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Abstract: Omentin is an adipokine mainly produced by visceral fat tissue. It has two isoforms,
omentin-1 and omentin-2. Omentin-1 is predominantly secreted by visceral adipose tissue, derived
specifically from the stromal vascular fraction cells of white adipose tissue (WAT). Levels of omentin-1
are also expressed in other WAT depots, such as epicardial adipose tissue. Omentin-1 exerts several
beneficial effects in glucose homeostasis in obesity and diabetes. In addition, research has suggested
that omentin-1 may have atheroprotective (protective against the development of atherosclerosis) and
anti-inflammatory effects, potentially contributing to cardiovascular health. This review highlights
the potential therapeutic targets of omentin-1 in metabolic disorders.
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1. Introduction

Adipose tissue, in addition to storing energy, secretes a range of cellular components
and inflammatory mediators. Tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), leptin,
retinol-binding protein, resistin, adiponectin, omentin, apelin, visfatin, and other substances
are secreted by different adipose tissue depots with regional heterogeneity [1]. These secre-
tions have an impact on the metabolism of carbohydrates and lipids, and they also play a
significant role in several pathological processes, including insulin resistance, type 2 diabetes,
atherosclerosis, inflammation, and dysfunction of the vascular endothelium [1].

Omentin-1 (also known as intelectin-1) is a glycoprotein that has emerged as a key
player in the complex interplay between adipose tissue and various physiological processes.
Omentin-1 is primarily produced by the stromal vascular cells of the visceral adipose
tissue [2]. This adipokine exists in human blood, and it is highly expressed in human
visceral and epicardial adipose tissues, with lower levels found in other white adipose
tissue (WAT) depots such as subcutaneous WAT [3]. Omentin-1 is expressed in various
cells including endothelial cells, mesothelial cells, vascular cells, and intestinal Paneth cells,
among others, and it exerts a paracrine, autocrine, and endocrine signaling influence [4].
Importantly, and similarly to adiponectin, circulating omentin-1 levels are reduced in obese
subjects. In fact, individuals with poor glucose regulation have lower serum levels of
omentin-1, and this depletion may play a role in the emergence of insulin resistance, type 2
diabetes, obesity, and metabolic syndrome. Indeed, there is a negative correlation between
the serum concentration of omentin-1 and the following: body mass index, insulin resistance
index, leptin, plasma glucose, fasting insulin, TNFα, and IL-6 [5–8]. This adipokine is
downregulated in association with obesity-linked metabolic disorders, including type 2
diabetes and insulin resistance [5,9–11].

Several factors can influence the production and secretion of omentin-1, including obe-
sity, insulin sensitivity, inflammation, genetic factors, and hormones, such as adiponectin
and insulin. Fibroblast growth factor-21 and dexamethasone may also influence omentin-1
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production [4]. Adiponectin, another adipokine, has been linked to omentin-1, and insulin
sensitivity may play a role in omentin-1 regulation. Understanding these factors is essential
for unraveling the complex regulatory mechanisms of omentin-1 and its potential implica-
tions for metabolic and cardiovascular health. Ongoing research continues to explore the
intricate interplay between omentin-1, adipose tissue, and systemic physiology.

This review highlights the potential therapeutic targets of omentin-1 in metabolic disor-
ders. Relevant pre-clinical and clinical studies were summarized and discussed. A PubMed
search was performed for the years between 1990–2023 using the keywords omentin-1, en-
dothelial function, obesity, type 2 diabetes, inflammation, and oxidative stress.

2. Vascular Effects of Omentin-1

Omentin-1 has been implicated as having several positive effects on vascular function,
making it an area of interest in cardiovascular research. Omentin-1 exerts several positive
influences on vascular function, including promoting vasodilation, anti-inflammatory
actions, and potential anti-atherosclerotic effects [12].

