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Abstract: Tissue ischemia, caused by the blockage of blood vessels, can result in substantial damage
and impaired tissue performance. Information regarding the functional contribution of the comple-
ment system in the context of ischemia and angiogenesis is lacking. To investigate the influence of
complement activation and depletion upon femoral artery ligation (FAL), Cobra venom factor (CVF)
(that functionally resembles C3b, the activated form of complement component C3) was applied
in mice in comparison to control mice. Seven days after induction of muscle ischemia through
FAL, gastrocnemius muscles of mice were excised and subjected to (immuno-)histological analy-
ses. H&E and apoptotic cell staining (TUNEL) staining revealed a significant reduction in ischemic
tissue damage in CVF-treated mice compared to controls. The control mice, however, exhibited a
significantly higher capillary-to-muscle fiber ratio and a higher number of proliferating endothelial
cells (CD31+/CD45−/BrdU+). The total number of leukocytes (CD45+) substantially decreased in
CVF-treated mice versus control mice. Moreover, the CVF-treated group displayed a shift towards the
M2-like anti-inflammatory and regenerative macrophage phenotype (CD68+/MRC1+). In conclusion,
our findings suggest that treatment with CVF leads to reduced ischemic tissue damage along with
decreased leukocyte recruitment but increased numbers of M2-like polarized macrophages, thereby
enhancing tissue regeneration, repair, and healing.

Keywords: ischemia; angiogenesis; cobra venom factor; complement system; leukocytes; macrophages;
macrophage polarization; vascular occlusion; inflammation

1. Introduction

Ischemic events in tissues and cells play a pivotal role in medicine, as cardiovascular
diseases like myocardial infarction, peripheral artery disease, and strokes are the leading
causes of mortality globally [1]. Ischemic tissue undergoes a sequence of events upon
limited blood supply, triggering cellular distress marked by energy depletion, metabolic
dysfunction, and eventually cell death. During the inflammatory response upon ischemia,
the complement system is activated and immune cells migrate into the affected tissue.
Achieving a delicate balance in the immune response becomes crucial to mitigate tissue
damage [2].

Biomedicines 2024, 12, 309. https://doi.org/10.3390/biomedicines12020309 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines12020309
https://doi.org/10.3390/biomedicines12020309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-2433-7540
https://orcid.org/0000-0003-3265-0027
https://orcid.org/0000-0002-2134-0966
https://doi.org/10.3390/biomedicines12020309
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines12020309?type=check_update&version=1


Biomedicines 2024, 12, 309 2 of 15

The complement system is a crucial component of innate immunity. Consisting of
a variety of proteolytic and regulatory proteins, chemoactive peptides, and membrane-
bound receptors [3], it promotes the elimination of pathogens but also sensitizes autologous
cells through opsonization, promotes the recruitment of immune cells, and directs lysis
of target cells [4]. The complement cascade is initiated through three distinct activation
pathways: the classical, the alternative, and the lectin pathway that all lead to the cleavage
of C3 into C3b and C3a by the C3 convertases. Microbial cell-bound C3b plays a pivotal
role as a potent marker for opsonization, enhancing the phagocytosis of pathogens and
altered cells. Simultaneously, C3a and C5a, resulting from the cleavage of C5 into C5a
and C5b, function as anaphylatoxins/chemoattractants, triggering subsequent immune
cell responses [5]. In the final stage, complement activation triggers the assembly of
the terminal membrane attack complex (MAC) through the sequential binding of the
complement proteins C5b, C6, C7, C8, and C9 to form a membranolytic pore. Embedding
itself into lipid bilayers, it initiates the formation of transmembrane poly-C9 channels
which disrupt cellular integrity [6]. This possibility of cell lysis serves as the ultimate killing
mechanism against pathogens [4].

Besides its contribution to physiological defense, the complement system is also
involved in several pathophysiological processes including autoimmune diseases, neu-
rodegenerative disorders, and ischemia-reperfusion injury [3,7,8]. In angiogenesis, the
complement system modulates capillary growth, e.g., through the chemoattractant peptides
C3a and C5a but also via the MAC [9,10]. Some studies have shown that dysregulated
complement activation contributes to aberrant vessel growth in conditions of chronic
inflammation like age-related macular degeneration or diabetic retinopathy [11,12]. How-
ever, the complement system has also been demonstrated to impair angiogenesis and
neovascularization under ischemic conditions [13–15].

