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Abstract: Liver disease-related mortality is a major cause of death worldwide. Hepatic innate
and adaptive immune cells play diverse roles in liver homeostasis and disease. Myeloid-derived
suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells. MDSCs can be
broadly divided into monocytic MDSCs and polymorphonuclear or granulocytic MDSCs, and they
functionally interact with both liver parenchymal and nonparenchymal cells, such as hepatocytes
and regulatory T cells, to impact liver disease progression. The infiltration and activation of MDSCs
in liver disease can be regulated by inflammatory chemokines and cytokines, tumor-associated
fibroblasts, epigenetic regulation factors, and gut microbiota during liver injury and cancer. Given
the pivotal roles of MDSCs in advanced liver diseases, they can be targeted to treat primary and
metastatic liver cancer, liver generation, alcoholic and nonalcoholic liver disease, and autoimmune
hepatitis. Currently, several treatments such as the antioxidant and anti-inflammatory agent berberine
are under preclinical and clinical investigation to evaluate their therapeutic efficacy on liver disease
and their effect on MDSC infiltration and function. Phenotypic alteration of MDSCs in different liver
diseases that are in a model-dependent manner and lack special markers for distinct MDSCs are
challenges for targeting MDSCs to treat liver disease. Multi-omics study is an option to uncover the
features of disease-specific MDSCs and potential gene or protein targets for liver disease treatment.
In summary, MDSCs play important roles in the pathogenesis and progression of liver disease by
regulating both intrahepatic innate and adaptive immune responses.

Keywords: myeloid-derived suppressor cells; liver inflammation; fibrosis; hepatocellular carcinoma;
cell–cell interaction; clinical trials

1. Introduction

Liver disease-related mortality is a major cause of death in patients with different
liver diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD),
alcoholic liver disease (ALD), and chronic hepatitis [1,2]. Globally, there are about 2 million
deaths caused by liver disease in a single year, which are mainly driven by late-stage liver
diseases, such as liver cirrhosis and hepatocellular carcinoma (HCC) [3,4]. MASLD, ALD,
and chronic hepatitis are the most common types of chronic liver disease that can progress
to liver cirrhosis and HCC [5–7].

Liver-resident immune cells and infiltrated immune cells during liver disease play es-
sential roles in the maintenance of liver homeostasis, resolution of liver injury, and clearance
of pathogens [8–10]. In healthy livers, immune cells account for about 14% of total liver
cells [11], mainly including macrophages, monocytes, dendritic cells (DCs), neutrophils,
natural killer (NK) cells, natural killer T (NKT) cells, myeloid-derived suppressor cells
(MDSCs), and B and T lymphocytes [12]. The frequencies of different immune cells change
in different liver diseases [13]. Single-cell RNA transcriptome analysis of liver resident cells
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reveals that the population of each cell type and its expressing gene markers are altered in
different conditions [14–16].

Accumulating evidence shows that MDSCs play important roles in most liver diseases
by regulating both innate and adaptive immune responses. For example, MDSCs can exert
their immunosuppressive functions by inducing regulatory T cells and suppressing effector
T cell functions in HCC [17,18]. In addition, MDSCs can impair the NK cell cytotoxicity
against HCC cells and their interferon-gamma (IFN-γ) production through membrane-
bound transforming growth factor beta 1 (TGF-β1) [19]. Recruited C-X-C motif chemokine
receptor 2 (CXCR2)-expressing MDSCs in the tumor microenvironment, driven by the C-X-
C motif chemokine ligand (CXCL)1/2/5 expressed in liver tumor cells, can also suppress
IFN-γ secretion in NKT cells through membrane-bound TGF-β [20]. Therefore, treatments
that can regulate the accumulation and activation of MDSCs are potential therapies for
malignant liver disease [21,22].

In this review, we first summarize the subtype and function of MDSCs in liver disease,
followed by a discussion of the factors that mediate the infiltration of MDSCs and their
activation. Then, we discuss the interaction of MDSCs with liver parenchymal cells, mainly
including hepatocytes and nonparenchymal cells, such as immune cells. In addition, we
will review the current progression in the preclinical and clinical studies targeting MDSCs
to treat liver disease.

