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Abstract: The primary cause of atherosclerotic cardiovascular disease (ASCVD) is elevated levels of
low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9)
plays a crucial role in this process by binding to the LDL receptor (LDL-R) domain, leading to
reduced influx of LDL-C and decreased LDL-R cell surface presentation on hepatocytes, resulting
higher circulating levels of LDL-C. As a consequence, PCSK9 has been identified as a crucial target
for drug development against dyslipidemia and hypercholesterolemia, aiming to lower plasma
LDL-C levels. This research endeavors to identify promising inhibitory candidates that target the
allosteric site of PCSK9 through an in silico approach. To start with, the FDA-approved Drug
Library from Selleckchem was selected and virtually screened by docking studies using Glide extra-
precision (XP) docking mode and Smina software (Version 1.1.2). Subsequently, rescoring of 100 drug
compounds showing good average docking scores were performed using Gnina software (Version 1.0)
to generate CNN Score and CNN binding affinity. Among the drug compounds, amikacin, bestatin,
and natamycin were found to exhibit higher docking scores and CNN affinities against the PCSK9
enzyme. Molecular dynamics simulations further confirmed that these drug molecules established
the stable protein–ligand complexes when compared to the apo structure of PCSK9 and the complex
with the co-crystallized ligand structure. Moreover, the MM-GBSA calculations revealed binding
free energy values ranging from −84.22 to −76.39 kcal/mol, which were found comparable to those
obtained for the co-crystallized ligand structure. In conclusion, these identified drug molecules have
the potential to serve as inhibitors PCSK9 enzyme and these finding could pave the way for the
development of new PCSK9 inhibitory drugs in future in vitro research.

Keywords: PCSK9; atherosclerotic cardiovascular disease; low-density lipoprotein; docking

1. Introduction

Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of ill-
nesses and deaths around the world [1]. Atherosclerotic disease has multiple causes;
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however, dyslipidemia and hypercholesterolemia are a major independent modifiable risk
factor [2,3]. Dyslipidemia is characterized by increasing levels of cholesterol and triglyc-
erides, particularly low-density lipoprotein cholesterol (LDL-C), as well as a decrease in
high-density lipoprotein cholesterol (HDL-C) [4]. Similarly, the elevated level of LDL-C
was also found in people with hypercholesterolemia, which can be treated with a variety
of cholesterol-lowering drugs, among which statins are the most effective conventional
drugs [5]. However, statins are associated with numerous adverse effects, such as myalgia,
memory loss, type 2 diabetes, and many more, which are promoting the search for new
cholesterol lowering medications [3]. To circumvent the limitations of cholesterol medica-
tion, researchers are working on developing proprotein converse subtilisin/kexin type 9
(PCSK9) inhibitors by employing a variety of strategies such as anti-sense oligonucleotides
(ASOs), siRNA, monoclonal antibodies (mAbs), and peptide inhibitors. Among the distinct
approaches, PCSK9 mABs [6] and siRNA inhibitors [7,8] have attracted a lot of interest
from the most successful pharmaceutical companies in the world. Due to the significant
incidence of dyslipidemia, PCSK9 inhibition has also emerged as a prominent focus of
translational medicine research [9].

PCSK9 inhibitors, also referred to as PCKS9i, are highly potent medications for reduc-
ing LDL-C levels, significantly enhancing our capacity to address lingering cardiovascular
risks. Normally, LDL binds to LDL receptors, facilitating LDL metabolism and the subse-
quent recycling of LDL receptors to the liver surface. Conversely, when PCSK-9 binds to
LDL receptors, it triggers degradation. Consequently, LDL receptors cannot be recycled,
leading to elevated LDL levels. Through the inhibition of PCSK9, a greater quantity of
LDL receptors remains accessible on the liver’s surface, resulting in a decrease in blood
cholesterol levels [8].

PCSK9 mAbs, Evolocumab, Alirocumab, and Inclisiran, were approved for clinical
usage shortly after their discovery and have since been extensively utilized not only for
treating familial hypercholesterolemia (FH) but also for secondary prevention of atheroscle-
rotic cardiovascular disease (ASCVD) [10].

To further improve the therapeutic outcome and investigate the new approach, re-
search continues to study the long-term safety and efficacy of PCSK9 inhibitors, as well as
their role in specific patient populations. This includes exploring their use in combination
with other cholesterol-lowering medications (Table 1). As of now, the field is dynamic,
with ongoing clinical trials and studies providing new insights into the role of PCSK9 in
cardiovascular health and potential therapeutic interventions (Table 1).

Table 1. Summary of the key aspects of current research activities based on PCSK9.

Aspect Research Focus

Therapeutic Target PCSK9 inhibitors for lowering LDL cholesterol [11]

Drugs in Focus Evolocumab, Alirocumab, and other monoclonal antibodies [12]

Drug Development Refining inhibitors, exploring new delivery mechanisms

Genetic Variations Studying PCSK9 mutations and their impact on cholesterol [13]

Gene Editing Exploring gene-editing technologies for therapeutic use [14]

Safety and Efficacy Investigating long-term safety and efficacy of
PCSK9 inhibitors [15]

Combinatorial Approaches Studying the use of PCSK9 inhibitors in combination with
other medications [16]

Patient Populations Exploring efficacy and safety in specific patient groups [17–22]

Ongoing Clinical Trials Continuous assessment of PCSK9 inhibitors in
various stages [23–26]

Furthermore, X-ray crystallographic structure and molecular dynamics studies have
provided valuable insights into the interaction between PCSK-9 and the epidermal growth
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factor-like repeat-A (EGF-A) domain of the LDL receptor (LDL-R) [27,28]. It has been
observed that PCSK-9 via its catalytic domain binds strongly to EGF-A, impairing the
recycling of LDL-R to the cell surface. As a result, LDL-R undergoes lysosomal degradation
under the influence of PCSK-9 protease activity, leading to elevated levels of LDL-R in
the bloodstream [29–32]. Further, the analysis of the binding interface between PCSK-
9 and EGF-A has emphasized the challenges in identifying small-molecule ligands for
PCSK9 [28]. As reported, both proteins possess flat, featureless surfaces that primarily
engage in hydrophobic interactions across a substantial area (Figure 1). Moreover, they form
an antiparallel β-sheet structure [33], which adds further complexity to the interaction with
small molecules [30]. Significantly, a distinctive allosteric binding site has been discovered
between the catalytic and C-terminal domains of PCSK-9. This pocket holds promising
potential for ligand binding and is positioned in proximity to various mutation sites that
have been linked to both gain and loss of function. Furthermore, the interactions between
certain amino acids, namely Arg357 and Asp360 in the catalytic domain, along with Arg458
and Arg476 in the C-terminal domains, at the allosteric site, have been identified as critical
for stabilizing compounds within the allosteric site of PCSK-9.
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Figure 1. 3D structure of the PCSK9-LDL-R complex (PDB ID: 3P5B) showing binding of EGF-A
of LDL-R to the catalytic site of PCSK9 and key amino acid residues at the allosteric site of PCSK9
surface involved in binding to small molecules.

