,
lifestyle, and environmental factors. Disentangling these disorders is further complicated
by the fact that risk factors of one disorder can often be the consequence of another or of its
therapy (e.g., disturbed sleep) [3,4].

Proteins represent intermediate phenotypes for health outcomes and can provide
insight into how genetic and non-genetic factors are mechanistically linked to clinical
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outcomes. Therefore, circulating proteins, which are measurable and easily accessible,
are promising targets for diagnosis, prognosis, and intervention [2]. Moreover, proteomic
analysis of specific tissues can reveal changes in protein expression patterns pertinent to
the pathophysiology of the relevant organ system.

Genome-wide association studies (GWAS) have discovered numerous genetic variants
predicting susceptibility to neuropsychiatric traits [5]. Approximately 90% of these variants
are located outside of protein-coding regions, indicating that a substantial number of
the associated variants may exert their influence on disease phenotypes through gene
regulatory mechanisms, such as by influencing gene and protein expression [6–8]. Thus, by
investigating the genetic variants that affect gene and protein expression, we will be able to
more precisely unravel disease mechanisms and identify feasible therapeutic targets [6,7,9].

Performing such investigations in an epidemiological research setting can be tremen-
dously challenging due to the biases of traditional observational studies, including chal-
lenges in sampling conditions, measurement of protein levels, and accounting for con-
founding factors like socioeconomic variables. Additionally, observed associations may
be influenced by reverse causation, where neuropsychiatric or behavioural traits affect
behaviours and biological pathways that, in turn, impact circulating protein levels [2].
Mendelian randomization (MR), an analytical framework that uses genetic variants as in-
strumental variables for studying the effect of varying an exposure on an outcome, can help
to facilitate the inference of causal relationships. Genetic variants are assigned randomly
during meiosis independently of environmental confounders and are fixed at conception,
and thus not affected by outcomes, bypassing the limitations of traditional methods and in
some ways mimicking a randomised controlled trial design [10].

In the current study, we aimed to determine the effect of protein abundance in the
brain and cerebrospinal fluid (CSF) on the liability to neuropsychiatric disorders and their
behavioural risk factors using the MR framework. Additionally, we assessed whether the
effect of these proteins extended to their abundance in plasma and their region-specific
expression in the brain.

2. Materials and Methods
2.1. Study Overview

Figure 1 provides an overview of the study design. Briefly, we identified genetic
instruments for the relative abundance of 179 CSF and brain proteins and performed a
two-sample cis-MR analysis to assess their causal effects on seven neuropsychiatric disor-
ders [anorexia nervosa, attention deficit hyperactivity disorder (ADHD), autism spectrum
disorder (ASD), bipolar disorder (BPD), insomnia, major depressive disorder (MDD), and
schizophrenia], as well as 7 commonly associated behavioural risk factors of these disorders
(alcohol consumption, fluid intelligence, educational attainment, physical activity, sleep
duration, smoking, and leisure screen time). Then, to further explore the robustness of the
associations, we followed up all statistically significant CSF and brain protein–outcome
association pairs with a two-sample cis-MR of their concordant circulating protein levels
and gene expression levels in the brain. Publicly available GWAS summary statistics were
used for all analyses. Appropriate informed participant consent and ethical approval were
obtained in each of the original studies.

2.2. Data Sources and Instrument Selection
2.2.1. CSF and Brain Proteins

Genetic association data for 713 CSF and 1079 brain proteins were obtained from the
National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site, repository at
https://www.niagads.org/datasets/ng00102, (accessed on 30 March 2023). The data source
included proteins that were assayed in CSF samples from 835 individuals (mean ± standard
deviation [SD] age of 69.4 ± 9.3 years), including 621 without clinically diagnosed dementia.
Additionally, proteomic analysis of brain tissue was performed in samples donated by
380 independent individuals (83.3 ± 10 years), including 44 without clinical dementia.

https://www.niagads.org/datasets/ng00102
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Both cohorts represented individuals of European ancestry only, and both comprised more
women than men (53% and 57%, respectively) [11].
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Figure 1. (A) Flow diagram of the study design and data sources. (B) The three instrumental
variable assumptions of the Mendelian randomization framework made in this work: (1) The cis
genetic variants variables are strongly associated to the relative abundance of the proteins they are
instrumenting; (2) there are no instrument–outcome confounders, and (3) the genetic variants only
affect the neuropsychiatric disorders and risk factors through the proteins they instrument, and not
through any other independent causal pathway. (C) Overview of the number of proteins that were
instrumented and observed to affect one or more outcomes in each tissue. CSF, cerebrospinal fluid;
GWAS, genome-wide association study; FDR, false discovery rate; MR, Mendelian randomization.
Created with BioRender.com.