2. The Classification and Markers of MDSCs in Mouse and Human Livers

MDSCs are a heterogenous population of immature myeloid cells [23]. In mice,
MDSCs (CD11b+GR-1+ cells) are broadly divided into two subpopulations (Figure 1):
monocytic MDSCs (M-MDSCs, CD11b+Ly6G−Ly6Chigh cells) and polymorphonuclear
or granulocytic MDSCs (PMN- or G-MDSCs, CD11b+Ly6G+Ly6Clow cells) [24]. In hu-
mans, MDSCs (CD11b+CD33+HLA-DR−Lin−) can also be further divided into two popula-
tions using biomarkers of CD15, CD14, CD66b, and interleukin/IL-4Rα [25]: M-MDSCs
(CD15−CD14+CD66b−IL-4Rα+) and PMN-MDSCs (CD15+CD14−CD66b+IL-4Rα−)
(Figure 1). In addition, both MDSCs in humans are CD16−CD33+HLA−/low cells [26].
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Figure 1. The classification and markers of MDSCs in mouse and human liver tissues. Broadly, MDSCs
can be divided into two populations, monocytic MDSCs (M-MDSCs) and polymorphonuclear or
granulocytic MDSCs (PMN- or G-MDSCs) using markers shown in the figure. All cartoons in this
figure were prepared using Biorender (https://biorender.com, accessed on 26 November 2023).

The plasticity and differentiation patterns of MDSCs are dependent on disease condi-
tions or environment [27]. Early-stage MDSCs (e-MDSCs, HLA-DR−CD33dimCD66b− cells)
lacking macrophage and granulocyte markers have been shown to accumulate in several
diseases [28,29], such as hepatitis B virus (HBV) infection and cardiovascular disease. In
addition, single-cell RNA sequencing data indicate that specific subtypes of MDSCs are
shown in liver diseases [30,31]. For example, low-density lipoprotein receptor (LDLR)-
expressing MDSCs are defined in liver transplantation tissues [30], and these MDSCs highly
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express genes TMEM176B (transmembrane protein 176B), S100A8 (S100 calcium-binding
protein A8), and S100A9.

3. Pathogenesis of MDSCs in Liver Disease

MDSCs play a pivotal role in different stages of liver disease, from liver inflammation,
cell death, and fibrosis to hepatocarcinogenesis. In this section, we review the roles of
MDSCs in the pathogenesis of liver disease.

3.1. MDSCs in Liver Inflammation

Liver inflammation is a major trigger of liver tissue injury, which can accelerate
the development of liver fibrosis and cirrhosis and their progression to primary liver
cancer [32,33]. Various etiologies can cause acute and chronic liver inflammation, such
as pathogenic microbial infection (e.g., hepatitis virus) [34,35], intake of high-fat and
high-sugar diet [36,37], alcohol consumption [38], and toxins. In 2020, liver cancer was
the fifth leading cause of cancer death in the United States [39]. Liver inflammation
impacts the efficacy of immunotherapies for primary liver cancer, including both HCC and
cholangiocarcinoma (CCA).

MDSCs play an essential role in liver inflammation. One study revealed that side
scatter (SSC)highCD11bhighLy-6ChighLy-6Glow monocytic cells, but not other CD11b+Gr-1+

MDSCs, can suppress CD4+ T cell response by producing nitric oxide (NO). In addition,
adoptive transfer of these monocytic MDSCs can significantly decrease concanavalin A
(Con A)-induced acute hepatitis in mice [40]. During hepatic ischemia/reperfusion (I/R)
injury in mice, accumulation of CD11b+Ly-6Chigh monocytes (M-MDSCs) recruited by the
C-C motif chemokine ligand 2 (CCL2)/C-C chemokine receptor 2 (CCR2) axis accelerates
liver inflammation, which can be suppressed by CCR2 inhibitor RS504393 and depletion of
CCL2 or CCR2 [41]. In addition, the populations of CD11b+Ly6GhighLy6Cint G-MDSCs [42],
CD11b+Gr-1+ MDSCs [43], and monocytic SSClowCD11b+Gr-1dim MDSCs [44] have been
found to be associated with alcoholic or nonalcoholic liver inflammation.

3.2. MDSCs in Hepatic Cell Death

Hepatic cell death happens in all different acute and chronic liver diseases with
different types of cell death models [45,46], such as cell apoptosis, pyroptosis, ferroptosis,
necrosis, and necroptosis. Bone marrow-derived MDSCs induced by the granulocyte-
macrophage colony-stimulating factor (GM-CSF) after the stimulation of tumor necrosis
factor-alpha (TNF-α) and lipopolysaccharide (LPS) display a protective effect against a
lethal dose of acetaminophen (APAP)-induced liver failure by reducing liver infiltration of
elastase-expressing neutrophils and inducing apoptosis of activated neutrophils [47].