Nevertheless, computer-aided drug design (CADD) plays a crucial role in identify-
ing suitable binding sites within a target and facilitating the development of drugs that
influence these binding sites. It also offers a promising way for drug repurposing, which
involves discovering innovative treatment options at a low cost and with high efficiency.
By repurposing drugs, we can explore their potential to target mutations or malfunctioning
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receptors and proteins, opening up exciting possibilities for novel therapies. In this study,
we employed a structure-based virtual screening (SBVS) methodology to screen a library of
FDA-approved drugs [34]. Our aim was to predict new inhibitory activity of these previ-
ously approved drugs against the PCSK9 enzyme. Additionally, we sought to elucidate the
binding site of the PCSK9 enzyme and identify the amino acid residues crucial for drug
binding. Through our comprehensive analysis, we aimed to uncover valuable insights that
could pave the way for the development of potential PCSK9 inhibitors.

2. Methodology
2.1. Molecular Docking Using Glide and Smina

To identify potent inhibitors for PCSK-9 among FDA-approved drugs, we downloaded
a library of 2992 FDA-approved drug compounds from the Selleckchem chemical database
(https://www.selleckchem.com/, accessed on 25 July 2023). The 3D structures of the
downloaded compounds were prepared and optimized to obtain lower energy conformers
using Ligprep v3.5.9 (Schrodinger, LLC., New York, NY, USA). We also downloaded the
X-ray crystal structure coordinates of the PCSK-9 enzyme (PDB ID: 6U2P) from the RCSB
PDB with a resolution of 2.04 Å. This structure of PCSK-9 was co-crystallized with a
small molecule inhibitor that contained a tetrahydroisoquinoline scaffold connected with
a thiazole ring and substituted aromatic acid. The structure provided insights into the
multiple intermolecular interactions between the ligand and the active site residues [35].
After downloading the structure, we prepared it for docking using the “protein preparation
wizard” in Maestro v10.3 (Schrodinger, LLC.). The bond orders and formal charges for
hetero groups were corrected and hydrogen atoms were added to all atoms in the structure.
Side chains that were not in close proximity to the binding cavity and did not participate
in salt bridges were neutralized, and the termini were capped by adding N-acetyl (ACE)
and N-methyl amide (NMA) residues. Subsequently, the structure was refined to optimize
the hydrogen bond network using the OPLS_2005 force field. The minimization process
was terminated either when the energy converged or when the RMSD reached a maximum
cutoff of 0.30 Å. For the molecular docking studies, molecular docking tool Glide v6.8
with the extra precision (XP) docking mode was employed [36,37]. The 6497 conformers
generated for 2992 compounds using Ligprep were docked onto the generated grid of
the PCSK9 protein structure. From the generated conformers, top 510 conformers of
268 compounds with docking scores better than −7.5 were selected for further analysis.
These selected conformers were subjected to additional docking using Smina molecular
docking software [38,39]. Smina is a customized version of AutoDock Vina that offers better
support for scoring function development and high-performance energy minimization [39].
The binding site in the enzyme was defined based on the coordinates of the co-crystal ligand
from the PDB, extended by 4 Å in each dimension. All 510 conformers of the 268 compounds
were docked into the defined active site of the enzyme using the default scoring function
of Smina.

2.2. CNN Scoring Using GNINA

To determine the CNN scoring of the best conformer for each compound that exhibited
a good docking score in both Glide and Smina docking software, we performed score-in-
place molecular docking using Gnina molecular docking software. Gnina is a modified
version of Smina and AutoDock Vina, specifically designed to incorporate convolutional
neural networks (CNN) for scoring protein–ligand poses [38–40]. In this study, Gnina was
utilized to predict the quality of binding poses and binding affinity of protein–ligand com-
plexes obtained from both Glide and Smina docking. The docking pipeline of Gnina takes
advantage of the enhanced scoring capabilities provided by Smina, allowing the utilization
of CNNs as scoring functions. A CNN scoring function has the ability to automatically
learn the essential features of protein–ligand interactions that are associated with binding.
The scores generated by the CNN models serve as an indication of the confidence in the
quality of the ligand conformation generated during the docking process. In a typical usage

https://www.selleckchem.com/
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scenario, Gnina requires a receptor structure, a ligand structure, and a specification for the
binding site on the receptor.

2.3. Molecular Dynamics (MD) Simulation

Molecular dynamics (MD) simulations were conducted using the Desmond software
(Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, USA, 2020;
Maestro–Desmond Interoperability Tools, Schrödinger, New York, NY, USA, 2020) follow-
ing a previously reported procedure [41]. In summary, the MD simulations were performed
to analyze the thermodynamic behavior and molecular stability of the lowest energy docked
conformations of amikacin, natamycin, and bestatin, as well as the crystal structure-bound
ligand and the apo form of the enzyme. To prepare the ligand–protein complexes for MD
simulations, a simple point charge water model was employed, and an orthorhombic box
with dimensions of 10 Å was used to solvate the complexes. Subsequently, ion neutral-
ization was performed and the systems were minimized until a simulation time of 1 ns
was reached. Following the equilibration period of 1 ns, each system was subjected to MD
runs lasting 100 ns. The simulations utilized the OPLS_2005 force field parameters. The
temperature and pressure were maintained at 300 K and 1.01325 bar, respectively, using
the isothermal–isobaric (NPT) ensemble. For Coulomb interactions, a cutoff radius of 9 Å
was employed, and the smooth Particle Mesh Ewald method was utilized for long-range
interactions. Trajectories of the MD simulations were saved at intervals of 100 ps, resulting
in approximately 1000 frames for subsequent analysis. Desmond’s simulation interaction
diagram option was utilized to generate detailed information such as protein and ligand
root mean square deviation (RMSD), root mean square fluctuation (RMSF), and ligand
interaction profiles from the simulation trajectories. The stability of the MD simulations
was monitored by observing the RMSD of the ligand and protein atom positions over time.

2.4. MM-GBSA Analysis

The thermal_MMGBSA.py script from the Prime/Desmond module of the Schrodinger
suite was used to perform post-simulation molecular mechanics with generalized Born
and surface area (MM-GBSA) analysis [42]. Every tenth frame was taken from the 100 ns
of simulated trajectory for binding free energy estimates of ligands in complex with the
PCSK9 protein, averaging a total of 100 frames. The OPLS forcefield-based VSGB 2.0 solva-
tion model, which integrates residue-dependent effects was used for the polar solvation
term [43]. The nonpolar solvation terms, i.e., solvent-accessible surface area (SASA), was
also incorporated along with the van der Waals interactions to estimate the binding free
energy (∆Gbind) of complex.

The ∆Gbind represents one of the most used parameters to estimate a ligand–protein
binding which was estimated by subtracting the complex free energy from the sum of the
individual free energies of the protein and ligand:

∆Gbind = G(C) − G(P) − G(L)

where ∆Gbind is the total binding free energy, G(C) is the binding energy of protein–ligand
complex, G(L) is the binding energy of ligand, and G(P) is the binding energy of protein.
The binding energy of the receptor and ligand is calculated by the prime energy, a molecular
mechanics + implicit solvent energy function (kcals/mol).