Cobra venom factor (CVF), derived from cobra venom, is a high molecular weight
protein and functionally homologous to C3b, yet with a much higher stability. By binding
factor B, which is then cleaved by factor D, the stable C3/C5 convertase CVF-Bb is formed,
which drives the alternative pathway of the complement system [16]. This C3/C5 conver-
tase possesses unique properties that allow it to further initiate, activate, and inhibit the
complement system by C3 depletion [8]. Hence, CVF serves as a valuable experimental
tool for understanding the alternative pathway and investigating complement activation
and inhibition under various pathological conditions.

Angiogenesis, the process of generating new capillaries from existing blood vessels,
crucially involves endothelial cell proliferation, migration, and differentiation. Under
normal conditions, a delicate balance between pro- and anti-angiogenic factors maintains
vascular stability. However, in response to tissue damage or injury, the release of potent
pro-angiogenic factors such as vascular endothelial growth factor (VEGF), fibroblast growth
factor (FGF), and angiopoietins may trigger angiogenesis. Endothelial cells respond by
proliferating and migrating to the injury site, initiating sprouts that elongate into new
vessels, fostering tissue repair and regeneration by delivering oxygen, nutrients, and
immune cells [17,18]. In ischemic tissue damage, like in myocardial infarction or peripheral
artery disease, the formation of new capillaries becomes vital to clear cellular debris and
support tissue recovery. However, reinstating blood supply requires collateral artery
growth (arteriogenesis) to compensate for occluded arteries [19,20].

VEGF-A emerges as a primary driver of angiogenesis [21,22]. Beyond endothelial
cells, platelets and leukocytes, notably monocytes, significantly contribute to VEGF-A
supply, fostering an angiogenic microenvironment. Macrophages are actively engaged in
diverse aspects of vessel formation, contributing to angiogenesis through various mech-
anisms, including the release of pro-angiogenic factors and tissue-remodeling matrix
metalloproteinases [23,24]. Leukocyte-mediated angiogenesis relies on their recruitment,
adhesion, and migration across endothelial barriers, facilitated by molecules like selectins
and notably ICAM-1, essential for orchestrating neo-vascularization [25,26].
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The role of the complement system in angiogenesis and ischemic tissue damage is
not fully understood. Thus, this study aims to investigate the influence of complement
activation on angiogenesis and tissue repair by utilizing CVF as an experimental tool
in vivo.

2. Materials and Methods
2.1. Animals and Experimental Procedures

All experimental procedures and animal care were conducted in accordance with
German animal legislation guidelines and approved by the Bavarian Animal Care and Use
Committee (ethical approval code: ROB-55.2Vet-2532.Vet_02-17-99). C57BL/6J mice from
Charles River Laboratory (Sulzfeld, Germany) were purchased. Male mice aged 8–10 weeks
underwent a surgical procedure under anesthesia (combination of fentanyl (0.05 mg/kg,
CuraMED Pharma, Karlsruhe, Germany), midazolam (5.0 mg/kg, Ratiopharm GmbH, Ulm,
Germany), and medetomidine (0.5 mg/kg, Pfister Pharma, Berlin, Germany)) in which
the right femoral artery was ligated to induce ischemia and stimulate angiogenesis in the
gastrocnemius muscle. The left leg served as a sham-operated control, following established
protocols [27]. Despite influencing the coagulation cascade through the application of
CVF, no relevant bleeding complications were observed either intraoperatively or in the
further progress of the experiments. As previously described [15], to study vascular cell
proliferation, bromodeoxyuridine (BrdU), a proliferation marker, was administered daily
via intraperitoneal injection (1.25 mg, Sigma-Aldrich, St. Louis, MO, USA) dissolved in
100 µL phosphate-buffered saline (PBS, 148 mM Na+, 1.8 mM K+, pH 7.2), starting directly
after femoral artery ligation. Then, 24 h before femoral artery ligation, 12.5 µg of Cobra
venom factor (CVF, REF A600, Quidel Co., Athens, OH, USA) diluted in 50 µL PBS was
injected into the mice intraperitoneally (i.p). According to the established protocols, tissue
samples were collected at 7 days after femoral artery ligation, with a group size of n = 5
for each group [28]. After sacrifice, the mice were perfused with adenosine buffer (Sigma-
Aldrich, Taufkirchen, Germany). Adenosine buffer was composed of 1% adenosine and
5% bovine serum albumin (BSA, Sigma-Aldrich, Taufkirchen, Germany) dissolved in PBS
and subsequently fixed with 3% paraformaldehyde (PFA, Merck, Darmstadt, Germany)
for cryopreservation. The gastrocnemius muscles were then removed, kept overnight in a
30% sucrose solution, stored in vinyl molds (REF 4566, Sakura Finetek, Torrance, CA, USA)
in Tissue Tek® (REF 4583, Sakura Finetek, Torrance, CA, USA), and preserved at minus
80 ◦C. To verify effective depletion of the complement system after CVF administration,
serum complement activity was monitored 24 h after CVF administration using a CH50
assay. Therefore, 24 h after CVF administration, blood was collected and centrifuged at
4 ◦C for 10 min at 706× g and the supernatant was stored at −80 ◦C. Then, following
established protocols, the CH50 assay was performed using the collected tissue [29]. The
CH50 values shown are the reciprocal of the amount of serum capable of lysing 50% of
sheep erythrocytes. Specimens without lytic activity were defined at 0 CH50 units/mL.