3.3. MDSCs in Liver Fibrosis and Cirrhosis

Bone marrow cells including CD11+Gr-1highF4/80− cells and CD11+Gr-1highF4/80+ cells
can suppress the expression of collagen and α-smooth muscle actin in activated hepatic stellate
cells (HSCs) in vitro and in vivo [48]. Accumulation of M-MDSCs (CD11b+Ly6G−Ly6C+ cells)
in the livers of mice undergoing bile-duct ligation can inhibit the development of liver
fibrosis [49]. The number of granulocytic MDSCs (G-MDSCs) has been shown to be
increased in the livers of patients with alcoholic liver cirrhosis (ALC), which is positively
correlated with the number of G-MDSCs in peripheral blood [50]. Mechanistically, G-
MDSCs not only can increase the plasma levels of arginase I in ALC patients but also can
inhibit NK cell-mediated apoptosis of HSCs, resulting in the progression of liver injury and
cirrhosis [50].

3.4. MDSCs in Hepatocarcinogenesis

In mice with fatty liver and graft injury, arachidonic acid can activate nucleotide-
binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3)
inflammasome in MDSCs through fatty acid transport protein 2 (FATP2), which can in-
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crease IL-17 production in CD4+ T cells to cause tumor recurrence [51]. Accumulation
of Toll-like receptor 4 (TLR4)-positive monocytic MDSCs in liver graft, which is driven
by CXCL10-mediated mobilization, can increase the incidence of HCC recurrence after
transplantation. In contrast, HCC recurrence can be suppressed by knocking down or
suppressing the CXCL10 or TLR4 signaling pathways [52]. Another study shows that
insufficient radiofrequency ablation (RFA) can cause an immunosuppressive microenviron-
ment by upregulating the expression of methyltransferase 1 and significantly increasing
the accumulation of PMN-MDSCs or G-MDSCs and TGF-β2 expression to decrease CD8+

T cells, resulting in HCC recurrence and progression [18].
Furthermore, the frequencies of total MDSCs and M-MDSCs have been shown to be

increased in patients with advanced-stage hepatitis C virus (HCV)-related HCC compared
to subjects with early-stage HCC and are positively associated with liver injury and viral
load but negatively correlated with the frequency of CD8+ T cells [53]. Another study
also reveals that lectin-type oxidized LDL receptor-1 (LOX-1)+CD15+ PMN-MDSCs, which
can suppress T cell proliferation and IFN-γ production by producing reactive oxygen
species (ROS) and arginase 1 [54], are negatively associated with the overall survival of
HCC patients.

Overall, MDSCs play diverse roles at different stages of liver disease through regula-
tion of T cell response and IFN-γ production, antifibrotic function, and inhibition of liver
cancer initiation and progression (Table 1).

Table 1. The functions of MDSCs in liver diseases.

Liver Disease MDSC Subtypes MDSC Markers Function References

Hepatitis M-MDSCs SSChighCD11bhighLy-
6ChighLy-6Glow MDSCs

Suppressing CD4 T cell
response [40]

Liver I/R injury M-MDSCs CD11b+Ly-6Chigh M-MDSCs Increasing liver inflammation [41]

Acute alcoholic liver
injury PMN-MDSCs CD11b+Ly6GhighLy6Cint

MDSCs
Protecting alcoholic liver
disease in the early stage [42]

Nonalcoholic liver disease MDSCs CD11b+Gr-1+ MDSCs Proinflammatory function [43]

Nonalcoholic liver disease MDSCs SSClowCD11b+Gr-1dim MDSCs Suppressing T cell response [44]

Liver failure MDSCs LPS-treated MDSCs Promoting apoptosis of
activated neutrophils [47]

Liver fibrosis MDSCs CD11b+Gr-1+F4/80+/−

MDSCs
Antifibrotic function [48]

Liver fibrosis M-MDSCs M-MDSCs or CD11b+Ly6G−

Ly6C+ cells Antifibrotic function [49]

Liver cirrhosis PMN-MDSCs PMN- or G-MDSCs Promoting liver cirrhosis [50]

HCC M-MDSCs TLR4+ M-MDSCs Increasing HCC recurrence [52]

HCC PMN-MDSCs PMN-MDSCs Promoting tumor recurrence [18]

HCV-related HCC M-MDSCs Total MDSCs and M-MDSCs Correlating with the
HCC stage [53]

HCC PMN-MDSCs LOX-1+CD15+ PMN-MDSCs Inhibiting T cell proliferation
and IFN-γ production [54]

Abbreviations: HCC: hepatocellular carcinoma; HCV: hepatitis C virus; I/R: ischemia/reperfusion; int: intermedi-
ate; LOX-1: lectin-type oxidized LDL receptor-1; MDSCs: myeloid-derived suppressor cells; SSC: side scatter;
TLR4: Toll-like receptor 4.