3. Result and Discussion
3.1. Structure-Based Virtual Screening Using Docking Studies

SBVS is a computational approach utilized to predict optimal ligand–target interactions
and the formation of complexes [44]. SBVS enables the ranking of ligands based on their
affinity to the target, with the most promising compounds appearing at the top of the
list. This strategy involves selecting compounds from a database and categorizing them
according to their affinity to the receptor site. In our study, we employed a structure-
based in silico screening approach on a library of FDA-approved drugs consisting of
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2992 compounds obtained from the Selleckchem chemical database, aiming to identify novel
therapeutic candidates with good binding affinity against the PCSK9 enzyme. The screening
process involved the docking of all FDA-approved drugs to the PCSK9 enzyme using the
Glide extra-precision (XP) docking mode. From the initial screening, 268 compounds
were selected based on a docking score better than −7.5 kcal/mol for further docking
using Smina docking software (Version 1.1.2). Subsequently, the molecules were ranked
based on their average docking scores obtained from both software and the poses of
the first 100 compounds were further rescored and evaluated by CNN binding affinity
against the PCSK9 protein using the Gnina docking software. (version 1.0) Due to the
variation in docking scores generated by Glide, Smina, and Gnina for each ligand, we
selected three molecules, namely amikacin, bestatin, and natamycin, based on their superior
average docking scores and higher CNN affinities, for subsequent molecular dynamics
(MD) simulation and post-MD simulation studies (Figure 2).
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Figure 2. The virtual screening workflow illustrates the sequential steps used to identify potential
PCSK9 inhibitors.

Prior to performing virtual screening of the FDA-approved library, the docking
methodology was validated by removing the bound ligand from the protein structure
(PDB id 6U2P) and redocking it into the active site of the enzyme. The RMSD value was
calculated to assess the superimposition of the docked ligand with the co-crystallized
ligand structure. The RMSD values were determined to be 0.601 Å and 0.424 Å for the Glide
and Smina docking methodologies, respectively. These values below 2.0 Å indicate that
both docking software generated correct poses for the co-crystallized ligand, validating the
reliability of the docking process [45]. The average docking scores for the bound ligands,
amikacin, natamycin, and bestatin, were found to be −8.90, −10.23, −9.98, and −9.78,
respectively (Table 2). These compounds were further evaluated using Gnina docking
software, which employs convolutional neural networks (CNNs) as a scoring function.
The CNN model in Gnina provides predictions for both pose quality (CNNScore) and
binding affinity (CNNaffinity). The CNNScore ranks the poses of the ligands, while the
CNNaffinity predicts the affinity of each ligand in ‘pK’ units, where a pK value close to
6 indicates 1 µM affinity. The CNNScore of the bound ligands, amikacin, natamycin, and
bestatin, were found to be 0.865, 0.58, 0.35, and 0.53, respectively, while their CNNaffinity
values were 6.78, 5.45, 6.62, and 5.49, respectively.

Figure 3 provides a comprehensive depiction of the binding poses of all compounds
at the allosteric site of the PCSK9 enzyme. It was observed that all compounds interacted
with at least one amino acid residue, including Arg357 and Asp360 in the catalytic domain,
and Arg458 and Arg476 in the C-terminal domains, as reported in the literature for their
interaction with small molecules [35]. All compounds exhibited specific binding at the
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allosteric site, encompassing both the catalytic and C-terminal domains, except for bestatin,
which, due to its smaller structure, was shifted more towards the catalytic domain. In
comparison to the crystal structure’s bound ligand, which showed H-bond interactions
with amino acid residues Pro331, Arg357, Asp360, Arg458, and Arg476, the amikacin, with
its higher number of hydroxyl groups, displayed hydrogen bond interactions not only
with these amino acids but also with Glu332, Cys358, Ile474, and Cys477 (Table 3). This
increased the stability of amikacin in the allosteric site of the PCSK9 enzyme. Similarly,
natamycin exhibited H-bond interactions with all four crucial amino acid residues in the
catalytic and C-terminal domains. However, as bestatin was shifted towards the catalytic
site, it did not display hydrogen bonding interactions with Arg476, but it formed H-bonds
with amino acid residues Glu332, Val333, Arg357, Asp360, Arg458, and Trp461.

Table 2. Docking score of selected compounds against the PCSK9 enzyme.

Sr. No. Compound
Name

Glide Docking and Gnina Scoring Smina Docking and Gnina Scoring Average Docking Scores
and Gnina Scoring

Glide
Score

CNN
Score

CNN
Affinity

Smina
Score

CNN
Score

CNN
Affinity

Docking
Score

CNN
Score

CNN
Affinity

1 Amikacin −11.50 0.22 3.89 −10.23 0.58 5.45 −10.87 0.40 4.67

2 Natamycin −11.37 0.19 3.55 −9.98 0.35 6.62 −10.67 0.27 5.085

3 Bestatin −11.37 0.44 6.20 −9.78 0.53 5.49 −10.57 0.485 5.845

4 PDB Bound
Ligand −7.417 0.76 6.69 −10.40 0.97 6.87 −8.90 0.865 6.78

Table 3. Molecular interactions of docked compounds and PCSK9 enzyme.

Sr. No. Compound Name H-bond Interactions Other Interactions

1 Amikacin Pro331, Glu332, Arg357, Cys358, Asp360, Ala463, Ile474,
Arg476, Cys477

Salt Bridges (Glu332,
Asp360, Arg458)

2 Natamycin Arg357, Asp360, Arg476 Salt Bridges (Asp360, Arg458)

3 Bestatin Glu332, Val333, Arg357, Asp360, Arg458, Trp461 Salt Bridges (Asp360)

4 PDB Bound Ligand Arg357, Asp360, Arg476, Arg458, Pi-cation interaction (Arg458)

Overall, molecular interactions of docked compounds and the PCSK9 enzyme indicate
that the amikacin interacts with several amino acid residues of the PCSK9 enzyme through
hydrogen bonds, including Pro331, Glu332, Arg357, Cys358, Asp360, Ala463, Ile474, Arg476,
and Cys477. In addition, amikacin forms salt bridges with Glu332, Asp360, and Arg458.
These interactions suggest that amikacin binds precisely between the catalytic and C-
terminal domains of the allosteric site of the PCSK9 enzyme. Natamycin interacts with
Arg357, Asp360, and Arg476 of the PCSK9 enzyme through hydrogen bonds. In addition,
natamycin forms salt bridges with Asp360 and Arg458. These interactions suggest that
natamycin is slightly shifted towards the catalytic site of the PCSK9 enzyme, as the direct
H-bond interaction with Arg476 observed in the docking study was replaced by a water
bridge. Bestatin was found to interact with several amino acid residues of the PCSK9
enzyme through hydrogen bonds, including Glu332, Val333, Arg357, Asp360, Arg458,
and Trp461. In addition, bestatin forms salt bridges with Asp360. These interactions
suggest that bestatin has a higher affinity towards the PCSK9 enzyme compared to the
other compounds and the reference compound, as it demonstrated a better ∆Gbind value.
The PDB bound ligand was found to interact with Arg357, Asp360, Arg476, and Arg458 of
the PCSK9 enzyme through hydrogen bonds. In addition, it forms a pi-cation interaction
with Arg458. These interactions suggest that the PDB bound ligand is positioned in the
center of the allosteric site of the PCSK9 enzyme. Based on the molecular interactions, it can
be concluded that all four compounds interact with key amino acid residues of the PCSK9
enzyme, including Asp360 and Arg458, which are known to be involved in the binding of
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PCSK9 to LDL-R. Targeting these residues could potentially inhibit the interaction between
PCSK9 and LDL-R, leading to a reduction in LDL cholesterol levels.
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3.2. MD Simulation Studies

A molecular dynamics (MD) simulation study was conducted to investigate the be-
havior and stability of the PCSK9 enzyme alone and in combination with bound ligand,
amikacin, natamycin, and bestatin. The MD simulations were carried out for 100 ns using
the Desmond software (Desmond Molecular Dynamics System, D. E. Shaw Research, New
York, NY, USA, 2020; Maestro–Desmond Interoperability Tools, Schrödinger, New York,
NY, USA, 2020). Figures 4–7 illustrate the key parameters utilized to assess the molecular
stability of the docked compounds during the simulation. Various parameters, such as root
mean square deviation (RMSD), root mean square fluctuation (RMSF), and contact map-
ping of the ligand–protein complexes, were analyzed to confirm the molecular behavior
and stability of the compounds. These parameters were monitored over the entire 100 ns
simulation duration to gain insights into the conformational changes that occur when the
ligands are complexed with the PCSK9 protein.