2.2. Histological and Immunofluorescence Analysis

Cryosections of the gastrocnemius muscle, 8 µm thick, were stained for immunohisto-
logical analysis. Tissue samples obtained 7 days after femoral artery ligation were used
to stain for endothelial cells, leukocytes, and macrophages. To stain BrdU, the sections
were treated with 1N HCl at 37 ◦C for 30 min to expose BrdU in the nuclei. Subsequently,
they were blocked with 10% goat serum dissolved in 4% BSA PBS/0.1% Tween-20 for
1 h at room temperature (RT) and incubated overnight at 4 ◦C with anti-BrdU antibody
(1:50, Abcam, Cambridge, UK, ab6326). The sections were then incubated with goat anti-
rat Alexa Fluor® 546 antibody (1:100, Thermo Fisher, Rockford, IL, USA, A11081) as the
secondary antibody. To stain endothelial cells (CD31+/CD45−) and leukocytes (CD45+),
the sections were further incubated with Alexa Fluor® 647 anti-mouse CD31 antibody
(1:50, BioLegend, San Diego, CA, USA, 102516) and anti-CD45-Alexa Fluor® 488 antibody
(1:100, Thermo Fisher, Rockford, IL, USA, 11-0451-85). Additionally, anti-CD45−Alexa
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Fluor® 488 antibody (1:100, Thermo Fisher, 11-0451-85) was used to label leukocytes, while
anti-CD68-Alexa Fluor® 488 antibody (1:200, Abcam, ab201844) and anti-mannose receptor
C type 1 (anti-MRC1) antibody (1:200, Abcam, ab64693) were used to label macrophages
and evaluate macrophage polarization. The MRC1-antibody donkey anti-rabbit-Alexa
Fluor® 546 antibody (1:200, Thermo Fisher, A10040) served as a secondary antibody. All
tissues were stained with DAPI (1:1000, Thermo Fisher, 62248) to label nucleic DNA. For
mounting the stained slides, Dako mounting medium (Dako, Agilent, Santa Clara, CA,
USA) was used. The mounted tissue from CVF-treated and control mice (n = 5 per group
and timepoint) was analyzed by counting cells in an ischemic area of 1.5 mm2 (CD45+

cells, CD68+ cells). Muscle fibers were identified by their auto-fluorescent signal and the
capillary-to-muscle fiber ratio was used as an angiogenesis index. The capillary-to-muscle
fiber ratio was calculated as previously described [30]) and CD31+/CD45−/DAPI+ cells
were counted as capillaries. TUNEL staining was performed with ApopTag® Plus Flu-
orescein in Situ Apoptosis Detection Kit (EMD Millipore Corp., Burlington, MA, USA)
following the manufacturer’s instructions. Images for cell counting were captured using a
Leica DM6 B epifluorescence microscope with a 20x objective lens. For CD68/MRC1 as
well as CD31/BrdU/CD45 staining and CD45 quantification, 5 pictures (630 × 475 µm)
per muscle were analyzed. Cell counting analysis was performed using the open-source
program ImageJ. For the hematoxylin and eosin (H&E) and TUNEL staining, 8 µm thick
cryo-fixed gastrocnemius muscle sections (n = 5 per group) were used and the respective
total necrotic and apoptotic area (%) of the tissue slices were quantified using ImageJ 1.54h.