4. The Interactions of MDSCs with Liver Parenchymal and Nonparenchymal Cells

Both liver parenchymal cells including hepatocytes and cholangiocytes and non-
parenchymal cells including liver sinusoidal endothelial cells (LSECs), HSCs, Kupffer cells,
and different types of lymphocytes can interact with MDSCs through diverse molecules,
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contributing to important roles in the pathogenesis of liver disease. In this section, we
briefly introduce how different liver cells interact with MDSCs to regulate their infiltration,
phenotype, and function.

4.1. Interaction with Parenchymal Cells

The accumulation of MDSCs in liver injury or cancer is driven by the chemokines/cytokines
and their receptors. MDSCs express several chemokine receptors such as CCR2, CXCR2,
CXCR4, and CXCR5, while liver tumor cells or malignant hepatocytes express chemokines
such as CCL2, CCL5, CXCL1, CXCL5, and CXCL12, and the chemokine/its receptor axis
mediates MDSC infiltration in the tumor microenvironment [55–57]. The upregulation of
hepatic expression of CXCL1 and S100A9 protects fulminant hepatitis by inducing MDSC
accumulation [58]. The function and infiltration of MDSCs can be changed in different
HCC models, such as a diethylnitrosamine-induced HCC model and a subcutaneous tumor
model induced by injection of tumor cells [59]. Cytokines such as granulocyte-colony
stimulating factor (G-CSF) and GM-CSF secreted from tumor cells can activate MDSCs
to express vascular endothelial growth factor (VEGF) and immunosuppressive factors,
resulting in angiogenesis and suppression of immune cells [60].

4.2. Interaction with Nonparenchymal Cells

In addition to hepatocytes, LSECs and HSCs can also express CXCL12 to attract the
infiltration of MDSCs to the liver tumor microenvironment [56,61]. Activation of MDSCs
induced by HSC-condition medium can suppress CD4+ and CD8+ T cell proliferation
by upregulating the gene expression of inducible nitric oxide synthase (iNOS), arginase
1 (Arg-1), and IL-4Rα [61]. The interaction of HSCs with MDSCs is mediated by the
molecular-binding prostaglandin E2 (PGE2) and its receptor 4 (EP4), which specifically
induce the subset differentiation of G-MDSC [61]. Accumulation of tumor-infiltrating
MDSCs including both G-MDSCs and M-MDSCs can also be regulated by chemokine
CX3CL1 in HCC, which is upregulated by adoptive transfer of cytokine-induced killer
(CIK) cells, a mixture of immune cells. These MDSCs can suppress the tumor-killing activity
of CIKs in HCC in an Arg-1/iNOS-dependent manner, which is reversed by treatment
with the phosphodiesterase 5 (PDE5) inhibitor tadalafil [62]. Tumor stromal cells can also
induce infiltration of MDSCs by secreting CCL2 and CXCL12 [63]. In addition, MDSC
can interact with Kupffer cells to increase their expression of programmed cell death
ligand 1 (PD-L1) to induce an immunosuppressive microenvironment. Moreover, the
immunosuppressive function of MDSCs is also mediated by inducing the differentiation of
regulatory CD25+Foxp3+CD4+ T cells from cocultured CD4+ T cells through induction of
IL-10 [17].

Furthermore, hepatitis infection regulates MDSC infiltration to suppress the antiviral
function of immune cells. For example, CD33+CD11blowHLA-DRlow MDSCs stimulated by
HCV can impair the antiviral ability of NK cells by reducing their IFN-γ production [64].
MDSC-mediated suppression of NK cell function is mediated by the production of arginase
1, which is independent of cell–cell interaction.

5. Factors That Impact MDSC Infiltration and Function during Liver Injury

Given the aforementioned functions of MDSCs in liver disease, it is critically important
to investigate the key factors that impact MDSC infiltration and function in liver pathogen-
esis. These factors can be regulated or targeted to develop MDSC-mediated therapies for
liver disease. Here, we review some key factors that regulate the recruitment of MDSCs
and their functions.