Protein abundance was quantified in relative fluorescence units (RFUs), using a mul-
tiplexed aptamer-based platform developed by SomaLogic Inc. (Boulder, CO, USA) [12].
Genetic association analyses with protein abundance included sex, age, the first two genetic
principal components, and the genotyping platform as covariates.

To select instruments, we considered variants associated with protein levels at genome-
wide significance (p < 5 × 10−8) that were located within 1 Mb of the start and end coordi-
nates of the corresponding gene based on the hg19/GRCh37 assembly coordinates (i.e., cis
protein quantitative trait loci [pQTLs]) [13]. To ensure the independence of the genetic in-
struments, we clumped the variants using a pair-wise linkage disequilibrium (LD) r2 < 0.01
from the 1000 genomes project phase 3 European LD reference panel [14] within a clumping
window of 1 Mb. In all cases, we used variants that were also present in the outcome
datasets. Instrument strength was assessed using the proportion of variance in protein
level, as well as individual and cumulative instrumental variant F-statistics, where F > 20
was considered acceptable [15]. Harmonisation of the datasets and clumping of the genetic
instruments were performed using the “TwosampleMR” v.0.6.0 R package [16]. Details of
the genetic variants used as instrumental variables are provided in Tables S1 and S2.

2.2.2. Neuropsychiatric Diagnoses and Risk Factors

Table S3 provides an overview of the outcome data sources used in this study. Briefly,
mental disorders, physical activity, and insomnia were investigated as binary outcomes
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in their respective GWASs; i.e., having vs. not having a diagnosis of anorexia nervosa,
ADHD, ASD, BPD, insomnia, MDD, or schizophrenia, and the presence vs. absence of
moderate-to-vigorous intensity physical activity. Cohorts included at least 16,900 cases and
35,100 controls.

Alcohol consumption was quantified as log10 transformed grams per day, while smok-
ing was represented as a standardised smoking index that amalgamated smoking frequency
and duration over the lifetime. Sleep duration and screen time were both investigated
as hours per day. Education was measured as years of schooling completed, and fluid
intelligence as the score obtained on a fluid intelligence test (SD units). Cohort sizes ranged
from 257,828 to 766,345 participants. Except for the GWAS of schizophrenia, which was
trans-ethnic (74.3% European), all other GWASs were performed in European cohorts.

2.2.3. Mendelian Randomization: CSF and Brain Protein Levels

We estimated the MR effect for each exposure–outcome pair using the Wald ratio (WR)
when the instrument comprised a single variant, and the random-effects inverse-variance
weighted method (IVW) when multiple variants were available as instruments [17]. MR
estimates were reported per 1-log higher genetically predicted protein-binding aptamer
relative fluorescence units (RFU). To correct for multiple testing of multiple correlated
phenotypes, we calculated the false discovery rate (FDR) corrected p-values (pFDR). If
more than 2 variants were available, we conducted MR-Egger [18] and MR-weighted
median methods [19] to assess the robustness of the MR estimates to potential inclusion of
pleiotropic variants. These methods have less statistical power to detect associations and
were only applied as sensitivity analyses for the concordance of the effect sizes with the
IVW method, and therefore no multiple testing correction was applied for the results from
these methods. Last, to quantify heterogeneity, which may be an indication of horizontal
pleiotropy [20], we calculated the I2 statistic.

2.2.4. Follow-Up Analyses Using Plasma Protein Levels and Brain Gene Expression Data

For the exposure–outcome pairs that showed evidence of an MR association at
pFDR < 0.05, we conducted follow-up MR analysis using genetic instruments of circu-
lating plasma protein levels (pQTLs) and brain gene expression levels (eQTLs) where
available. The genetic associations with plasma protein levels were obtained from genome-
wide association studies conducted in a cohort of 35,559 Icelandic individuals [9]. Genetic
associations with gene expression levels in the cortex, hippocampus, and spinal cord were
obtained from a meta-analysis of 14 cohorts, consisting of up to 2683, 168, and 108 European
ancestry individuals, respectively [21].

Instrument selection was done as described above; i.e., variants associated with protein
abundance or expression at p < 5 × 10−8 within ±1 Mb of the coding gene, clumped at
r2 < 0.01, were selected as instruments. To account for multiple testing, the pFDR values
were calculated separately for the plasma protein and tissue-specific analyses. MR analyses
were performed in the same manner as described for the primary analysis. MR estimates
are reported per 1-SD increase for both circulating plasma protein-binding aptamer RFUs
(effect sizes were calculated after inverse-normal rank transformations) and brain gene
expression (effect sizes were calculated from z-scores assuming that var(y) = 1) and were
considered statistically significant at pFDR < 0.05.