The RMSD is a widely used metric to measure the average distance between atoms
in different protein structures, typically focusing on the backbone atoms. It provides a
measure of the overall displacement of atoms in one frame relative to a reference frame.
The RMSD analysis of the apo protein backbone revealed that the PCSK9 protein without
any ligand maintained a stable conformation throughout the MD simulation run, with
RMSD values ranging between 2.0 and 2.5 Å. Upon the introduction of the bound ligand
structures, the RMSD values increased initially, reaching up to 3.0 Å within the first 45 ns of
the simulation, and then stabilized within the range of 2.0 to 2.5 Å. The complex backbone
RMSD values for the amikacin–enzyme complex showed slight fluctuations up to first
50 ns MD run, then stabilizing between 3.0 and 3.75 Å. In contrast, both the natamycin–
protein and bestatin–protein complexes exhibited greater stability, with backbone RMSD
values ranging from 2.4 to 3.0 Å. Apart from the amikacin–protein complex, the other
two complexes displayed a relatively stable molecular behavior of the protein with slight
fluctuations. This indicates that the natamycin–protein and bestatin–protein complexes
achieved a high level of equilibrium and dynamic stability during the MD simulation run
(Figure 4). Furthermore, the RMSD values of the tested compound–protein complexes
closely matched those of the reference bound ligand–protein complex as well as apo protein,
suggesting comparable behavioral stability of the complexes.
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Additionally, RMSF analysis was performed on the Cα atoms of the amino acid
residues in all five systems (Figure 5). RMSF provides valuable insights into local changes
along the protein chain by measuring the fluctuation of each residue throughout the
entire simulation. Notably, apart from the loop regions, the Cα atoms in the active site
of the enzyme exhibited lower atomic fluctuations, suggesting minimal conformational
changes. The RMSF analysis also confirmed the stability of each amino acid within the
ligand–protein complexes, indicating that all compounds formed stable complexes with the
PCSK9 enzyme with minimal structural alterations. Overall, RMSF analysis showed that
the compound–protein complexes closely matched those of the reference bound ligand–
protein complex as well as apo protein, suggesting comparable behavioral stability of the
complexes. This indicates that the natamycin–protein and bestatin–protein complexes
achieved a high level of equilibrium and dynamic stability during the MD simulation
run. It is concluded that all compounds interacted with both the catalytic and C-terminal
domains of the PCSK9 enzyme through common amino acid residues, including Pro331,
Glu332, Val333, Arg357, Cys358, Asp360, Arg458, Trp461, Arg476, and Cys477. It can be
concluded that all four compounds form stable complexes with the PCSK9 enzyme with
minimal structural alterations. The compounds interact with key amino acid residues of
the PCSK9 enzyme, including Asp360 and Arg458, which are known to be involved in the
binding of PCSK9 to LDL-R.
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We conducted further analysis to investigate the formation and stability of hydro-
gen bonds under dynamic conditions. Figure 6 represents a comprehensive overview of
the individual occupancies of H-bond interactions that occurred during MD simulation
between ligands and proteins. Consistent with the docking studies, the protein–ligand
contacts plot revealed that all compounds interacted with both the catalytic and C-terminal
domains of the PCSK9 enzyme through common amino acid residues, including Pro331,
Glu332, Val333, Arg357, Cys358, Asp360, Arg458, Trp461, Arg476, and Cys477. When
considering direct H-bond interactions without involving water bridges, the bound -ligand
structure showed interactions with amino acid residues Pro331, Asp360, and Arg458, with
an interaction fraction of over 0.5, indicating that these interactions were present for more
than 50% of the MD simulation. Similarly, amikacin exhibited direct H-bond interactions
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with amino acid residues Glu332, Thr335, Cys358, Asp360, and Cys477, with an interaction
fraction of over 0.5, indicating its precise binding between the catalytic and C-terminal
domains of the allosteric site of PCSK9 enzyme. In line with the docking study, bestatin
also displayed direct H-bond interactions with amino acid residues Val333, Thr335, Arg357,
Asp360, Arg412, and Arg458 throughout the MD simulation. However, bestatin also formed
a water bridge with Arg476, which remained stable for more than 50% of the MD simula-
tion, suggesting it’s positioning in the center of the allosteric site contrary to the docking
result. Conversely, natamycin demonstrated direct H-bond interactions with amino acid
residues Thr335, Cys358, and Asp360, and an ionic interaction with Arg458. This indicates
a slight shift of natamycin towards the catalytic site, as the direct H-bond interaction with
Arg476 observed in the docking study was replaced by a water bridge with an interaction
fraction of over 0.5.

Figure 7 represents a 2D pose diagram illustrating the ligand–protein contacts after
the MD simulation run. The figure provides a clear visualization of the percentage of
interactions between specific ligands and various surrounding amino acid residues at
the allosteric site of the PCSK9 enzyme during the 100 ns MD simulation. Notably, the
amino acid residue Arg458 in the C-terminal domain was found to play a crucial role in
the formation of H-bond interactions and/or water bridges, which remained stable for
over 70% of the MD simulation with all four compounds. It was also observed that Arg458
consistently acted as a hydrogen bond donor in its interactions with the compounds,
predominantly interacting with the oxygen of the carbonyl group. Furthermore, all of
the compounds contributed to the stability of the ligand–protein complex by forming
H-bond interactions or water bridges with the amino acid residue Asp360, which acted as
a hydrogen bond acceptor and primarily interacted with amino groups.

Biomedicines 2024, 12, x FOR PEER REVIEW 13 of 21 
 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Cont.



Biomedicines 2024, 12, 286 13 of 19

Biomedicines 2024, 12, x FOR PEER REVIEW 13 of 21 
 

 
(a) 

 
(b) 

 
(c) 

Biomedicines 2024, 12, x FOR PEER REVIEW 14 of 21 
 

 
(d) 

Figure 6. Protein–ligand contacts histogram obtained after 100 ns MD simulation studies. Figure 
shows the interactions percentage of amino acid residues for (a) bound ligand, (b) amikacin, (c) 
bestatin, and (d) natamycin. (Green colored bar—H-bonds, purple colored bar—hydrophobic 
interactions, blue colored bar—water bridges, and pink colored bar—ionic interactions). 

Figure 7 represents a 2D pose diagram illustrating the ligand–protein contacts after 
the MD simulation run. The figure provides a clear visualization of the percentage of 
interactions between specific ligands and various surrounding amino acid residues at the 
allosteric site of the PCSK9 enzyme during the 100 ns MD simulation. Notably, the amino 
acid residue Arg458 in the C-terminal domain was found to play a crucial role in the 
formation of H-bond interactions and/or water bridges, which remained stable for over 
70% of the MD simulation with all four compounds. It was also observed that Arg458 
consistently acted as a hydrogen bond donor in its interactions with the compounds, 
predominantly interacting with the oxygen of the carbonyl group. Furthermore, all of the 
compounds contributed to the stability of the ligand–protein complex by forming H-bond 
interactions or water bridges with the amino acid residue Asp360, which acted as a 
hydrogen bond acceptor and primarily interacted with amino groups. 