5.1. Inflammation

Proinflammatory cytokine IL-1β can induce overexpression of solute carrier family
7 member 11 (SLC7A11) in HCC cells to enhance tumor metastasis. The upregulation of
SLC7A11 induces the infiltration of tumor-associated macrophages (TAMs) and MDSCs
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by activating the colony-stimulating factor 1 (CSF1)/colony-stimulating factor 1 receptor
(CSF1R) axis [65]. Inflammatory mediators such as CX3CL1 and IL-13 in the HCC tumor
microenvironment can regulate the infiltration of MDSCs (Figure 2) that contribute to the
immunosuppressive function of cytokine-induced killer cells [62].
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Figure 2. Factors regulate the activation and infiltration of MDSCs in liver cancer. During liver injury
and hepatocarcinoma, chemokines such as CXCL1, CX3CL1, CCL2, and CXCL12 and cytokines such
as IL-6 and GM-CSF can be expressed by tumor-associated fibroblasts and tumor cells to regulate
the infiltration and activation of MDSCs, which can promote angiogenesis by expressing express
vascular endothelial growth factor (VEGF) to inhibit the function (e.g., IFN-γ production) of cytotoxic
T cells. In addition, gut microbiota-derived components such as lipopolysaccharides (LPSs) can
activate hepatocytes or tumor cells by interacting with Toll-like receptor 4 (TLR4) to upregulate
CXCL1 expression, resulting in the migration of MDSCs into the microenvironment. All cartoons in
this figure were prepared using Biorender (https://biorender.com, accessed on 29 November 2023).

5.2. Chemokines and Cytokines

High levels of baseline IL-6 in patients with unresectable HCC have been associ-
ated with poor response rates to the treatment of atezolizumab and bevacizumab and
low overall survival [66]. Cytokines expressed by tumor cells or endothelial cells in the
tumor microenvironment, such as GM-CSF and IL-6 (Figure 2), can promote MDSC in-
duction to suppress antitumor IFN-γ+ T cell production and increase angiogenesis in the
mouse HCC microenvironment [67]. Neutralization of GM-CSF and IL-6 can decrease
the accumulation of MDSCs to suppress HCC progression. HCC progression and MDSC
accumulation are also abrogated in chemerin (retinoic acid receptor responder protein
2)-deficient mice, indicating the protective role of chemerin against HCC. In addition, the
circulating concentrations of GM-CSF or IL-6 are positively associated with the infiltration
of tumor-infiltrating MDSCs, as well as the levels of chemerin in the tumor, in patients with
HCC [67].

5.3. Tumor-Associated Fibroblasts

In human HCC, M-MDSCs are enriched in the fibrotic livers surrounding the tumor
area, and the expression of M-MDSC marker CD33 is positively associated with tumor
progression and negatively associated with the survival rate of HCC patients [68]. In mouse
HCC models, M-MDSC enrichment in fibrotic livers increases tumor development, which is
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associated with the reduction in tumor-infiltrating lymphocytes. The increase in M-MDSCs
in the fibrotic liver is triggered by activated HSCs through p38 mitogen-activated protein
kinase (MAPK) signaling, which can be suppressed to inhibit the crosstalk between HSCs
and M-MDSCs to result in the suppression of HCC growth [68].

In the HCC tumor microenvironment, chemokines and cytokines, such as stromal
cell-derived factor 1 alpha (SDF-1α, CXCL12a) and IL-6, can induce MDSC infiltration and
activation (IL-6/STAT3-mediated) to suppress the antitumor immune response and pro-
mote tumor progression [69]. IL-6 secreted from HSCs, the major cells transdifferentiated
into myofibroblasts in the liver after activation, can induce the production of MDSCs from
bone marrow cells and activate the expression of iNOS and Arg-1. In addition, HSC-treated
MDSCs increased their inhibitory function in the T cell immune response in the tumor
microenvironment [70].

5.4. Epigenetic Regulation

Epigenetic regulation, such as DNA methylation, histone modification, and transcrip-
tion by noncoding RNAs, influences liver physiology and pathology and impacts liver
disease development [71,72]. The increased expression of PHD finger protein 19 (PHF19),
an epigenetic regulator, predicts poor prognosis in patients with HCC. Mechanistically,
PHF19 regulates the cell cycle and DNA replication, and high PHF19 expression is posi-
tively associated with the infiltration of MDSCs and Th2 helper T cells [73].

5.5. Gut Microbiota

The gut microbial components lipopolysaccharides (LPSs) can activate TLR4, a family
member of pattern recognition receptors (PRRs), on HCC cells to regulate nuclear factor-
κB (NF-κB) and MAPK signaling pathways, resulting in cancer cell proliferation [74].
Activation of the NF-κB signaling pathway can also promote the invasion of HCC cells by
regulating extracellular matrix (ECM) remodeling, the expression of degradation enzyme
matrix metalloproteinases (MMPs), and epithelial–mesenchymal transition (EMT), as well
as angiogenesis in the tumor microenvironment [75]. In addition, overexpression of NF-κB
can increase the resistance of HCC cells to chemotherapy and radiotherapy [76,77].