2.1. Vasodilation

Omentin-1 has been associated with the promotion of vasodilation, which is the re-
laxation of blood vessels [13]. This vasodilatory effect is important for maintaining proper
blood flow and reducing resistance within the vascular system [14]. Enhanced vasodilation
contributes to optimal cardiovascular function [15]. The mechanism underlying omentin-1
vasodilation involves the stimulation of nitric oxide (NO) production in endothelial cells.
Nitric oxide is a signaling molecule with vasodilatory properties. Increased NO production
helps regulate blood vessel tone, ensuring proper blood flow and reducing the risk of vas-
cular constriction [15]. Omentin-1 has been shown in earlier research to protect endothelial
cells by inducing NO production and endothelial NO synthase (eNOS) activation [13,16].
Omentin-1 has a cardioprotective effect as a NO-mediated vasodilator [17].

2.2. Anti-Inflammatory Actions

Omentin-1 exhibits anti-inflammatory properties. Inflammation plays a crucial role
in the development of vascular diseases, including atherosclerosis [15]. By exerting anti-
inflammatory actions, omentin-1 may help mitigate the inflammatory processes within blood
vessels, reducing the risk of vascular damage and atherosclerotic plaque formation [18,19]. In-
deed, omentin-1 inhibits TNF-α, IL-6, and other inflammatory cytokines, ultimately impacting
vascular and tissue functions [20–22]. Several studies have described the anti-inflammatory
and anti-atherosclerotic effects of omentin-1 through intracellular signaling pathways in-
volving Mitogen-activated protein kinases [p38 MAPK, c-Jun N-terminal kinase (JNK), and
Extracellular Signal–Regulated Kinase (ERK)], nuclear factor-κB, and AMP-activated protein
kinase/protein kinase B (Akt) [4].

The anti-inflammatory properties of omentin-1 secreted by perivascular adipose tis-
sue have also been considered. Through inhibiting the thioredoxin-interacting protein
(TXNIP)/NLTP3 signaling pathway, omentin-1 causes an increase in the secretion of anti-
inflammatory adipocytokines like IL-10 and adiponectin and a decrease in the expression
of pro-inflammatory cytokines like TNF-α, IL-6, and IL-1β in obese mice [23]. Additionally,
in lipopolysaccharide-induced macrophages, omentin-1 lowers oxidative stress, mitochon-
drial dysfunction, proinflammatory cytokines (IL-6, IL-8, and CCL2), cyclooxygenase-2,
and prostaglandin E2 [22]. Omentin-1 inhibits oxidative stress in the endoplasmic retic-
ulum to prevent vascular endothelial dysfunction. This is accomplished by stimulating
the release of NO via activation of the PPAR-δ/AMP-activated protein kinase (AMPK)
pathway [24]. Omentin-1 reduces the activation of NF-κB and proinflammatory agents
(CCL2, IL-6, IL-1, ICAM-1, and TNF-α) in endothelial cells, which is induced by free
fatty acids [25].
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2.3. Endothelial Protection

Omentin-1 appears to have protective effects on the endothelium, the inner lining
of blood vessels. Endothelial health is essential for maintaining vascular integrity and
function [15,26]. In patients with type 2 diabetes, lower levels of omentin-1 have been
linked to endothelial dysfunction [27]. Omentin-1 has an endothelial-dependent effect
on the vascular reactivity of isolated blood vessels [13]. Accordingly, we discovered that
omentin-1 treatment restored endothelial dysfunction in type 2 diabetes by normalizing
ACh-induced relaxation of aortic rings in diabetic Goto-Kakizaki (GK) rats fed a high-
fat diet. In arteries without perivascular adipose tissue (PVAT), omentin-1 had no effect
on endothelial-independent vasorelaxation. Moreover, the aortas of diabetic GK rats
mounted with PVAT showed a reduction in the endothelin 1-induced constrictor response
in omentin-1 treated rats [28]. Notably, ex vivo omentin-1 vasorelaxation in aortic rings
appears to be independently effective and mostly unrelated to increased peripheral insulin
sensitivity [2]. Furthermore, omentin-1 was able to raise NO metabolites in the aorta and
considerably raise the ratio of p-eNOS to total eNOS, suggesting that the ability of omentin-
1 to restore endothelial function is facilitated by an increase in NO bioavailability [28].
Vascular oxidative stress was shown to have decreased and NO bioavailability to have
improved following omentin-1 treatment in diabetic GK rats [28].