Overall, the results of the MD simulations indicated that the ligand–protein docking 
complexes maintained conformational stability and exhibited consistent structural 
flexibility throughout the entire MD run. 

 
(a) 

Figure 6. Protein–ligand contacts histogram obtained after 100 ns MD simulation studies. Fig-
ure shows the interactions percentage of amino acid residues for (a) bound ligand, (b) amikacin,
(c) bestatin, and (d) natamycin. (Green colored bar—H-bonds, purple colored bar—hydrophobic
interactions, blue colored bar—water bridges, and pink colored bar—ionic interactions).

Biomedicines 2024, 12, x FOR PEER REVIEW 14 of 21 
 

 
(d) 

Figure 6. Protein–ligand contacts histogram obtained after 100 ns MD simulation studies. Figure 
shows the interactions percentage of amino acid residues for (a) bound ligand, (b) amikacin, (c) 
bestatin, and (d) natamycin. (Green colored bar—H-bonds, purple colored bar—hydrophobic 
interactions, blue colored bar—water bridges, and pink colored bar—ionic interactions). 

Figure 7 represents a 2D pose diagram illustrating the ligand–protein contacts after 
the MD simulation run. The figure provides a clear visualization of the percentage of 
interactions between specific ligands and various surrounding amino acid residues at the 
allosteric site of the PCSK9 enzyme during the 100 ns MD simulation. Notably, the amino 
acid residue Arg458 in the C-terminal domain was found to play a crucial role in the 
formation of H-bond interactions and/or water bridges, which remained stable for over 
70% of the MD simulation with all four compounds. It was also observed that Arg458 
consistently acted as a hydrogen bond donor in its interactions with the compounds, 
predominantly interacting with the oxygen of the carbonyl group. Furthermore, all of the 
compounds contributed to the stability of the ligand–protein complex by forming H-bond 
interactions or water bridges with the amino acid residue Asp360, which acted as a 
hydrogen bond acceptor and primarily interacted with amino groups. 

Overall, the results of the MD simulations indicated that the ligand–protein docking 
complexes maintained conformational stability and exhibited consistent structural 
flexibility throughout the entire MD run. 

 
(a) 

Figure 7. Cont.



Biomedicines 2024, 12, 286 14 of 19
Biomedicines 2024, 12, x FOR PEER REVIEW 15 of 21 
 

 
(b) 

 
(c) 

Figure 7. Cont.



Biomedicines 2024, 12, 286 15 of 19Biomedicines 2024, 12, x FOR PEER REVIEW 16 of 21 
 

 
(d) 

Figure 7. 2D pose diagram showing protein–ligand contacts obtained after 100 ns MD simulation 
studies for (a) bound ligand, (b) amikacin, (c) bestatin, and (d) natamycin. 

3.3. Binding Free Energy Calculations of the Complexes Using MM-GBSA Analysis 
The MM-GBSA analysis revealed a significant correlation between the experimental 

and predicted binding affinity through Gibbs free energy calculations. To further validate 
the binding affinity of the ligands against the protein, post-MD simulation MM-GBSA 
calculations were conducted. The ΔGbind, which estimates the binding free energy 
variation, was used as one of the key parameters for evaluating ligand–protein binding. 
The MM-GBSA ΔGbind was calculated by comparing the energy difference between the 
bound and unbound states of the complexes. For the post-dynamic MM-GBSA analysis, 
100 frames from the trajectories of each ligand–protein complex were selected at intervals 
of 10 ns. The binding free energy of these 100 systems in each simulation was computed 
using Prime software (version 4.0), and the mean values were reported (Figure 4). The 
calculated average ΔGbind values ranged from −84.22 to −76.39 kcal/mol, indicating a high 
binding affinity of the compounds against the allosteric site of the PCSK9 enzyme. It is 
important to note that the MM-GBSA scoring function is optimized for predicting binding 
free energies in a congeneric series of molecules and, therefore, the absolute values 
calculated may not necessarily align with experimental binding affinities. However, the 
ranking of the ligands based on the calculated ΔGbind is expected to reasonably correspond 
to the ranking based on experimental binding affinity, especially for congeneric series. 
The ΔGbind values of all three drug compounds were observed near to bound ligand, which 
further indicates higher binding affinity against the PCSK9 enzyme. As ΔGbind values 
represent approximate free energies of binding, a more negative value indicates stronger 
binding. Interestingly, all four systems exhibited negative ΔGbind values, indicating strong 
stability of the systems. Additionally, bestatin demonstrated a better ΔGbind value 
compared to the other compounds and the reference compound, suggesting a higher 
affinity towards the PCSK9 enzyme (Table 4). 

  

Figure 7. 2D pose diagram showing protein–ligand contacts obtained after 100 ns MD simulation
studies for (a) bound ligand, (b) amikacin, (c) bestatin, and (d) natamycin.

Overall, the results of the MD simulations indicated that the ligand–protein dock-
ing complexes maintained conformational stability and exhibited consistent structural
flexibility throughout the entire MD run.

3.3. Binding Free Energy Calculations of the Complexes Using MM-GBSA Analysis

The MM-GBSA analysis revealed a significant correlation between the experimental
and predicted binding affinity through Gibbs free energy calculations. To further validate
the binding affinity of the ligands against the protein, post-MD simulation MM-GBSA
calculations were conducted. The ∆Gbind, which estimates the binding free energy variation,
was used as one of the key parameters for evaluating ligand–protein binding. The MM-
GBSA ∆Gbind was calculated by comparing the energy difference between the bound and
unbound states of the complexes. For the post-dynamic MM-GBSA analysis, 100 frames
from the trajectories of each ligand–protein complex were selected at intervals of 10 ns.
The binding free energy of these 100 systems in each simulation was computed using
Prime software (version 4.0), and the mean values were reported (Figure 4). The calculated
average ∆Gbind values ranged from −84.22 to −76.39 kcal/mol, indicating a high binding
affinity of the compounds against the allosteric site of the PCSK9 enzyme. It is important
to note that the MM-GBSA scoring function is optimized for predicting binding free
energies in a congeneric series of molecules and, therefore, the absolute values calculated
may not necessarily align with experimental binding affinities. However, the ranking of
the ligands based on the calculated ∆Gbind is expected to reasonably correspond to the
ranking based on experimental binding affinity, especially for congeneric series. The ∆Gbind
values of all three drug compounds were observed near to bound ligand, which further
indicates higher binding affinity against the PCSK9 enzyme. As ∆Gbind values represent
approximate free energies of binding, a more negative value indicates stronger binding.
Interestingly, all four systems exhibited negative ∆Gbind values, indicating strong stability
of the systems. Additionally, bestatin demonstrated a better ∆Gbind value compared to the
other compounds and the reference compound, suggesting a higher affinity towards the
PCSK9 enzyme (Table 4).
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Table 4. Calculation of MM-GBSA binding free energy (∆Gbind) for selected virtual hits in the
allosteric site of the PCSK9 enzyme.