Berberine, a herbal isoquinoline alkaloid compound with antioxidant and anti-inflammatory
activities [78,79], can reduce alcoholic hepatic injury in mice by activating G-MDSC-like
cells through activation of the IL-6/signal transducer and transcription 3 (STAT3) signaling
pathway and regulation of the gut microbial profile with an increase in the abundance of
Akkermansia muciniphila. In contrast, an antibiotic cocktail treatment causes depletion of gut
microbiota and reduces the population of G-MDSCs in the liver, resulting in the abrogation
of the protective effect of berberine against alcohol-induced liver injury [80]. Meanwhile,
studies also show that oral supplementation of A. muciniphila can reduce alcohol-induced
liver injury [81,82]. Treatment of berberine also increases the abundance of A. muciniphila
in high-fat diet (HFD)-fed mice. In summary, the effect of berberine on G-MDSCs is highly
regulated by gut microbial species A. muciniphila.

In mice with primary sclerosing cholangitis (PSC) or colitis, a leaking gut increased
the presence of gut microbiota and LPS in the liver, which increased the expression of
CXCL1 in hepatocytes by activating the TLR4 signaling pathway (Figure 2), resulting in
an accumulation of CXCR2-expressing PMN-MDSCs [83]. Gut microbiota dysbiosis in
mice lacking the inflammasome sensor molecule NOD-like receptor family pyrin domain-
containing 6 (NLRP6) has increased the expansion of M-MDSCs in the liver in a TLR4-
dependent manner, resulting in a reduction in T cell population [84]. The supplementation
of A. muciniphila improves gut barrier function to suppress liver inflammation and fibrosis,
which is negatively associated with the abundance of M-MDSCs in the caeca [84].

In addition to the above factors, transcriptional factors play important roles in the
immunosuppressive function of MDSCs. For example, treatment with STAT3 inhibitors can
suppress the frequency of liver-associated MDSCs to inhibit tumor growth and dampen
the suppressive function of MDSCs to enhance the anticancer efficacy of chimeric antigen
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receptor T (CAR-T) cells [85]. Furthermore, hypoxia in the primary HCC tumor microen-
vironment can also drive the recruitment of CX3CR1-expressing MDSCs via its ligand
CCL26 [86].

6. Roles of MDSCs in Different Liver Diseases

Given the varied roles of MDSCs in liver disease, targeting MDSCs to regulate liver
immunity is a strategy to treat liver disease [87–89], especially for liver cancers in different
models. In this section, we review current methods and strategies that regulate MDSC
infiltration and function in liver diseases.

6.1. Hepatocellular Carcinoma

Anti-liver cancer treatments can regulate the infiltration of MDSCs and their function.
In mice with HCC, sorafenib treatment can inhibit HCC growth, which is associated with a
decrease in immunosuppressive cells, including both MDSCs and regulatory T cells [90].
Another study shows that the adoptive transfer of MDSCs to HCC-bearing mice not only
promotes HCC progression, partially by activating tumor-associated fibroblasts via IL-
6/fibroblast growth factor 1 (FGF1) signaling, but also induces resistance to sorafenib
treatment [91].

Treatment with 5-fluorouracil (5-FU) can increase the infiltration of MDSCs to sup-
press the efficacy of anti-PD-L1 antibodies in mice with orthotopic HCC. Mechanistically,
VEGF-A expressed by tumor cells through activation of peroxisome proliferator-activated
receptor-gamma (PPARγ) stimulates MDSC expansion to suppress CD8+ T cell function [92].
Therefore, PPARγ antagonist treatment can resensitize tumor cells to anti-PD-L1 treatment.
Similarly, in human HCC, the number of MDSCs increased post-transarterial chemoem-
bolization, which is negatively associated with the number of CD8+ T cells [92]. The
frequency of PD-L1+ MDCSs has also been shown to be significantly increased in the
PBMCs of patients with HCC compared to that in healthy subjects, and these cells can se-
crete high levels of VEGF-A [93]. Therefore, angiogenesis and immunosuppressive factors
secreted from MDSCs can inhibit the efficacy of anti-HCC treatments.

A mouse study shows that HCC mice that have less tumor infiltration of MDSCs
and regulatory T cells in the tumor are responders to anti-CD137 antibody treatment. In
addition, depletion of MDSCs using the anti-mouse Gr-1 antibody significantly improves
the survival of tumor-bearing mice [94]. Another study reveals that the blockade of MDSC
infiltration in mice with primary HCC or colorectal cancer liver metastasis using CXCR2
inhibitor SB225002 can significantly improve anti-PD-1 immunotherapy and improve the
survival rate of HCC-bearing mice [88]. Treatment with chemokine receptor inhibitors
impairs the infiltration of MDSCs and tumor-associated macrophages to the tumor mi-
croenvironment to abolish their immunosuppressive function against cytotoxic CD8+ T
cells [88,95].