In addition, omentin-1 can improve endothelial function in the arteries of normal mice
that have had endothelial dysfunction induced through high glucose concentrations. This
improvement is mediated by AMPK and PPARδ and results in an increase in Akt/eNOS
activity and NO production [24].

Omentin-1’s positive influence on endothelial cells contributes to the prevention of
endothelial dysfunction, a key factor in the development of cardiovascular diseases [24,29,30].
Indeed, omentin-1 is negatively correlated with carotid intima-media thickness [31].

2.4. Anti-Atherogenic Effects

Omentin-1 has enormous potential against atherosclerotic initiation and progression.
Atherosclerosis is a condition characterized by the buildup of fatty deposits (plaque) in the
arterial walls, leading to narrowing and hardening of the arteries [32].

The ability that Omentin-1 has to promote vasodilation, reduce inflammation, and protect
endothelial cells may contribute to its potential anti-atherogenic properties [28,33]. Indeed,
omentin-1 has anti-inflammatory, antioxidant, and anti-apoptotic properties, positively im-
pacting endothelial function and preventing atherosclerosis [7,33–35].

Recent research has demonstrated the extensive involvement of omentin-1 in nu-
merous pathophysiological processes, including atherogenesis, obesity, insulin resistance,
inflammatory responses, and regulation of vascular endothelial function [24,35–38]. It
improves insulin sensitivity, lowers inflammation, prevents atherosclerosis, controls the
activity of vascular endothelial cells [28,39], and protects the cardiovascular system [17].

3. Metabolic Regulation

Omentin-1 has gained attention due to its potential significance in vascular function
and its role in metabolism. Metabolic risk factors are correlated with plasma omentin-1
levels [40]. Omentin-1 is a protein that has been studied for its potential roles in metabolic
health and regulation. Omentin-1 has been implicated in metabolic regulation influencing
insulin sensitivity and glucose and lipid metabolism [2,4,28,41]. However, knowledge
concerning the mechanisms involved are scarce so far. Brunetti and co-workers suggested
that omentin-1 could be involved in regulation of appetite [42,43].

3.1. Insulin Sensitivity

Omentin-1 has been associated with improvements in insulin sensitivity [4,28]. Insulin
sensitivity refers to how effectively cells respond to insulin signaling to uptake glucose
from the bloodstream. Enhanced insulin sensitivity is generally considered beneficial for
metabolic health as it helps maintain normal blood glucose levels.
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Omentin-1 levels have been demonstrated to be lowered in dysmetabolic conditions,
including diabetes mellitus [5,11,44], obesity [11], and impaired glucose tolerance [45].
Indeed, omentin-1 is downregulated by glucose/insulin levels [4]. On the other hand,
following aerobic exercise [46], hypocaloric weight loss [47], and metformin therapy [48],
omentin-1 levels are increased. Higher levels of omentin-1 are advantageous for improving
insulin-stimulated glucose transport because they activate Akt signaling, which regu-
lates downstream processes like glucose metabolism [2,4]. Additionally, the researchers
found that omentin-1 did not independently stimulate basal glucose transport; rather,
it only improved insulin-mediated glucose transport, suggesting that it lacked intrin-
sic insulin-mimic activity [2]. Thus, similar to adiponectin, omentin-1 increases insulin
sensitivity through an increment in insulin-mediated glucose uptake in adipose tissue.
Furthermore, as a result of AMPK activation, omentin-1 has been found to inhibit the mam-
malian target of rapamycin (mTOR-p70S6K), which in turn enhances the activity of insulin
receptor substrate [49].

Prior research indicates that omentin-1 plays a significant role in regulating insulin
sensitivity. Chronic omentin-1 infusion into ApoE−/− mice may improve insulin resistance
via PPARγ, leading to a decrease in plasma glucose concentration [2]. In addition, we have
previously demonstrated that omentin-1 could lower insulin resistance in diabetic GK rats
fed with a high-fat diet [28]. These beneficial metabolic effects may indirectly contribute to
vascular health by addressing risk factors for cardiovascular diseases.