2.2.5. Colocalisation Analyses

We performed colocalisation analyses to explore whether the associations observed
between the two traits in MR were influenced by confounding byLD (i.e., at the same locus,
there are genetic variants that influence the protein and outcome through separate biological
mechanism but are liked to each other through LD) [22]. We assessed associations that were
significant in both CSF and brain samples and those that were still at pFDR < 0.05 after the
follow-up analyses. When using the Bayesian test for colocalization, we operated under the
assumption that, at most, one causal variant for a trait existed within the locus. Under this
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assumption, this method was used to systematically test the following hypotheses: H0: no
causal effects of variants with either (i.e., the exposure and the outcome) trait; H1: a causal
variant–exposure effect only; H2: a causal variant–outcome effect only; H3: independent
causal variant effects on the exposure and the outcome; and H4: a causal variant affecting
both the exposure and outcome [23]. We used the default priors of 10−4, 10−4 and 10−5

for a variant being associated with exposure, outcome, and both traits, respectively [24].
A posterior probability (PP) for H4 (PPH4) > 0.5 would imply that colocalization is more
probable than any alternative scenario. Conversely, PPH3 > 0.5 would indicate that the
observed MR associations are likely confounded by LD, and that there are distinct causal
variants driving the instrument–exposure and instrument–outcome associations. Full
summary statistics were required for these analyses.

3. Results
3.1. CSF and Brain Genetic Instruments and Two-Sample MR Associations

A total of 173 CSF and 25 brain proteins were robustly instrumented by cis-pQTLs
[median F-statistic = 82, interquartile range (IQR = 41–223) for CSF, and 67 (50–123) for
brain instruments] and leveraged for two-sample MR analyses (Supplemental Tables S1
and S2). In total, 19 proteins were instrumented in both tissues (Figure 1C).

We observed 77 associations at pFDR < 0.05 among 42 distinct instrumented CSF pro-
teins across 11 outcomes (Table S4), and 12 associations among eight distinct instrumented
brain proteins across eight outcomes (Table S5 and Figure 1C). Of the 19 proteins with
genetic instruments in both the CSF and brain, three were associated with at least one
outcome in one tissue only (brain-derived PPAC with sleep duration, brain-derived C4b
with fluid intelligence score and schizophrenia liability, and CSF-derived CNTN2 with
schizophrenia liability), four (MSP, ILT-2, GSTP1, and ApoE2) had associations consistent
in the brain and CSF (Table 1), and 12 did not associate with any outcome in either tissue.

3.2. Protein-Specific and Outcome-Specific Associations in CSF/Brain Sample

Hepatocyte growth factor-like protein (MSP) showed the most extensive associations
with our outcomes of interest. Higher genetically predicted relative abundance in the
brain and CSF was associated with lower fluid intelligence test scores, lower odds of being
physically active, prolonged screen time, and an increase in anorexia nervosa liability.
Genetically predicted low-density lipoprotein receptor-related protein 8 (LRP8) abundance
in the CSF had the second-broadest effect through its association with lower fluid intelli-
gence scores, reduced odds of physical activity as well as a reduced liability to BPD and
schizophrenia. Hours spent on leisure screen time emerged as the most widely associated
trait with genetically predicted protein abundance, with 20 CSF protein-associations and
two (overlapping) brain protein associations observed. Insomnia liability followed with
13 associations observed with instrumented CSF proteins, and three with proteins instru-
mented using abundance in the brain. Notably, apart from three proteins [one protein
instrumented in each tissue (FCG2A and FCG2B) and one instrumented in both (GSTP1)],
all the proteins associated with insomnia also had concordant associations with leisure
screen time (Figure 2).
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Table 1. Mendelian randomization estimates for the instrumented proteins that affect neuropsychiatric disorders or their risk factors in more than one of the
investigated tissues.

Protein Full Name
(Abbreviation)

Outcome (Unit of
Estimate Measure)

CSF (cis-pQTL) Brain (cis-pQTL) Plasma (cis-pQTL) Brain (cis-eQTL)

Estimate
(95% CI) pFDR Estimate

(95% CI) pFDR Estimate
(95% CI) pFDR Estimate

(95% CI) pFDR

Apolipoprotein E2
(Apo E2)

Screen time (h) −1.26 (−1.73;
−0.79) 2 × 10−5 −0.31 (−0.42;

−0.20) 4 × 10−6

Insomnia (OR) 0.41 (0.22; 0.77) 0.09 0.79 (0.68; 0.91) 0.03

Agouti-related
protein (ART) Schizophrenia (OR) 2.14 (1.4; 3.26) 0.02 1.09 (1.03; 1.16) 0.02