6.2. Cholangiocarcinoma

Depletion of tumor-associated macrophages by the anti-CSF1R (colony-stimulating
factor 1 receptor) antibody failed to suppress murine CCA due to a compensatory infil-
tration of G-MDSCs with immunosuppressive features [96]. In contrast, dual treatments
with anti-CSF1R and anti-Ly6G antibodies can significantly improve the efficacy of anti-
PD-1 therapy to increase the survival time of CCA mice [96]. Fibroblast activation protein
(FAP)-mediated progression of intrahepatic cholangiocarcinoma (ICC) can be abrogated
by anti-Gr-1 antibody treatment, as FAP mediates the infiltration of MDSCs in ICC via
inducing CCL2 expression to promote tumor progression and angiogenesis [97].

6.3. Metastatic Liver Cancer

About 50% of patients with colorectal cancer will develop liver metastases. The
frequency of CD14+HLA-DR−/low MDSCs has been shown to increase in patients with
colorectal cancer metastasis, and these MDSCs contribute to forming the premetastatic
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niche and are associated with inhibition of T cell proliferation and poor prognosis [98].
Intravascular infection of TLR9 agonist ODN2395 via the portal vein can significantly
suppress tumor progression by regulating MDSC depletion and programming in mice with
colon adenocarcinoma liver metastasis [99].

6.4. Subcutaneous Liver Cancer

Artemisinin (ART), an antimalarial drug with tumoricidal and immunoregulatory
properties, can induce MDSC apoptosis and inhibit their accumulation and immunosup-
pressive function in vitro. In vivo, treatment of ART at doses of 50 mg/kg and 100 mg/kg
is able to significantly suppress tumor growth in mice with subcutaneous Hepa 1-6-induced
hepatoma by reducing the frequencies of M-MDSCs and G-MDSCs [100].

In mice with subcutaneous xenograft HCC (human liver cancer cell lines such as HepG2,
Huh-7, and MHCC97H), curcumin treatment can inhibit the frequency of CD11b+GR-1+ MDSCs
and suppress the expression of G-CSF and GM-CSF by suppressing the TLR4/NF-κB signaling
pathway [60].

6.5. Liver Regenration

In solid organs of the body, only the liver can regenerate to return to the original ratio
of organ-to-bodyweight [101]. In the early stage of liver regeneration, MDSCs have unique
transcriptional profiles that increase ROS production and angiogenesis, contributing to
liver regeneration [102].

6.6. Autoimmune Hepatitis

Liver X receptor alpha (LXRα)-deficient mice have an increased expansion of both
PMN-MDSCs and M-MDSCs in the liver compared to wild-type mice, resulting in amelio-
ration of concanavalin A (ConA)-induced hepatitis [103]. Mechanistically, MDSCs from
LXRα−/− mice have lower expression of interferon regulatory factor 8 (IRF-8) with in-
creased capabilities of proliferation and survival compared to MDSCs from wild-type
mice [103].

6.7. Alcoholic and Nonalcoholic Liver Diseases

In addition to hepatitis viral infection, MASLD and ALD are the most common chronic
liver diseases that are able to induce liver cancer initiation and progression [104,105]. The
population of G-MDSCs (expressing CD11b+Ly6GhighLy6Cint) was increased in the blood,
spleen, and liver of alcohol-treated mice. G-MDSCs have a protective role at the early stage
of alcohol-induced liver injury, as depletion of these cells can increase serum levels of liver
injury enzymes alanine aminotransferase and aspartate aminotransferase, while adoptive
transfer of G-MDSCs can ameliorate acute alcoholic liver damage [42].

The increased frequency of CD11b+Gr-1+ MDSCs in peripheral blood and accumu-
lation of Gr-1+ cells in the liver are positively associated with MASLD, which can be
suppressed by antioxidant treatment (MitoTEMPO) to reduce liver inflammation by sup-
pressing the expression of MDSC-related proinflammatory mediators, such as S100A8 and
S100A9 [43]. Another study also shows that monocytic SSClowCD11b+Gr-1dim MDSCs
recruited by the CCL2/CCR2 axis into the liver display a very strong suppressive ability
on T cell response by producing NO in mice with MASLD [44].