Chronic inflammation is associated with insulin resistance. The anti-inflammatory
properties of omentin-1 may contribute to improved insulin sensitivity by reducing inflam-
mation in adipose tissue and liver tissue, among others [6,50,51]. Inflammation interferes
with insulin signaling pathways, and by mitigating inflammation, omentin-1 may help
maintain proper insulin responsiveness. Omentin-1 blunts cytokine expression in dif-
ferent cell types [20–22,25,52] and is negatively associated with systemic inflammatory
markers such as TNFα and IL-6 [53]. Thus, omentin-1 can be considered a biomarker
for metabolic health that may function to dampen obesity-related cytokine effects [23,31].
It is possible that omentin-1 works by blocking the NF-κB pathway and triggering the
AMPK- and Akt-dependent pathways [54]. Anti-diabetic medications may have an impact
on the level of circulating omentin-1, which is inversely linked to the incidence of type 2
diabetes and associated complications, such as cardiomyopathy, retinopathy, and diabetic
vascular disease [55].

Omentin-1 has also been associated with beneficial effects against bone metabolic
disorders [56,57]. Understanding its role in these processes is essential for exploring its
potential therapeutic applications in metabolic disorders.

3.2. Glucose Uptake

Omentin-1 appears to influence glucose uptake in peripheral tissues, such as skeletal
muscle and adipose tissue [2]. By promoting glucose uptake, omentin-1 may contribute
to the regulation of blood glucose levels. This effect is particularly relevant in the context
of insulin resistance, a condition where cells become less responsive to insulin, leading to
elevated blood sugar levels [2,28,41].

3.3. Lipid Metabolism

Omentin-1 has been suggested to influence lipid metabolism [6,50]. It may play a role
in regulating the breakdown of fats (lipolysis) and lipid storage in adipose tissue [6,50].
By modulating lipid metabolism, omentin-1 could impact insulin sensitivity and overall
metabolic health.

3.4. Regulation of Food Intake

According to Brunetti and co-workers, omentin-1 may play a role in appetite regulation.
Researchers found that omentin-1 (8 µg/kg body weight) infused centrally into Wistar rats
did not cause any acute changes in food intake or the expression of genes related to agouti-



Biomedicines 2024, 12, 284 5 of 14

related protein (AgRP), neuropeptide Y (NPY), orexin-A, amphetamine-regulated transcript
(CART), corticotropin-releasing hormone (CRH), and pro-opiomelanocortin (POMC) in the
hypothalamus [42]. On the other hand, omentin-1 increased food intake (starting on day 10)
and body weight (starting on day 12) when it was given intraperitoneally for 14 days.

Omentin-1 was found to have a neuromodulatory function on peptidergic and aminer-
gic signaling in both in vitro and in vivo experiments. Omentin-1 decreases the expression
of the CART and CRH genes in the hypothalamus, but not that of NPY, POMC, AgRP, or
orexin-A [43]. It was also noted that there were no alterations in the synthesis of dopamine
or serotonin, but rather an increase in hypothalamic L-dopa and norepinephrine [43].

3.5. Potential Hormonal Interactions

Omentin-1’s effects on metabolic regulation may involve interactions with various
hormones, including insulin, adiponectin, and others. These interactions contribute to the
complex network of signaling pathways that regulate glucose and lipid metabolism [6,50].

Omentin-1 and adiponectin share structural and functional similarities. Omentin-1
may interact with adiponectin receptors, and both adipokines have been linked to improve-
ments in insulin sensitivity [58]. The specific mechanisms through which omentin-1 and
adiponectin cooperate in metabolic regulation are still an area of active research.

While the evidence suggests a link between omentin-1 and metabolic regulation,
the precise mechanisms involved are still being uncovered. The potential therapeutic
applications of omentin-1 in addressing metabolic disorders, such as insulin resistance and
type 2 diabetes, warrant further exploration and investigation.