Compound ∆Gbind (kcal/mol) Complex Energy Receptor Energy Ligand Energy

Amikacin −76.39 −17,582.18 −17,096.68 −409.10

Bestatin −84.22 −17,523.80 −17,037.76 −401.82

Natamycin −79.30 −17,752.07 −17,257.43 −415.33

Bound Ligand −77.44 −17,648.45 −17,158.87 −412.12

The Prime MM-GBSA method utilizes the VSGB 2.0 solvation model, which incorporates
the OPLS_2005 force field for both bonded and non-bonded terms, as well as a solvation
term and several physics-based correction terms for hydrogen bonding, π-π interactions,
self-contact interactions, and hydrophobic interactions. From the Table 5, it is apparent that
the non-bonded terms, such as van der Waals (∆GvdW, −68.91 to −59.47 kcal/mol), Coulomb
(∆GCoul, −60.67 to −11.16 kcal/mol), and lipophilic (∆GLipo, −23.85 to −18.93 kcal/mol)
energy terms, play a major favorable role in binding ligands to the PCSK9 enzyme. The
physics-based energy term, hydrogen bonding (∆GHbond, −4.82 to −2.83 kcal/mol), mod-
erately supported the binding of the compounds. However, it was observed that the
electrostatic solvation energy (∆GSolv, 16.67 to 59.47 kcal/mol) strongly disfavored the bind-
ing. Additionally, the covalent binding (∆GCoval, 3.96 to 6.86 kcal/mol) and π-π packing
(∆Gpacking, −0.43 to 1.57 kcal/mol) energy terms also moderately disfavored the binding
of compounds to the enzyme. The high negative values of ∆GCoul and ∆GLipo indicate that
the allosteric site of PCSK9 is lined with both polar and nonpolar residues, and interaction
with these residues through hydrogen bonding increases the affinity. Furthermore, the high
negative values of ∆GvdW suggest that the tested compounds were well embedded within
the allosteric sites upon binding. Moreover, it is evident that compounds with balanced
polar and nonpolar structural properties, along with a defined number of hydrogen bond
acceptors, hydrogen bond donors, and hydrophobic groups, such as bestatin, exhibit good
binding affinity for the PCSK9 enzyme compared to more polar compounds. Overall, MM-
GBSA analysis revealed a significant correlation between the experimental and predicted
binding affinity through Gibbs free energy calculations. The calculated average ∆Gbind
values ranged from −84.22 to −76.39 kcal/mol, indicating a high binding affinity of the
compounds against the allosteric site of the PCSK9 enzyme. Based on the results of the
MM-GBSA analysis, it can be concluded that all four compounds have a high binding
affinity towards the PCSK9 enzyme. These results also suggest that the compounds have
the potential to inhibit the interaction between PCSK9 and LDL-R, leading to a reduction in
LDL cholesterol levels.

Table 5. The energy terms contributing MM-GBSA binding free energy (∆Gbind) for selected virtual
hits in the allosteric site of the PCSK9 enzyme.

Compound ∆Gbind
a ∆GCoul

b ∆GSolv
c ∆GLipo

d ∆GvdW
e ∆GH-bond

f ∆GCov
g ∆Gpacking

Amikacin −76.39 −24.15 30.62 −21.76 −62.02 −2.83 3.96 0.11

Bestatin −84.22 −11.16 16.67 −23.85 −68.91 −2.89 6.74 −0.43

Natamycin −79.30 −46.30 45.85 −20.82 −60.38 −4.82 6.86 0.74

Bound Ligand −77.44 −60.67 59.47 −18.93 −59.47 −4.62 5.42 1.57

a Coulomb energy (electrostatic energy), b Electrostatic (polar) solvation energy, c Lipophilic energy (non-polar solva-
tion energy), d van der Waals energy, e Hydrogen-bonding energy, f Covalent binding energy, g π-π packing energy.

Energy contributing to the MM-GBSA binding free energy (∆Gbind) for selected virtual
hits in the allosteric site of the PCSK9 enzyme was calculated. All the four compounds
exhibited negative ∆Gbind values, indicating strong stability of the systems. Bestatin
demonstrated a better ∆Gbind value compared to the other compounds and the reference
compound, suggesting a higher affinity towards the PCSK9 enzyme.
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4. Conclusions

In conclusion, the allosteric binding site of the PCSK9 enzyme and the amino acid
residues were found to be crucial for drug binding. Targeting this site could be a promising
approach for drug development. The 3D structure of the PCSK9-LDL-R complex, which
shows the binding of EGF-A of LDL-R to the catalytic site of PCSK9 and key amino acid
residues at the allosteric site of the PCSK9 surface involved in binding to small molecules
was used for the docking studies to set up molecular docking and virtual screening studies
towards novel PCKS9i. Furthermore, varying degrees of PCSK9 inhibition offer a spectrum
of effects on LDL receptor activity and circulating cholesterol levels. A low degree provides
modest benefits, potentially necessitating combination therapies, with minimal safety
concerns. A moderate degree yields significant reductions in LDL cholesterol, making it
a viable standalone therapy, although heightened monitoring is warranted. Meanwhile,
a high degree achieves maximal efficacy but introduces greater risks, demanding careful
patient selection and vigilant surveillance for adverse effects.

In the present work, the X-ray crystallography and molecular dynamics studies have
provided valuable insights into the interaction between PCSK9 and the EGF-A domain of
the LDL-R. Interactions between y Arg357 and Asp360 in the catalytic domain, along with
Arg458 and Arg476 in the C-terminal domains, at the allosteric site, have been identified as
critical for stabilizing compounds within the allosteric site of PCSK9.

According to the obtained Glide score values, amikacin was found to have the lowest
Glide score of −11.50, followed by natamycin and bestatin, both with a Glide score of
−11.37. The PDB bound ligand has the highest Glide score of −7.417, indicating weaker
binding affinity compared to the other three compounds. Amikacin had the strongest
binding affinity to the PCSK9 enzyme among the four compounds tested.

The high negative values of ∆GvdW suggest that the tested compounds were well
embedded within the allosteric sites upon binding. Furthermore, the results suggest that
compounds with balanced polar and nonpolar structural properties, along with a defined
number of hydrogen bond acceptors, hydrogen bond donors, and hydrophobic groups,
such as bestatin, exhibit good binding affinity for the PCSK9 enzyme compared to more
polar compounds. Based on the results of the energy terms contributing to the MM-GBSA
binding free energy, it can be concluded that bestatin has the highest binding affinity
towards the PCSK9 enzyme among the tested compounds. The results suggest that bestatin
has the good potential to inhibit the interaction between PCSK9 and LDL-R, leading to a
reduction in LDL cholesterol levels.

Overall, we suggest that targeting the allosteric site of the PCSK9 enzyme could
be a promising approach for drug development, as it could lead to the identification of
small molecule inhibitors that could stabilize the enzyme and prevent it from binding to
the LDL receptor. This could ultimately lead to the development of novel therapies for
atherosclerosis and other related diseases. However, further studies are needed to evaluate
the potential of all the compounds as a PCSK9 inhibitor, including in vitro and in vivo
studies to validate the predicted binding affinities and assess its pharmacokinetic properties.
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12. Libby, P.; Tokgözoğlu, L. Chasing LDL Cholesterol to the Bottom—PCSK9 in Perspective. Nat. Cardiovasc. Res. 2022, 1, 554–561.
[CrossRef]

13. Kaddoura, R.; Orabi, B.; Salam, A.M. Efficacy and Safety of PCSK9 Monoclonal Antibodies: An Evidence-Based Review and
Update. J. Drug Assess. 2020, 9, 129–144. [CrossRef]

14. Meng, F.H.; Liu, S.; Xiao, J.; Zhou, Y.X.; Dong, L.W.; Li, Y.F.; Zhang, Y.Q.; Li, W.H.; Wang, J.Q.; Wang, Y.; et al. New Loss-of-
Function Mutations in PCSK9 Reduce Plasma LDL Cholesterol. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1219–1233. [CrossRef]
[PubMed]