7. Current Clinical Trials of MDSC-Regulated Therapies in Liver Disease

The presence of MDSCs is associated with liver cancer progression in mouse models
and human patients with liver cancer [85,89]; therefore, targeting MDSCs is a strategy for
liver cancer treatment. Clinically, different treatments (Table 2), such as small or short
activating RNAs [22], liver X nuclear receptor (LXR) agonist RGX-104 (not validated in
liver cancer) [106], a HepaVac-101 vaccine consisting of multipeptide antigens (IMA970A)
plus TLR7/8/RIG-I (retinoic acid-inducible gene I) agonist CV8102 [107], TLR8 agonist
(GS-9688) [108], and invariant NKT cells (iNKT) infusion [109], are under investigation
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in the clinic (https://clinicaltrials.gov/, accessed on 20 November 2023). In addition,
surgical resection can also decrease the accumulation of MDSCs in patients with hepatitis B
virus-related HCC [110]. However, treatments directly targeting MDSCs are less studied,
and more pharmaceutical medicines should be developed to regulate the function and
frequency of MDSCs in liver diseases.

Table 2. Clinical trials of MDSC-regulated therapies in liver disease.

Trials Phase Treatment Results and Measurement References

NCT04105335 1
MTL-CEBPA

(small or short
activating RNAs)

This treatment can induce HCC regression in patients by
significantly decreasing the number of blood monocytic

myeloid-derived suppressor cells (M-MDSCs) and
protumoral M2 tumor-associated macrophages (TAMs).

[22]

NCT02922764 1 RGX-104
It is an oral small molecule that can suppress

tumor-infiltrating MDSCs by targeting the liver X receptor
(LXR) in multiple tumor models.

[106]

NCT03188276 1
Ledipasvir/sofosbuvir

and
daclatasvir/sofosbuvir

The relationship between the antiviral treatment effect and
the functional activity of MDSCs and natural killer (NK)

cells in chronic hepatitis C will be evaluated.
N/A

NCT03203005 1/2 HepaVac-101 vaccine

The vaccine consists of multipeptide antigens (IMA970A)
plus TLR7/8/RIG I agonist CV8102, and its effect on the

frequencies of MDSCs will be performed using peripheral
blood mononuclear cells (PBMCs).

[107]

NCT03491553
NCT03615066 2 TLR8 agonist GS-9688

(selgantolimod)

GS-9688 treatment can reduce the frequency of regulatory T
cells and M-MDSCs, while it can increase TNF-related

apoptosis-inducing ligand-expressing NK cells and
degranulation of arginase-I-expressing PMN-MDSCs.

[108]

NCT04011033 2/3 Invariant NKT cells
(iNKT) infusion

Frequencies of immune cells including MDSCs will be
analyzed by flow cytometry before and after iNKT infusion. [109]

NCT02868255 N/A * Anti-SIRPα antibody

The study aims to test the expression of signal regulatory
protein-α (SIRPα)/CD47 signaling and the efficacy of

anti-SIRPα antibodies in patients with HCC and
ovarian cancer.

N/A

N/A N/A Liver resection After liver resection surgery, the accumulation of MDSCs in
patients with hepatitis B virus-related HCC was decreased. [110]

* N/A: not applicable.

8. Challenges and Future Directions

MDSCs, a heterogeneous population, mediate both innate and adaptive immune
responses in liver homeostasis and injury. They are involved in the pathogenesis of most
liver diseases, such as ALD, MASLD, hepatitis, liver fibrosis, cirrhosis, and HCC, by
regulating the interaction with both liver parenchymal cells such as hepatocytes and
nonparenchymal cells. MDSCs can be broadly divided into two populations: monocytic
MDSCs (M-MDSCs) and polymorphonuclear or granulocytic MDSCs (PMN- or G-MDSCs).
Hepatic infiltration and activation of MDSCs can be regulated by inflammatory chemokines
(e.g., CXCL1 and CCL2) and cytokines (e.g., IL-6), tumor-associated fibroblasts, epigenetic
factors, and gut microbiota during liver pathogenesis. Given all these factors can impact the
infiltration, phenotype, and function of MDSCs, it is very hard to define a specific subtype
of MDSCs in liver diseases. In addition, the population of MDSCs can also be changed in
a model-dependent manner. A multi-omics study can be performed in each chronic liver
disease to uncover the features of disease-specific MDSCs and potential gene or protein
targets for liver disease treatment.

Overall, MDSCs play important roles in the progression of chronic liver disease by
regulating both intrahepatic innate and adaptive immune responses. MDSCs are optional
targets for the treatment of primary and metastatic liver cancer, liver generation, and au-

https://clinicaltrials.gov/
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toimmune hepatitis. However, only a few drugs are under evaluation for their therapeutic
efficacy and potential synergistic effects with other treatments. Therefore, new medicines
or strategies that can regulate the function and migration of MDSCs are needed.
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