4. Clinical Implications

Some clinical implications and potential therapeutic applications of omentin-1 in
cardiovascular and metabolic disorders are here summarized.

4.1. Cardiovascular Diseases

Omentin-1 levels are lower in coronary atherosclerosis patients than in healthy in-
dividuals [31]. In addition, omentin-1 levels are also lower in the coronary endothelium
in patients with coronary artery disease (CAD) [33], a finding that may be related to a
negative feedback regulation mechanism. On the other hand, Saely et al. [59] discovered
that elevated plasma omentin-1 was a predictor of cardiovascular events in patients with
CAD after analyzing plasma omentin-1 in patients undergoing coronary angiography [59].
Potential racial differences may be the cause of these contradictory findings, underscoring
the need for additional research and analysis. Omentin-1 is elevated in middle layer vas-
cular smooth muscle cells, circulation, and macrophage-induced foam cells in coronary
plaques in patients with acute coronary syndrome [33]. High counteracting atherosclerosis
reactivity may be linked to elevated levels of omentin-1 in patients with acute coronary
syndromes or diabetes [33,60]. Moreover, in patients with type 2 diabetes, even after ac-
counting for other cardiovascular risk factors and a thorough medication history, there
was still an independent correlation found between circulating omentin-1 level and carotid
plaque and arterial stiffness [61]. Accordingly, patients with diabetic ulcers showed lower
mean diastolic blood pressure values, lower serum levels of omentin-1, lower endothelial
function values and higher body weight values than healthy controls [62]. Additionally,
research has revealed that in hemodialysis patients with suspected CAD, heart failure, or
subclinical atherosclerosis, serum omentin-1 levels are a significant predictor of cardio-
vascular events [59,63,64]. Thus, disease progression and co-mobilities may also be an
important factor to understand the role of omentin-1 in cardiovascular disease.

Omentin-1 secreted from epicardial adipose tissue (EAT) exhibits cardioprotective
properties. Previous studies have suggested that omentin-1 levels have a cardioprotective
role and are linked with cardiovascular function [65]. The authors studied the function
of omentin-1 in atrial fibrosis, which can result in heart failure. Remarkably, by blocking
the transforming growth factor-β signaling pathways, omentin-1 acts as an anti-fibrotic
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adipokine that reverses the effects of atrial fibrosis [65]. A negative correlation between
the production of adipocytokines from EAT and coronary atherosclerosis was observed
by Verhagen and co-workers [66]. Omentin-1 mRNA levels were found to be significantly
lower in stenotic coronary artery segments surrounding EAT. As a result, there may be a
negative correlation between coronary atherosclerosis and omentin-1 mRNA expression in
EAT [35]. It is important to highlight the paracrine effects of EAT because the association
between EAT-derived adipocytokines and coronary atherosclerosis has been underappreci-
ated. In actuality, the delicate balance between adipocytokines that promote and inhibit
inflammation is prone to breakdown under pathological circumstances [67]. Verhagen
and collaborators demonstrated that, in contrast to non-stenotic segments, adiponectin
mRNA expression in EAT near stenotic segments was not as low as predicted. Additionally,
there was a noticeable decrease in pro-inflammatory adipocytokine secretion from EAT
adjacentnt to the stenotic coronary segments [66]. Adipocytokines from EAT have a pro-
inflammatory proactive profile that is generally more pronounced in patients with CAD
than in healthy individuals [68]. In patients with CAD, the regulation of adipocytokines
from EAT near stenotic coronary segments seems to be complex.

According to Zhu and collaborators [69], there was a significant correlation between
omentin-1 levels in acute myocardial infarction and post-infarction myocardial function.
The findings showed that omentin-1 inhibits negative remodeling and also clarified the
connection between omentin-1 and myocardial ischemia or reperfusion. Future research
will resolve any remaining doubts regarding the matter. Serum omentin-1 concentrations
were found to be inversely correlated with the development of atrial fibrillation and atrial
remodeling in a study by Tao et al. [70]. Reduced serum omentin-1 levels were shown
by Onur and co-workers to be an independent predictor of CAD and to be linked to the
severity of disease in women with postmenopausal CAD [71]. Serum omentin-1 levels
were shown by Narumi et al. to be predictive of cardiovascular events in heart failure
patients. In this population, serum omentin-1 levels seem to be a novel risk classification
prognostic factor [63].