Cathepsin S (CATS) Schizophrenia (OR) 1.64 (1.27; 2.13) 0.008 1.14 (1.06; 1.22) 0.002
Sleep duration (h) 0.11 (0.05; 0.17) 0.03 0.02 (0.01;0.03) 0.02

Cytoskeleton-associated
protein 2 (CKAP2)

Screen time (h) 0.71 (0.46; 0.96) 5 × 10−6

SC: 0.01 (0.01;
0.02) 0.001

HC: 0.01 (0.00;
0.02) 0.01

Copine 1 (CPNE1) Intelligence (points) −0.08 (−0.12;
0.04)

0.002

SC: −0.01
(−0.02; −0.01) 9 × 10−4

HC: −0.02
(−0.03; −0.01) 0.002

Extracellular matrix protein
1 (ECM1) Screen time (h) 0.67 (0.37; 0.97) 7 × 10−4 0.05 (0.03; 0.07) 4 × 10−4

Glutathione S-transferase P
(GSTP1)

Insomnia (OR) 1.18 (1.06; 1.31) 0.05 1.44 (1.14; 1.82) 0.04

Sleep duration (h) −0.07 (−0.12;
−0.03) 0.04 −0.16 (−0.27;

−0.06) 0.04

Haptoglobin (HPT) ASD (OR) 0.92 (0.88; 0.97) 0.03 1.05 (1.01; 1.09) 0.04

Leukocyte
immunoglobulin-like
receptor subfamily B
member 1 (ILT-2)

Bipolar disorder (OR) 1.33 (1.11; 1.59) 0.04 1.63 (1.19; 2.23) 0.04

Low-density lipoprotein
receptor-related protein
8 (LRP8)

Bipolar disorder (OR) 0.45 (0.31; 0.65) 0.001 0.84 (0.77; 0.93) 0.004 1.19 (1.1; 1.3) 4 × 10−4

Schizophrenia (OR) 0.57 (0.42; 0.76) 0.008 1.11 (1.03; 1.19) 0.02
Physical activity (OR) 0.81 (0.71; 0.91) 0.02 0.95 (0.91; 0.98) 0.01 1.06 (1.02; 1.1) 0.01
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Table 1. Cont.

Protein Full Name
(Abbreviation)

Outcome (Unit of
Estimate Measure)

CSF (cis-pQTL) Brain (cis-pQTL) Plasma (cis-pQTL) Brain (cis-eQTL)

Estimate
(95% CI) pFDR Estimate

(95% CI) pFDR Estimate
(95% CI) pFDR Estimate

(95% CI) pFDR

Intelligence (points) −0.21 (−0.32;
−0.1) 0.008 −0.05 (−0.08;

−0.02) 0.01 0.05 (0.02; 0.07) 2 × 10−4

Hepatocytes growth
factor-like protein (MSP)

Intelligence (points) −0.11 (−0.13;
−0.09) 9 × 10−18 −0.21 (−0.25;

−0.16) 4 × 10−19 −0.02 (−0.03;
−0.01) 6 × 10−5 0.04 (0.02; 0.05) 1 × 10−5

Anorexia nervosa (OR) 1.30 (1.17; 1.45) 1 × 10−4 1.61 (1.32; 1.97) 0.04
Physical activity (OR) 0.95 (0.92; 0.97) 8 × 10−4 0.90 (0.86; 0.95) 8 × 10−4

Sleep duration (hs) 0.08 (0.06; 0.11) 2 × 10−6 0.16 (0.11; 0.21) 1 × 10−7

Plasma protease C1
inhibitor (SERPING1)

MDD (OR) 0.72 (0.6; 0.85) 0.006 0.97 (0.94; 0.99) 0.02
Schizophrenia (OR) 0.46 (0.34; 0.63) 1 × 10−4 0.93 (0.9; 0.97) 8 × 10−3

Physical activity (OR) 1.36 (1.2; 1.54) 1 × 10−4 1.03 (1.02; 1.06) 6 × 10−5

Tyrosine-protein kinase
receptor Tie-1 (s-Tie1)

ADHD (OR) 12.1 (4.73; 30.8) 3 × 10−5 1.24 (1.05; 1.45) 0.04 1.15 (1.1; 1.22) 5 × 10−6

Schizophrenia (OR) 2.84 (1.64; 4.93) 0.009 1.11 (1.05; 1.16) 0.002 1.06 (1.02; 1.09) 0.004

Intelligence (points) −0.43 (−0.62;
−0.23) 0.001 −0.21 (−0.32;

−0.1) 3 × 10−4

LMW phosphotyrosine
protein phosphatase
(PPAC)