3. Results

To investigate the role of the complement system in ischemia and angiogenesis, we
induced tissue ischemia in the gastrocnemius muscles of CVF-treated compared to control
mice by ligating the right femoral artery (FAL) distal of the deep femoral branch. The
left sham-operated legs served as internal negative controls. Based on empirical values,
gastrocnemius muscles were collected for (immuno-) histological analyses 7 days after
FAL [15,27,31,32]. The depletion of the complement system by the application of CVF was
confirmed using a CH50 assay (Supplementary Materials, Figure S6).

3.1. CVF Treatment Leads to Reduced Ischemic Tissue Damage

H&E staining and TUNEL assay of tissue specimens confirmed ischemic damage in
the gastrocnemius muscles of both CVF-treated and control mice. However, CVF-treated
mice exhibited significantly decreased ischemic and apoptotic damage compared to control
mice (Figures 1a,b and 2a,b). The gastrocnemius muscles from sham-operated legs showed
no signs of ischemic damage (Supplementary Materials, Figures S1 and S2).

3.2. CVF-Treated Mice Show a Reduced Capillarity

Next, we examined whether complement activation/depletion by administration of
CVF affects the process of angiogenesis in ischemic muscle tissue. To this end, a quadruple
immunofluorescence staining (CD31/CD45/BrdU/DAPI) was performed on gastrocne-
mius muscles isolated 7 days after the FAL procedure. CD31 antibody was used as a
marker for endothelial cells, CD45 antibody labels leukocytes, and BrdU stains proliferat-
ing cells. As CD31 is not exclusively expressed on endothelial cells but might be expressed
on leukocytes as well, CD31+/CD45+ cells were excluded from endothelial counts.
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Figure 1. Tissue damage is reduced in CVF-treated mice. (a) Representative H&E-stained images of 
gastrocnemius muscles (left) with magnifications (right) of the areas shown in the black boxes of 
control mice (upper images) and cobra venom factor-treated mice (lower images) taken 7 days aFAL. 
(b) Scatter plot presenting the area of ischemic tissue damage (%) in control and CVF-treated mice 
7 days after femoral artery ligation (aFAL). One complete sectional area was assessed per mouse per 
group. The data represent means ± SEM, with n = 5 per group. *** p ≤ 0.001 (control vs. CVF) deter-
mined by unpaired Student’s t-tests. The scale bars represent 1000 µm (overview) and 100 µm (de-
tail). 

Figure 1. Tissue damage is reduced in CVF-treated mice. (a) Representative H&E-stained images
of gastrocnemius muscles (left) with magnifications (right) of the areas shown in the black boxes
of control mice (upper images) and cobra venom factor-treated mice (lower images) taken 7 days
aFAL. (b) Scatter plot presenting the area of ischemic tissue damage (%) in control and CVF-treated
mice 7 days after femoral artery ligation (aFAL). One complete sectional area was assessed per
mouse per group. The data represent means ± SEM, with n = 5 per group. *** p ≤ 0.001 (control vs.
CVF) determined by unpaired Student’s t-tests. The scale bars represent 1000 µm (overview) and
100 µm (detail).
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femoral artery ligation (aFAL). Analysis was conducted on one complete sectional area per mouse 
per group. The data presented are means ± SEM, with n = 5 per group. ** p ≤ 0.01 (control vs. CVF) 
determined by unpaired Student’s t-tests. (b) Magnified images (right) of the areas shown in the 
white boxes of the representative images (left) of TUNEL-stained gastrocnemius muscles from 
control mice (upper images) and CVF-treated mice (lower images) showing apoptotic cells (green) 
at 7 days aFAL. Scale bars: 1000 µm (overview), 100 µm (detail). 
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Next, we examined whether complement activation/depletion by administration of 

CVF affects the process of angiogenesis in ischemic muscle tissue. To this end, a quadruple 
immunofluorescence staining (CD31/CD45/BrdU/DAPI) was performed on gastrocnem-
ius muscles isolated 7 days after the FAL procedure. CD31 antibody was used as a marker 
for endothelial cells, CD45 antibody labels leukocytes, and BrdU stains proliferating cells. 
As CD31 is not exclusively expressed on endothelial cells but might be expressed on leu-
kocytes as well, CD31+/CD45+ cells were excluded from endothelial counts. 