Omentin-1’s positive effects on vascular function, including vasodilation, anti-inflammatory
actions, and potential anti-atherosclerotic effects, suggest potential applications in cardio-
vascular diseases [72,73]. Therapies aimed at increasing omentin-1 levels or enhancing its
activity could be explored for conditions such as atherosclerosis, hypertension, and other
cardiovascular disorders [45,55,74].

4.2. Metabolic Disorders

Omentin-1’s involvement in metabolic regulation, insulin sensitivity, and glucose
metabolism make it a potential target for treating metabolic disorders. Strategies to modu-
late omentin-1 levels or activity may be considered in the management of insulin resistance,
type 2 diabetes [73], and obesity [23,75].

4.2.1. Obesity and Metabolic Syndrome

In obesity associated with insulin resistance, higher circulating levels of retinol-binding
protein 4 [76], visfatin [77], chemerin [75], vaspin [78], and resistin [79] and lower levels of
omentin-1 [63] and adiponectin [80] have been reported.

De Souza Batista et al. [9] assessed omentin-1 concentrations in obese individuals. Com-
pared to overweight and obese patients, those with normal body weights had higher levels
of omentin-1. Studies on children with obesity [81] and women with obesity [82] produced
similar findings. Additionally, omentin-1 concentrations in men with normal body mass
were significantly higher than those in men who were overweight or obese, according to
Moreno-Navarette et al. [82]. In contrast, Rahimlou and co-workers, when studying obese
and normal weight individuals [83], did not obtain similar findings. Orlik et al. also presented
contradicting findings [84]. It is important to remember that a low-fat, hypocaloric diet can
cause weight loss, which can cause serum omentin-1 levels to rise significantly.
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Omentin-1’s role in adipose tissue and its potential influence on lipid metabolism may
have implications for obesity and metabolic syndrome [7,38,45]. Therapeutic approaches
that aim to modulate omentin-1 levels or activity could be explored in the context of
obesity management and preventing metabolic syndrome-related complications. Indeed,
omentin-1 can control insulin sensitivity and glucose metabolism because it circulates,
which may stop the advancement of CAD in obese patients. Waist circumference and
HOMA-IR have a negative correlation with serum omentin-1. Increased diastolic cardiac
function following pioglitazone treatment is correlated with increased serum omentin-1
levels in the majority of obese patients with diabetes and low cardiovascular risk who
underwent bariatric surgery [17].

Margaritis and co-workers [85] reported that adipokine expression levels in some
adipose tissue depots do not always correlate with adipokine levels in circulation, sug-
gesting intricate mechanisms governing the biology and secretome of adipose tissue [85].
Importantly, in obesity, omentin-1 plays a significant anti-inflammatory role, most likely
through upregulating Th-2 cytokines like IL-13 and IL-14. Increased concentrations of
omentin-1 are thought to lower the levels of inflammatory cytokines [53].

Furthermore, the longitudinal relationship between omentin-1 concentrations and
the risk of type 2 diabetes was assessed by Wittenbecher et al. (2016). 2500 randomly
chosen members of the Potsdam cohort of the European Prospective Investigation into
Cancer and Nutrition (EPIC) served as the basis for this observational study. In prospective
analyses, the authors found no evidence of omentin-1’s protective effect against diabetes,
despite omentin-1’s direct associations with adiponectin and inverse associations with mea-
surements of body fat. Surprisingly, data revealed that individuals with high adiponectin
concentrations had an increased risk of diabetes related to omentin-1 [86].

In type 1 diabetes, Polkowska and co-workers (2016) noted that, regardless of the
length of this pathology, children with this type of diabetes had serum omentin-1 concen-
trations that were significantly lower than those of control children [87].