15. Ding, Q.; Strong, A.; Patel, K.M.; Ng, S.L.; Gosis, B.S.; Regan, S.N.; Cowan, C.A.; Rader, D.J.; Musunuru, K. Permanent Alteration
of PCSK9 with in Vivo CRISPR-Cas9 Genome Editing. Circ. Res. 2014, 115, 488–492. [CrossRef] [PubMed]

16. Igweonu-Nwakile, E.O.; Ali, S.; Paul, S.; Yakkali, S.; Teresa Selvin, S.; Thomas, S.; Bikeyeva, V.; Abdullah, A.; Radivojevic, A.; Abu
Jad, A.A.; et al. A Systematic Review on the Safety and Efficacy of PCSK9 Inhibitors in Lowering Cardiovascular Risks in Patients
with Chronic Kidney Disease. Cureus 2022, 14, e29140. [CrossRef] [PubMed]

17. Wang, X.; Wen, D.; Chen, Y.; Ma, L.; You, C. PCSK9 Inhibitors for Secondary Prevention in Patients with Cardiovascular Diseases:
A Bayesian Network Meta-Analysis. Cardiovasc. Diabetol. 2022, 21, 107. [CrossRef]

18. Bradley, C.K.; Shrader, P.; Sanchez, R.J.; Peterson, E.D.; Navar, A.M. The Patient Journey with PCSK9 Inhibitors in Community
Practice. J. Clin. Lipidol. 2019, 13, 725. [CrossRef] [PubMed]

19. Kosmas, C.E.; Skavdis, A.; Sourlas, A.; Papakonstantinou, E.J.; Genao, E.P.; Uceta, R.E.; Guzman, E. Safety and Tolerability of
PCSK9 Inhibitors: Current Insights. Clin. Pharmacol. 2020, 12, 191. [CrossRef]

20. Vicente-Valor, J.; García-González, X.; Ibáñez-García, S.; Durán-García, M.E.; de Lorenzo-Pinto, A.; Rodríguez-González, C.;
Méndez-Fernández, I.; Percovich-Hualpa, J.C.; Herranz-Alonso, A.; Sanjurjo-Sáez, M. PCSK9 Inhibitors Revisited: Effectiveness
and Safety of PCSK9 Inhibitors in a Real-Life Spanish Cohort. Biomed. Pharmacother. 2022, 146, 112519. [CrossRef]

21. Chamberlain, A.M.; Gong, Y.; Shaw, K.M.A.; Bian, J.; Song, W.L.; Linton, M.F.; Fonseca, V.; Price-Haywood, E.; Guhl, E.; King, J.B.;
et al. PCSK9 Inhibitor Use in the Real World: Data from the National Patient-Centered Research Network. J. Am. Heart Assoc.
2019, 8, e011246. [CrossRef] [PubMed]

22. Chng, B.L.K.; Heng, W.M.P.; Soon, Y.M.; Hon, J.S.; Lau, Y.H.; Tan, R.S.; Tan, J.W.C. Safety, Adherence and Efficacy of PCSK9
Inhibitors: A Retrospective Real-World Study. Proc. Singap. Healthc. 2022, 31, 1–9. [CrossRef]

23. Arca, M.; Celant, S.; Olimpieri, P.P.; Colatrella, A.; Tomassini, L.; D’Erasmo, L.; Averna, M.; Zambon, A.; Catapano, A.L.; Russo, P.
Real-World Effectiveness of PCSK9 Inhibitors in Reducing LDL-C in Patients with Familial Hypercholesterolemia in Italy: A
Retrospective Cohort Study Based on the AIFA Monitoring Registries. J. Am. Heart Assoc. 2023, 12, 26550. [CrossRef] [PubMed]

https://doi.org/10.1016/j.cca.2022.11.018
https://doi.org/10.1093/eurheartj/ehac056
https://www.ncbi.nlm.nih.gov/pubmed/35165703
https://doi.org/10.1016/j.ajpc.2022.100371
https://doi.org/10.1016/j.bcab.2018.12.014
https://doi.org/10.1016/j.atherosclerosis.2018.06.002
https://www.ncbi.nlm.nih.gov/pubmed/29910030
https://doi.org/10.3390/biomedicines10051090
https://www.ncbi.nlm.nih.gov/pubmed/35625827
https://doi.org/10.1007/s00467-022-05541-1
https://doi.org/10.1186/s12944-022-01751-6
https://doi.org/10.1080/13543784.2021.1985463
https://doi.org/10.1093/eurheartj/ehz430
https://doi.org/10.1016/S0140-6736(14)61399-4
https://doi.org/10.1038/s44161-022-00085-x
https://doi.org/10.1080/21556660.2020.1801452
https://doi.org/10.1161/ATVBAHA.122.318839
https://www.ncbi.nlm.nih.gov/pubmed/37165876
https://doi.org/10.1161/CIRCRESAHA.115.304351
https://www.ncbi.nlm.nih.gov/pubmed/24916110
https://doi.org/10.7759/cureus.29140
https://www.ncbi.nlm.nih.gov/pubmed/36128564
https://doi.org/10.1186/s12933-022-01542-4
https://doi.org/10.1016/j.jacl.2019.06.008
https://www.ncbi.nlm.nih.gov/pubmed/31371271
https://doi.org/10.2147/CPAA.S288831
https://doi.org/10.1016/j.biopha.2021.112519
https://doi.org/10.1161/JAHA.118.011246
https://www.ncbi.nlm.nih.gov/pubmed/31020929
https://doi.org/10.1177/20101058221144115
https://doi.org/10.1161/JAHA.122.026550
https://www.ncbi.nlm.nih.gov/pubmed/37850449


Biomedicines 2024, 12, 286 19 of 19

24. Vikarunnessa, S.; Talloczy, Z.; Zang, X.; Pharma, N.; Maheux, S.P.; Lesogor, A.; Springer Cardiovascular, F.; Ray, K.K.;
T Troquay, R.P.; J Visseren, F.L.; et al. Long-Term Efficacy and Safety of Inclisiran in Patients with High Cardiovascular Risk and
Elevated LDL Cholesterol (ORION-3): Results from the 4-Year Open-Label Extension of the ORION-1 Trial. Artic. Lancet Diabetes
Endocrinol 2023, 11, 109–128. [CrossRef]

25. Rallidis, L.S.; Skoumas, I.; Liberopoulos, E.N.; Vlachopoulos, C.; Kiouri, E.; Koutagiar, I.; Anastasiou, G.; Kosmas, N.; Elisaf, M.S.;
Tousoulis, D.; et al. PCSK9 Inhibitors in Clinical Practice: Novel Directions and New Experiences. Hell. J. Cardiol. 2020, 61,
241–245. [CrossRef] [PubMed]

26. Deedwania, P.; Murphy, S.A.; Scheen, A.; Badariene, J.; Pineda, A.L.; Honarpour, N.; Keech, A.C.; Sever, P.S.; Pedersen, T.R.;
Sabatine, M.S.; et al. Efficacy and Safety of PCSK9 Inhibition with Evolocumab in Reducing Cardiovascular Events in Patients
with Metabolic Syndrome Receiving Statin Therapy: Secondary Analysis from the FOURIER Randomized Clinical Trial. JAMA
Cardiol. 2021, 6, 139–147. [CrossRef] [PubMed]

27. Shapiro, M.D.; Tavori, H.; Fazio, S. PCSK9: From Basic Science Discoveries to Clinical Trials. Circ. Res. 2018, 122, 1420. [CrossRef]
28. Sultan Alvi, S.; Ansari, I.A.; Khan, I.; Iqbal, J.; Khan, M.S. Potential Role of Lycopene in Targeting Proprotein Convertase

Subtilisin/Kexin Type-9 to Combat Hypercholesterolemia. Free Radic. Biol. Med. 2017, 108, 394–403. [CrossRef]
29. Waiz, M.; Sultan Alvi, S.; Salman Khan, M.; Professor, A. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in

cardiovascular risk management. EXCLI J. 2022, 21, 47–76. [CrossRef]
30. Kwon, H.J.; Lagace, T.A.; McNutt, M.C.; Horton, J.D.; Deisenhofer, J. Molecular Basis for LDL Receptor Recognition by PCSK9.