Figure 2. TUNEL staining revealed decreased apoptosis in CVF-treated mice compared to control
mice. (a) The scatter plot depicts the apoptotic area (%) in control and CVF-treated mice 7 days after
femoral artery ligation (aFAL). Analysis was conducted on one complete sectional area per mouse
per group. The data presented are means ± SEM, with n = 5 per group. ** p ≤ 0.01 (control vs. CVF)
determined by unpaired Student’s t-tests. (b) Magnified images (right) of the areas shown in the
white boxes of the representative images (left) of TUNEL-stained gastrocnemius muscles from control
mice (upper images) and CVF-treated mice (lower images) showing apoptotic cells (green) at 7 days
aFAL. Scale bars: 1000 µm (overview), 100 µm (detail).

CVF-treated mice showed a significantly decreased capillarity compared to control
mice (Figure 3a,c) as seen in the number of CD31+/CD45− cells. Furthermore, treatment
with CVF led to a reduced number of proliferating endothelial cells (CD31+/CD45−/BrdU+)
per muscle fiber compared to control mice (Figure 3b,c). Non-ischemic gastrocnemius
muscles from sham-operated legs of CVF-treated and control mice did not differ in the
capillary-to-muscle fiber ratio (Supplementary Materials, Figure S3).
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muscle tissue on day 7 after FAL was significantly lower in the ischemic tissues of CVF-
treated mice compared to control mice (Figure 4a,b). The examinations of the sham-oper-
ated gastrocnemius muscles showed a low leukocyte count without any variation in quan-
tity (Supplementary Materials, Figure S4). 

Figure 3. CVF treatment led to reduced capillarity. Scatter plots illustrate the number of (a) endothelial
cells (CD31+/CD45−) and (b) proliferating endothelial cells (CD31+/CD45−/BrdU+) per muscle
fiber of ischemic gastrocnemius muscles in control and CVF-treated mice 7 days after femoral artery
ligation (aFAL). The data presented are means ± SEM, with n = 5 per group. A defined ischemic area
(1.5 mm2) of muscle tissue was analyzed per mouse. **** p ≤ 0.0001 (control vs. CVF) determined
by unpaired Student’s t-tests. (c) Representative immunofluorescence images of analyzed ischemic
gastrocnemius muscles from control (upper images) and CVF-treated mice (lower images) at 7 days
aFAL. Single channel pictures (small images on the right) and merged pictures (large images on the
left) show endothelial cells (CD31 in gray), proliferating cells (BrdU in red), leukocytes (CD45 in
green), and the nuclei (DAPI in blue). Scale bars: 50 µm.

3.3. Treatment with CVF Leads to Reduced Leukocyte Infiltration

Further studies revealed that the number of leukocytes (CD45+) that infiltrated the
muscle tissue on day 7 after FAL was significantly lower in the ischemic tissues of CVF-
treated mice compared to control mice (Figure 4a,b). The examinations of the sham-
operated gastrocnemius muscles showed a low leukocyte count without any variation in
quantity (Supplementary Materials, Figure S4).