Sleep duration (h) 0.04 (0.01; 0.06) 0.04 −0.03 (−0.05;
−0.01) 0.01

Tartrate-resistant acid
phosphatase type 5
(TrATPase)

Schizophrenia (OR) 0.55 (0.38; 0.79) 0.03 0.92 (0.88; 0.97) 0.01

Thrombospondin-4 (TSP4) Screen time (h) 0.34 (0.17; 0.52) 0.008 0.04 (0.02; 0.07) 0.007

Genetically predicted protein expression in the brain (Brain eQTLs) refer to expression in the cortex unless specified as hippocampus (HC) or spinal cord (SC). ADHD, attention deficit
hyperactivity disorder; ASD, autism spectrum disorder; h, hours; HC, hippocampus; MDD, major depressive disorder; OR, odds ratio; SC, spinal cord.
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Figure 2. Overlap of effects of genetically predicted CSF and brain proteins on neuropsychiatric
disorders and their risk factors. Protein name text colour indicates whether a statistically significant
association was observed in genetically predicted CSF-derived (blue) proteins, brain-derived (orange)
proteins, or both (black). Protein names written in bold, italicized text are those that were replicated in
analysis of instrumented plasma abundance and/or brain expression. Arrows indicate the direction
of association: arrows pointing up indicate a positive association (e.g, higher protein levels are
associated with a higher disease liability or longer screen time) and those pointing down indicate
a negative association (e.g, higher protein levels are associated with a lower disease liability or
shorter screen time. Related association statistics are reported in Tables S4–S7. ADHD, attention
deficit hyperactivity disorder; AN, anorexia nervosa; ASD, autism spectrum disorder; MDD, major
depressive disorder; SCZ, schizophrenia. Created with BioRender.com.

3.3. Plasma and Brain Gene Expression Genetic Instruments and Two-Sample MR Associations

Among the 46 CSF- and/or brain-derived proteins that showed significant associations,
27 were further investigated using their genetically determined abundance in plasma
(Table S6), while 28 (including 22 also tested in plasma) were investigated using their
expression in brain tissue (i.e., gene expression in the cerebral cortex, spinal cord, and/or
hippocampus, Table S7). Of the 22 proteins with genetic instruments for both plasma
abundance and brain expression level, three (LRP8, s-Tie-1 and MSP) had concordant
associations when instrumented using either tissue. Eight proteins were associated only in
one of the instrument modalities (Table S8).

Genetically predicted plasma abundance of six proteins and brain expression levels of
seven proteins were each significantly associated with one or more neuropsychiatric disor-
der(s) or risk factor(s) (Table 1). All 12 associations implicating circulating proteins were
directionally consistent to the associations observed for their CSF-derived counterparts.

Genetically increased expression of CPNE1 protein in the spinal cord and hippocam-
pus related to a lower fluid intelligence score, in line with observations in overall brain
CPNE1 abundance. Our observation of higher instrumented CKAP2 abundance in the
CSF increasing screen time also extended to CKAP2 gene expression in the spinal cord
and hippocampus.
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Once again, LRP8 stood out as the protein with the broadest associations with the
outcomes. Concordant directions of effect were observed between plasma- and CSF-derived
relative LRP8 abundance, with higher LRP8 associated with lower fluid intelligence scores
and odds of physical activity, as well as a reduced liability to BPD and schizophrenia. In
contrast, the associations were opposite in the cerebral cortex.

3.4. Evidence of Shared Causal Variants in Concordant Specific-Tissue
Protein–Outcome Associations

Colocalisation results provided evidence for a shared causal variant between LRP8
abundance in the CSF and plasma and LRP8 expression in the cerebral cortex and in-
creased liability to BPD (PPH4 = 0.91 for all three), as well as fluid intelligence test scores
(PPH4 = 0.70, 0.54, and 0.59, respectively). There was no evidence for a shared causal path-
way between plasma LRP8 abundance and physical activity. There was strong evidence
for a shared causal variant between CSF-derived sTie-1 and decreased fluid intelligence
(PPH4 = 0.95), as well as increased liability to ADHD (PPH4 = 0.95) and schizophrenia
(PPH4 = 0.90), but no evidence for sTie-1 abundance in the plasma or expression in the
cerebral cortex. Finally, there was also consistent evidence that higher levels of ApoE2 and
MSP in the CSF and brain relate to reduced leisure screen time and lower odds of engaging
in physical activity, respectively (PPH4 > 0.90) (Table 2).

Table 2. Colocalization results for the significant genetic associations between instrumented proteins
on neuropsychiatric disorders or their risk factors.