Proc. Natl. Acad. Sci. USA 2008, 105, 1820–1825. [CrossRef]
31. Lagace, T.A. PCSK9 and LDLR Degradation: Regulatory Mechanisms in Circulation and in Cells. Curr. Opin. Lipidol. 2014, 25,

387–393. [CrossRef] [PubMed]
32. Lambert, G.; Sjouke, B.; Choque, B.; Kastelein, J.J.P.; Hovingh, G.K. The PCSK9 Decade: Thematic Review Series: New Lipid and

Lipoprotein Targets for the Treatment of Cardiometabolic Diseases. J. Lipid Res. 2012, 53, 2515–2524. [CrossRef] [PubMed]
33. Ni, Y.G.; Di Marco, S.; Condra, J.H.; Peterson, L.B.; Wang, W.; Wang, F.; Pandit, S.; Hammond, H.A.; Rosa, R.; Cummings, R.T.; et al.

A PCSK9-Binding Antibody That Structurally Mimics the EGF(A) Domain of LDL-Receptor Reduces LDL Cholesterol in Vivo.
J. Lipid Res. 2011, 52, 78. [CrossRef]

34. Watkins, A.M.; Arora, P.S. Anatomy of β-Strands at Protein-Protein Interfaces. ACS Chem. Biol. 2014, 9, 1747–1754. [CrossRef]
[PubMed]

35. Kontoyianni, M.; McClellan, L.M.; Sokol, G.S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms.
J. Med. Chem. 2004, 47, 558–565. [CrossRef] [PubMed]

36. Petrilli, W.L.; Adam, G.C.; Erdmann, R.S.; Abeywickrema, P.; Agnani, V.; Ai, X.; Baysarowich, J.; Byrne, N.; Caldwell, J.P.;
Chang, W.; et al. From Screening to Targeted Degradation: Strategies for the Discovery and Optimization of Small Molecule
Ligands for PCSK9. Cell Chem. Biol. 2020, 27, 32–40.e3. [CrossRef]

37. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra
Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. J. Med.
Chem. 2006, 49, 6177–6196. [CrossRef]

38. Lokwani, D.; Azad, R.; Sarkate, A.; Reddanna, P.; Shinde, D. Structure Based Library Design (SBLD) for New 1,4-
Dihydropyrimidine Scaffold as Simultaneous COX-1/COX-2 and 5-LOX Inhibitors. Bioorg. Med. Chem. 2015, 23, 4533–4543.
[CrossRef]

39. Yang, C.; Chen, E.A.; Zhang, Y. Protein–Ligand Docking in the Machine-Learning Era. Molecules 2022, 27, 4568. [CrossRef]
[PubMed]

40. Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons Learned in Empirical Scoring with Smina from the CSAR 2011 Benchmark-
ing Exercise. J. Chem. Inf. Model 2013, 53, 1893–1904. [CrossRef] [PubMed]

41. Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D.R. Protein-Ligand Scoring with Convolutional Neural Networks Graphical
Abstract HHS Public Access. J. Chem. Inf. Model 2017, 57, 942–957. [CrossRef] [PubMed]

42. Ivanova, L.; Tammiku-Taul, J.; García-Sosa, A.T.; Sidorova, Y.; Saarma, M.; Karelson, M. Molecular Dynamics Simulations of the
Interactions between Glial Cell Line-Derived Neurotrophic Factor Family Receptor GFRα1 and Small-Molecule Ligands. ACS
Omega 2018, 3, 11407–11414. [CrossRef] [PubMed]

43. Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin Drug Discov.
2015, 10, 449. [CrossRef] [PubMed]

44. Zhu, H.; Zhang, Y.; Li, W.; Huang, N. A Comprehensive Survey of Prospective Structure-Based Virtual Screening for Early Drug
Discovery in the Past Fifteen Years. Int. J. Mol. Sci. 2022, 23, 15961. [CrossRef]

45. Nitulescu, M.; Alves de Oliveira, T.; Pires da Silva, M.; Habib Bechelane Maia, E.; Marques da Silva, A.; Gutterres Taranto, A.
Virtual Screening Algorithms in Drug Discovery: A Review Focused on Machine and Deep Learning Methods. Drugs Drug
Candidates 2023, 2, 311–334. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S2213-8587(22)00353-9
https://doi.org/10.1016/j.hjc.2019.10.003
https://www.ncbi.nlm.nih.gov/pubmed/31783124
https://doi.org/10.1001/jamacardio.2020.3151
https://www.ncbi.nlm.nih.gov/pubmed/32785614
https://doi.org/10.1161/CIRCRESAHA.118.311227
https://doi.org/10.1016/j.freeradbiomed.2017.04.012
https://doi.org/10.17179/excli2021-4453
https://doi.org/10.1073/pnas.0712064105
https://doi.org/10.1097/MOL.0000000000000114
https://www.ncbi.nlm.nih.gov/pubmed/25110901
https://doi.org/10.1194/jlr.R026658
https://www.ncbi.nlm.nih.gov/pubmed/22811413
https://doi.org/10.1194/jlr.M011445
https://doi.org/10.1021/cb500241y
https://www.ncbi.nlm.nih.gov/pubmed/24870802
https://doi.org/10.1021/jm0302997
https://www.ncbi.nlm.nih.gov/pubmed/14736237
https://doi.org/10.1016/j.chembiol.2019.10.002
https://doi.org/10.1021/jm051256o
https://doi.org/10.1016/j.bmc.2015.06.008
https://doi.org/10.3390/molecules27144568
https://www.ncbi.nlm.nih.gov/pubmed/35889440
https://doi.org/10.1021/ci300604z
https://www.ncbi.nlm.nih.gov/pubmed/23379370
https://doi.org/10.1021/acs.jcim.6b00740
https://www.ncbi.nlm.nih.gov/pubmed/28368587
https://doi.org/10.1021/acsomega.8b01524
https://www.ncbi.nlm.nih.gov/pubmed/30320260
https://doi.org/10.1517/17460441.2015.1032936
https://www.ncbi.nlm.nih.gov/pubmed/25835573
https://doi.org/10.3390/ijms232415961
https://doi.org/10.3390/DDC2020017

	Introduction 
	Methodology 
	Molecular Docking Using Glide and Smina 
	CNN Scoring Using GNINA 
	Molecular Dynamics (MD) Simulation 
	MM-GBSA Analysis 

	Result and Discussion 
	Structure-Based Virtual Screening Using Docking Studies 
	MD Simulation Studies 
	Binding Free Energy Calculations of the Complexes Using MM-GBSA Analysis 

	Conclusions 
	References