3.4. CVF-Treated Mice Show a Lower Number of Macrophages with a Higher Percentage of
M2-like Polarization

Focusing on macrophages and their polarization, we used CD68 as a marker for
macrophages and MRC1 for M2-like polarized macrophages. In the tissue sections of
interest, a reduced total number of macrophages per mm2 was found but an increased
percentage of M2-like polarized macrophages (CD68+/MRC1+ cells) was seen in tissue
sections of CVF-treated mice compared to control mice (Figure 5a,c,d). The control mice,
however, showed a higher amount of CD68+/MRC1− cells (Figure 5b,d). In the non-
ischemic muscles of sham-operated mice, no difference was found between CVF-treated
mice and control mice either regarding the number of macrophages or their polarization
(Supplementary Materials, Figure S5).
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Figure 4. CVF treatment reduced leukocyte infiltration in ischemic gastrocnemius muscles. (a) The
scatter plot illustrates the number of leukocytes (CD45+) per square millimeter (mm2) in ischemic
gastrocnemius muscles isolated 7 days after femoral artery ligation (aFAL). The data presented are
means ± SEM, with n = 5 per group. Analysis was conducted on a defined ischemic area (1.5 mm2)
of muscle tissue per mouse. *** p ≤ 0.001 (control vs. CVF) determined by unpaired Student’s t-tests.
(b) Representative immunofluorescence images of analyzed gastrocnemius muscles from control (left
image) and CVF-treated mice (right image) at 7 days aFAL. Leukocytes in single-channel pictures
(lower images) and merged pictures (upper images) were labeled with CD45 antibodies (green) and
the nuclei were labeled with DAPI (blue). Scale bars: 100 µm.
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tool was studied on angiogenesis and ischemic muscle tissue damage using a hind limb 
model of ischemia. Our results demonstrate that CVF-induced complement activation is 
associated with decreased ischemic tissue damage, along with a reduced recruitment and 
infiltration of CD45+ and CD68+ cells. Moreover, CVF-treated mice exhibited more macro-
phages polarized towards the pro-angiogenic regenerative M2-like phenotype 
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Figure 5. CVF treatment promotes M2-like polarization in ischemic muscle tissue. The scatter plot
displays (a) the total number of macrophages (CD68+) per square millimeter (mm2) and the percent-
age of (b) M1-like polarized macrophages (CD68+/MRC1−) and (c) M2-like polarized macrophages
(CD68+/MRC1+) in ischemic gastrocnemius muscle tissue at 7 days after femoral artery ligation
(aFAL). Data are shown as means ± SEM, with n = 5 per group. ** p ≤ 0.01 and **** p ≤ 0.0001
(control vs. CVF) determined by unpaired Student’s t-tests. (d) Representative immunofluorescence
images of analyzed ischemic gastrocnemius muscles from control (upper image) and CVF-treated
mice (lower image) at 7 days aFAL. In single-channel pictures (small images on the right) and merged
pictures (large images on the left), macrophages were labeled with CD68 antibody (green) and M2-like
polarized macrophages were labeled with MRC1 antibody (red). Nuclei were labeled in merged
images with DAPI (blue). Scale bars: 50 µm.
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4. Discussion

In this study, the influence of cobra venom factor (CVF) as a complement-depleting tool
was studied on angiogenesis and ischemic muscle tissue damage using a hind limb model of
ischemia. Our results demonstrate that CVF-induced complement activation is associated
with decreased ischemic tissue damage, along with a reduced recruitment and infiltration
of CD45+ and CD68+ cells. Moreover, CVF-treated mice exhibited more macrophages
polarized towards the pro-angiogenic regenerative M2-like phenotype (CD68+/MRC1+)
compared to control mice. The results of this study indicated that CVF as a complement
activator (or complement depletion, respectively) plays a key role in the reduction in
ischemic muscle tissue damage by facilitating the switch of macrophages towards the
anti-inflammatory and regenerative M2-like polarization.

The occlusion of the femoral artery leads to increased shear stress in collateral arter-
ies in the upper leg, eventually resulting in arteriogenesis (distal to the occlusion) as a
compensatory mechanism to decrease ischemic tissue damage in the lower leg [33]. As a
consequence, the blood flow is redirected through collateral vessels to bypass the blockage
and supply of oxygen and nutrients to distal tissues. As reported by Chillo et al. (2016),
an improvement in arteriogenesis leads to a decrease in ischemic tissue damage in the
gastrocnemius muscle [33]. This connection between arteriogenesis and angiogenesis in
the murine hind limb model, which needs to be considered in any investigation, is shown
in Figure 6 (adapted from Chillo et al. (2016) [33]). Previous studies by Götz et al. (2022)
demonstrated that treatment with CVF 24 h prior to femoral artery ligation significantly
enhances the perfusion recovery 7 days aFAL. Furthermore, an increased number of prolif-
erating vascular cells and an increased luminal diameter of the grown collateral vessels
could be observed, indicating that CVF (complement depletion) has a positive impact on
arteriogenesis [29]. Based on H&E staining and the TUNEL assay, we found a reduction in
the degree and area of ischemic tissue damage as evidenced by reduced apoptosis and cell
debris accumulation in CVF-treated mice.
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Figure 6. The connection between arteriogenesis and angiogenesis. The left picture shows a healthy
leg with pre-existing collateral arteries. The leg in the middle displays an occluded main artery
with ischemic tissue damage and a capillary network in the lower leg as a result of the occlusion in
the upper leg. The leg on the right side shows the effect of arteriogenesis to decrease the extent of
ischemia in the lower leg (Image from Chillo et al. [33]).
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The role of the complement system in angiogenesis has been investigated in several
studies [34]. In order to quantify the activity of the complement system in the context of an
inflammatory response to an ischemic stimulus, the serum concentration of complement
factor C3b can be assessed. In an experimental model of mouse renal ischemia/reperfusion
injury, a significant increase in plasma C3b concentration was observed 24 h after reperfu-
sion, which returned to the values of the sham control group 7 days after reperfusion [35].
The influence of arteriogenesis in the upper leg on ischemic damage is a significant dif-
ference to previous studies on the influence of CVF on ischemic damage. As previously
described, various studies demonstrated the role of the complement system in the inflam-
matory processes after reperfusion and the protective effect of CVF on ischemia-reperfusion
injuries [2,36–39]. However, while in models of ischemia-reperfusion injury blood flow is
restored after a defined time interval by reopening at hoc the previously occluded artery,
reperfusion after FAL only occurs over time due to the growth of natural collaterals. Im-
portantly, the latter is not associated with reperfusion injury as is the case when occluded
arteries are reopened acutely.