Posterior Probability of Causal Variant Hypotheses (PPH)

Uniprot Tissue Exposure Outcome SNPs 0: None 1: Exposure 2: Outcome 3: Distinct 4: Both

P02649 CSF ApoE2 Insomnia 247 <0.01 0.70 <0.01 <0.01 0.30
CSF ApoE2 Leisure screen time 253 <0.01 <0.01 <0.01 0.01 0.99
Brain ApoE2 Leisure screen time 232 <0.01 <0.01 <0.01 0.06 0.94

Q14114 CSF LRP8 Bipolar disorder 356 <0.01 0.05 <0.01 0.04 0.91
Plasma LRP8 Bipolar disorder 5038 <0.01 0.04 <0.01 0.05 0.91
Cortex LRP8 Bipolar disorder 4975 <0.01 0.04 <0.01 0.05 0.91
CSF LRP8 Fluid intelligence 376 <0.01 0.27 <0.01 0.04 0.70
Plasma LRP8 Fluid intelligence 6868 <0.01 0.36 <0.01 0.10 0.54
Cortex LRP8 Fluid intelligence 5656 <0.01 0.33 <0.01 0.07 0.59
CSF LRP8 Schizophrenia 356 <0.01 0.50 <0.01 0.02 0.48
Cortex LRP8 Schizophrenia 4999 <0.01 0.47 <0.01 0.10 0.43
CSF LRP8 Physical activity 393 <0.01 0.47 <0.01 0.03 0.51
Plasma LRP8 Physical Activity 8558 <0.01 0.60 <0.01 0.31 0.09
Cortex LRP8 Physical Activity 5969 <0.01 0.44 <0.01 0.14 0.42

P26927 CSF MSP Anorexia Nervosa 219 <0.01 <0.01 <0.01 >0.99 <0.01
Brain MSP Anorexia Nervosa 222 <0.01 <0.01 <0.01 >0.99 <0.01
CSF MSP Fluid intelligence 219 <0.01 <0.01 <0.01 >0.99 <0.01
Brain MSP Fluid intelligence 222 <0.01 <0.01 <0.01 >0.99 <0.01
Plasma MSP Fluid intelligence 3558 <0.01 <0.01 <0.01 >0.99 <0.01
Cortex MSP Fluid intelligence 2792 <0.01 <0.01 <0.01 >0.99 <0.01
CSF MSP Sleep duration 219 <0.01 0.97 <0.01 0.02 <0.01
Brain MSP Sleep duration 222 <0.01 0.97 <0.01 0.02 0.01
CSF MSP Physical activity 236 <0.01 <0.01 <0.01 0.05 0.94
Brain MSP Physical activity 229 <0.01 <0.01 <0.01 0.03 0.97

P35590 CSF sTie-1 ADHD 241 <0.01 <0.01 <0.01 0.05 0.95
Plasma sTie-1 ADHD 4474 <0.01 <0.01 <0.01 1.00 <0.01
Cortex sTie-1 ADHD 4219 <0.01 <0.01 <0.01 1.00 <0.01
CSF sTie-1 Schizophrenia 234 <0.01 0.05 <0.01 0.05 0.90
Plasma sTie-1 Schizophrenia 4617 <0.01 <0.01 <0.01 1.00 <0.01
Cortex sTie-1 Schizophrenia 4581 <0.01 <0.01 <0.01 1.00 <0.01
CSF sTie-1 Fluid intelligence 234 <0.01 <0.01 <0.01 0.05 0.95
Cortex sTie-1 Fluid intelligence 4888 <0.01 <0.01 <0.01 1.00 <0.01

Posterior probabilities of the following hypotheses are tested: 0: no variants are causal; 1: causal variant for
exposure only; 2: causal variant for outcome only; 3: distinct causal variants for exposure and outcome; 4: shared
causal variant for exposure and outcome. Bold text indicates exposure–outcome pairs that likely share a causal
variant. CSF, Cerebrospinal fluid; ADHD, attention deficit hyperactivity disorder.
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4. Discussion
4.1. Genetic Exploration of Neuropsychiatric Disorders: Unravelling Causal Tissue-Specific
Protein Associations