By depleting complement components, CVF can limit downstream inflammatory
responses and the formation of the membrane attack complex (MAC) thus attenuat-
ing complement-dependent tissue damage and inflammation. The reduced damage
shown in this study is thus in line with the previous findings of Chillo et al. (2016) and
Götz et al. (2022). Moreover, an increased percentage of anti-inflammatory and regenera-
tive M2-like macrophages were detected in ischemic gastrocnemius muscle 7 days aFAL.
The regenerative M2-like macrophages can resolve inflammatory conditions, provide tissue
repair, and facilitate tissue remodeling [40,41]. Hence, they constitute another positive
factor for the reduced tissue damage shown in this study.

Furthermore, we investigated the infiltration of leukocytes, which we found to be re-
duced in CVF-treated mice. Complement components C3a and C5a bind to their respective
receptors C3aR and C5aR on the surface of leukocytes. They act as chemoattractants for
leukocytes and stimulate leukocyte migration/recruitment to the site of injury by inducing
chemotaxis [4,9,42]. Complement activation also enhances the adhesion of leukocytes to
endothelial cells by upregulating the expression of adhesion molecules, such as intercellu-
lar adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), on
endothelial cells [43,44]. Together, this promotes the initial attachment of leukocytes to
the endothelium, allowing them to undergo rolling interactions coupled with subsequent
firm adhesion necessary for extravasation into the inflamed tissue. With respect to CVF
treatment, the overall reduced leukocyte recruitment in our study may be potentially due
to the interplay between inhibition of complement activation and downstream regulatory
mechanisms. Depleting the complement by CVF might impede the generation of these
chemotactic factors and attenuate the expression of adhesion molecules on endothelial
cells leading to reduced leukocyte recruitment, rolling, and infiltration into the tissues.
This indicates that by dampening the overall immune response, CVF attenuates excessive
inflammation and prevents further tissue damage.

Next, we focused on the influence of CVF on macrophage infiltration and polarization.
Our results revealed that CVF treatment led to a decrease in macrophage infiltration; how-
ever, with a higher number of anti-inflammatory and pro-regenerative M2-like polarized
macrophages compared to the control group. This was evidenced by MRC1, a marker
associated with the M2 phenotype.

The presence of macrophages and their polarization play a crucial role in the context of
angiogenesis in ischemic tissue [23]. Depending on the stimulus, macrophages differentiate
into either the pro-inflammatory (M1-like, CD68+/MRC1−) or the anti-inflammatory and
regenerative (M2-like, CD68+/MRC1+) phenotype [45]. Both macrophage phenotypes
are crucial for sufficient angiogenesis to occur. Initially, M1-like macrophages provide
pro-angiogenic factors, such as VEGF and TNF-α, at an early stage of angiogenesis, while
M2-like macrophages are decisive in the further process of tissue healing, regeneration,
and remodeling [40,41,46–48].
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A study by Götz et al. (2021) in which angiogenesis was investigated in C3-deficient
mice, showed that the absence of the complement system leads to an increased percentage
of M2-like polarized macrophages [15]. In addition, another study of our research group
indicated that treatment with CVF leads to a significantly increased number of perivascular
M2-like polarized macrophages in the adductor muscle of mice during the process of
arteriogenesis [29]. Since we also observed this effect in the present setting, the depletion
of the complement system by CVF and the subsequent consumption of C3 decreases the
anaphylatoxins C3a and C5a in the circulation and thus might facilitate a shift towards
the M2 macrophage phenotype in a similar manner. Studies have also shown that C3a
modulates inflammation by inducing macrophage polarization to a pro-inflammatory
phenotype [49,50]. Since the activation of the complement system by CVF leads to a
consumption of complement (C3) and therefore depletion of complement activity, the
increased M2-like polarization of macrophages in this study is consistent with the literature
mentioned above.

Moreover, treatment of mice with CVF in our study resulted in a decreased capillarity
compared with the control group, evidenced by a lower number of CD31 positive cells
per muscle fiber. The number of proliferating endothelial cells (CD31+/BrdU+ cells) was
also significantly reduced in CVF-treated mice compared to the control group. A study by
Goetz et al. (2021) showed that the absence of complement factor C3 in knockout mice (C3
-/- mice) leads to improved angiogenesis [15]. Since the treatment of mice with CVF leads
to a depletion of the complement system, these results appear to be in contrast with recent
findings. However, the initial activation of the complement system by CVF represents a
different physiological condition compared to C3 knockout.

Furthermore, the correlation of arteriogenesis and angiogenesis might play a decisive
role in this context: treatment with CVF leads to improved arteriogenesis (as shown in
the study of Götz et al.), resulting in a less inflammatory environment and—as shown in
this study—lower ischemic tissue damage. Chillo et al. (2016) demonstrated that reduced
tissue damage is correlated with a lower ischemic stimulus for angiogenesis [33]. Hence,
the pro-angiogenic stimulus in CVF-treated mice on endothelial cells may be attenuated.

With regard to a therapeutic benefit of CVF for the treatment of cardiovascular oc-
clusive diseases, a detailed understanding of the metabolic, pharmacodynamic, and tox-
icological properties of CVF is of great clinical relevance. As described above, CVF is a
complement activating protein that was discovered in the venom of the Indian cobra Naja
naja and has the property of complement activation due to its high structural similarity to
the complement component C3 [51–53]. After application of CVF into the organism, the en-
zyme CVF, Bb, which is resistant to inactivation by factor H and I, is produced, which is the
basis for depletion of the complement system [16]. With the exception of cobras, CVF leads
to depletion of the complement system in all vertebrates tested [54]. After it was shown that
CVF can be safely administered for temporary complement depletion in laboratory animals,
it became a widely used experimental tool [55]. The only relevant side effect in animal
models caused by the strong complement activation after CVF administration was an acute
inflammatory C5a-mediated damage of the lungs [56,57]. However, the damage to lung
tissue caused by neutrophil activation and sequestration in the lungs was only temporary.
After a humanized form of CVF was developed, therapeutic benefits were demonstrated
in several areas, including myocardial ischemia reperfusion injury, age-related macular
degeneration, and arthritis [37,58–60]. In addition, no C5-cleaving activity was observed
with the use of humanized CVF, making its therapeutic use well tolerated and safe [61].

Taken together, the molecular mechanisms underlying the actions of CVF in ischemia
and angiogenesis involve complex interactions with macrophages, leukocytes, and endothe-
lial cells. Treatment with CVF to deplete the complement system in vivo leads to reduced
ischemic tissue damage in the gastrocnemius muscle and a reduction in the recruitment
of macrophages and leukocytes. Furthermore, it stimulates the switch of macrophages
towards the anti-inflammatory M2-like polarization, facilitating the process of healing
and regeneration.
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5. Conclusions

The present study provides evidence that CVF treatment not only boosts arteriogen-
esis as shown in our previous report [29] but also has the potential to reduce apoptosis
and tissue damage in the ischemic tissue. This effect is not only due to tissue salvage by
means of arteriogenesis but is also likely to be achieved through regulation of inflamma-
tory (complement-derived) mediators and the modulation of the immune response. The
findings of this study suggest a critical role for cobra venom factor in ameliorating ischemic
tissue damage.

6. Statistical Analyses

GraphPad Prism 8 (GraphPad Software, LA Jolla, CA, USA) was used for the analyses
of all our data. Results are expressed as mean values ± standard error of the mean (SEM)
and all values of p < 0.05 were considered statistically significant.
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tissue damage of sham-operated control and CVF-treated mice 7 days after surgery; Figure S3: Sham
operated gastrocnemius muscles of control and CVF-treated mice show no difference in capillarity
and no proliferation of endothelial cells 7 days after sham operation; Figure S4: Representative
pictures of control and CVF-treated mice display a low leukocyte count without any variation in
quantity; Figure S5: Sham operated control and CVF-treated mice show low numbers of macrophages
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