This research provides genetic evidence in support of novel tissue-specific protein
and gene targets for neuropsychiatric disorders and their risk factors. Using the MR
framework, we provided evidence for a potential causal association between the genetically
predicted relative abundance of 46 distinct proteins in the CSF and/or brain, across seven
neuropsychiatric disorders (anorexia nervosa, ADHD, ASD, BPD, insomnia, MDD, and
schizophrenia) and four of their commonly associated risk factors (fluid intelligence scores,
participation in leisure physical activity, sleep duration, and screen time). We did not
observe evidence for associations between genetically predicted protein abundance on
lifetime smoking behaviour, alcohol consumption, or years of education. Association
patterns observed among instrumented CSF proteins were largely concordant with those in
the brain, with only three of the 19 proteins tested in both tissues not overlapping in their
effects. A total of 33 proteins were successfully instrumented for their levels in plasma,
or their expression in the cerebral cortex, spinal cord, and/or hippocampus. Twelve
associations implicating genetically predicted plasma proteins, and seven implicating
protein expression in the brain, were concordant to what was observed in our primary (CSF-
and brain-derived protein levels) analyses. Six associations implicating gene expression in
the brain opposed those observed for their corresponding protein levels in the brain or CSF,
indicating a potential lack of connection between gene transcription and translation, or the
involvement of negative feedback loops aimed at functional protein level regulation [25].
Alternatively, circulating proteins may affect CSF protein availability independent of their
expression in the brain. Notably, the majority of CSF and brain pQTL–outcome pairs appear
tissue-specific, confirming that certain genetic variants regulate the central nervous system
differently from the periphery [9,25,26].

Overall, our results provided evidence to support a potential causal relationship for
16 distinct genetically predicted proteins that affect a similar outcome depending on their
abundance in at least two different tissues. Our discussion focusses on the wider evidence
of four of the proteins reported in our analyses.

4.2. Focus on Specific Proteins: Insights into sTie-1, LRP8, ApoE2, and MSP
4.2.1. Soluble Tyrosine-Protein Kinase Receptor Tie-1 (sTie-1)

We replicated findings from Gu et al. that higher genetically predicted sTie-1 in the
CSF relates to higher schizophrenia liability [27], and from Lu et al. regarding the plasma
abundance of sTie-1 and schizophrenia and ADHD liability [2], and extended these through
analyses that identified only Tie-1CSF to share a causal genetic variant with these outcomes.
We also reported the novel association and colocalization of Tie-1CSF and physical activity.
TIE1 expression in the dorsolateral prefrontal cortex was previously identified as one of
nine differentially transcribed genes in a transcriptome-wide association study of ADHD
(N = 19,099 cases) [28]. This finding was later replicated independently [29]. We reported
similar TIE1Cortex-ADHD MR findings but did not identify evidence supporting a shared
causal variant in this case.

Our findings of a potentially causal association between CSF Tie-1 abundance and
cortical expression and lower fluid intelligence scores reinforces the possibility of a causal
underlying biological mechanism, given that certain studies have shown intelligence to be
a protective factor in the development of ADHD and schizophrenia [30,31]. Other existing
literature offers limited insights into the relationship between this protein, known to
modulate TEK/TIE2 activity influencing angiogenesis regulation [32], and neurocognitive
disorders. However, the tyrosine kinase family receptors have been studied in Alzheimer’s
disease, wherein the soluble ectodomain of AXL receptor tyrosine kinase, released following
AXL activation, demonstrated predictive value for Alzheimer’s disease development [33].
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4.2.2. Apolipoprotein E2 (ApoE2)

ApoE, which exists in three allelic variants—APOEε2, APOEε3, and APOEε4—encoding
distinct isoforms, does not typically cross the blood–brain barrier. In the periphery, it is mainly
synthesised by hepatocytes, which play a role in the elimination of triglyceride-rich lipopro-
teins, while in the central nervous system (CNS), its sources include astrocytes, microglia,
vascular wall cells, and the choroid plexus, with stressed neurons contributing to a lesser
extent. In the CNS, ApoE interacts with receptors that participate in processes such as lipid
transport and Amyloid-β clearance, signal transduction, and intracellular trafficking of synap-
tic receptors. In addition, ApoE interacts with TREM2, influencing microglial phagocytosis of
Amyloid-β and damaged neurons, while contributing to the maintenance of the neurodegen-
erative phenotype of disease-associated microglia. Regarding Alzheimer’s disease, ApoE2
has be shown to decrease its risk, even though the precise mechanisms are not yet clear [34].
While we were unable to instrument ApoE2 abundance in the plasma or gene expression in
the brain and did not find any evidence for its causal role in any neuropsychiatric disorders,
we were able to identify evidence of a shared causal variant between ApoE2 abundance in the
CSF and brain and lower screen time duration (PPH4 = 0.99 and 0.94, respectively). This is a
novel and interesting finding, noting the accumulating evidence for the role of screen time in
the risk of psychiatric disorders [35].

4.2.3. Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8)

LRP8, through multiple pathways and mechanisms, appears to play a role in both
modulating neuronal activity and regulating cell proliferation. To summarise, it has been
shown that higher levels of LRP8 in the periphery correlate with proliferation and metastasis
in cancer cells and tissues, while low levels in the CNS appear to decrease functions related
to neuronal migration, amyloidosis, and neurodegeneration, although the complexity of this
remains to be fully explored [36]. We found that higher relative LRP8 abundance in the CSF
and plasma, but lower cortical expression of LRP8 was related to lower intelligence scores.
These results are consistent with experimental studies showing impaired development
of the neocortex [37] and cognitive decline [38] in mice with lower LRP8 expression in
the brain.

In addition, higher cortical expression of LRP8, but lower relative abundance in the
CSF and plasma was related to higher odds of engaging in physical activity and a higher
liability to schizophrenia (LRP8CSF and LRP8cortex only) and BPD. Evidence for this pro-
tein’s involvement in neurological disorders is largely related to its role in Alzheimer’s
disease [36,39,40], including supportive evidence of higher levels of LRP8 in Alzheimer’s
disease cases vs. controls [41]. Regarding BPD, associations with gene expression in the
brain tissue have differed across regions and specific LRP8 fractions [41]. Notably, available
research relies almost exclusive on animal models or case-control epidemiological studies,
therefore limiting the ability to infer potential causal effects in humans, specifically. Our
novel findings, therefore highlight the importance of hypothesis-free studies for the identi-
fication of risk factors, and also the utility of MR in the investigation of complex diseases.

4.2.4. Hepatocyte Growth Factor-like Protein (MSP)

Higher genetically predicted levels of MSP in the CSF and brain were associated with
lower fluid intelligence test scores, longer screen time, an increase in anorexia nervosa
liability, and a lower likelihood of being physically active. Colocalization analysis identified
the latter risk factor to likely share a causal variant with genetically predicted MSP in both
tissues. Given its far-reaching biological impact as an inflammatory regulator [42], it was
unsurprising that MSP, also called macrophage-stimulating protein, was one of the central
nervous system proteins with the broadest effect on our outcomes of interest.

4.3. Strengths and Limitations of This Study

The MR framework presents an efficient and economical approach to acquiring clini-
cally significant insights into the impacts of proteomic exposures on diverse neuropsychi-
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atric and behavioural traits. Using robust genetic markers as instruments for protein levels
and expression, we circumvent some of the bias and limitations of traditional epidemiolog-
ical studies, such as reverse causation. Indeed, the presence of neuropsychiatric disease
or behavioural traits themselves might influence behaviours and biological pathways that
subsequently alter the protein expression and abundance [2]. By including proteins across
different tissue types, we were able to decipher underlying divergent or complementary
biological processes and increase the robustness of our results [9].

Noteworthy limitations of our study are discussed below. When utilizing an aptamer-
binding platform for proteomic profiling, recognition disparities, rather than actual protein
abundance changes, could introduce bias [11]. In addition, genetic variants linked to
proteins might not accurately proxy their functional consequences, potentially affecting
specific isoforms while sparing others. Our study examines only a small fraction of the
CSF/brain proteome, highlighting the extensive unexplored proteomic landscape. Another
limitation of MR interpretation is that our observation on associations between proteins and
neurological disorders might not be disease specific, as evidenced by multiple associations
for a single protein depending also on how diseases are diagnosed and coded in the source
data. Our analyses are only able to examine the potential effect of the investigated proteins
on disease risk, but not progression. Therefore, our results are able to highlight the putative
therapeutic targets that affect the risk (so that the targets could potentially be used for
prevention), but not necessarily detect those that affect the progression [43]. In addition,
further exploration is needed to understand and assess the biological mechanisms involved.
Finally, our findings might not be generalizable to populations of non-European ancestries
because of our reliance on mostly European ancestry-derived GWAS summary statistics.

5. Conclusions

In conclusion, this comprehensive MR study provides evidence for a causal role of tissue-
specific protein abundance and expression in the risk of a range of neuropsychiatric disorders
and risk factors. Although further validation and mechanistic exploration is required, our
study provides valuable insights into the complex molecular underpinnings of neuropsychi-
atric disorders and holds promise for future advances in therapeutic opportunities.

Supplementary Materials: The following supporting information can be downloaded at:
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Table S4: Results of the two-sample MR exploring effect of genetically predicted CSF protein abun-
dance on neuropsychiatric disease risk and risk factors in order of statistical significance; Table S5:
Results of the two-sample MR exploring effect of genetically predicted brain protein abundance on
neuropsychiatric disease risk and risk factors in order of statistical significance; Table S6: Results
of the two-sample MR exploring effect of genetically predicted plasma protein abundance on neu-
ropsychiatric disease risk and risk factors in order of statistical significance; Table S7: Results of the
two-sample MR exploring effect of genetically predicted region-specific brain gene expression on
neuropsychiatric disease risk and risk factors in order of statistical significance; Table S8: Overview
of the proteins with valid genetic instruments and associations observed across investigated tissues.
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