4.2.2. Insulin Resistance and Type 2 Diabetes

Improving insulin sensitivity is a key goal in managing insulin resistance and type 2
diabetes. Omentin-1’s potential to enhance insulin sensitivity suggests that it could be a
therapeutic target for individuals with insulin resistance or those at risk of developing
type 2 diabetes [23,44,53]. Insulin resistance and type 2 diabetes are inversely correlated
with serum omentin-1 levels [10].

4.3. Inflammatory Disorders

In recent years, the multifaceted properties of omentin-1 have garnered increased
attention, particularly considering the potential impact that it exhibits on inflammation and
its subsequent influence on various physiological processes. Omentin-1’s anti-inflammatory
properties make it relevant in conditions associated with chronic inflammation. This
includes inflammatory disorders that can impact vascular health, such as rheumatoid
arthritis [88]. Omentin-1-based interventions might be investigated as a complementary
approach to address inflammation in these conditions.

This adipokine can suppress inflammation in adipose tissue. In one study, omentin-1
treatment decreased pro-inflammatory cytokines, reversed macrophage polarization, and
reduced inflammation in mice given a high-fat diet [23]. Omentin-1 also reduces the
transcription factor NF-kB by blocking the Akt pathway in the inflammation signaling, and
the secretion of TNF-α and other pro-inflammatory cytokines are decreased when NF-kB
is inhibited [48]. Therefore, omentin-1 has the potential to be used as a therapy to reverse
pathological conditions and significantly reduce inflammation in patients with conditions
such as steatotic liver disease or osteoarthritis [89,90].
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4.4. Future Therapeutic Developments

Ongoing research may uncover novel therapeutic strategies, such as the develop-
ment of omentin-1-based drugs or interventions that target omentin-1 receptors. These
advancements could open new avenues for personalized medicine approaches tailored to
individuals with specific vascular and metabolic profiles.

Importantly, while the potential therapeutic applications of omentin-1 are promising,
further research, including clinical trials, is needed to establish its efficacy, safety, and
optimal modes of administration. The field of omentin-1 research is dynamic, and ad-
vancements in understanding its role in health and disease may lead to new therapeutic
opportunities in the future.

5. Challenges and Future Directions

While omentin-1 holds promise for its potential benefits in vascular function, there are
several challenges and gaps in knowledge. The precise molecular mechanisms through
which omentin-1 exerts its effects on vascular cells are not fully understood [28]. It is
necessary to identify the specific receptors and downstream signaling pathways involved
in omentin-1-mediated vasodilation, anti-inflammatory action, and other vascular effects.

In addition, omentin-1 is expressed in various tissues, including adipose tissue, but its
effects may be tissue specific. Understanding omentin-1 functions in different tissues and
whether its effects on vascular function vary in different vascular beds is a complex aspect
that requires further investigation.

Omentin-1 shares similarities with other adipokines, such as adiponectin or apelin. The
interactions and potential synergies between omentin-1 and other adipokines in modulating
vascular function are not fully understood. Disentangling these interactions is crucial for a
more comprehensive view of omentin-1’s role.

5.1. Biomarker Validity and Limited Clinical Data

Omentin-1 has been proposed as a potential biomarker for certain metabolic and cardio-
vascular conditions [59]. However, the validity, specificity, and sensitivity of omentin-1 as a
biomarker need to be thoroughly validated in diverse populations and clinical settings.

Additionally, while preclinical studies suggest beneficial effects, the number of clinical
studies investigating omentin-1’s role in vascular function is relatively limited. Future re-
search on omentin-1 could explore several key areas to deepen our understanding of its role
in vascular function and facilitate the development of targeted therapeutic interventions.
Expanding the clinical evidence base is critical for understanding its relevance in human
health and disease.

5.2. Genetic Variations

Previous studies described that compared to people with the wild genotype, carriers
of the adipose tissue genotype rs2274907 SNP in the omentin-1 gene may be four times
more likely to develop CAD without changes in serum lipid levels [91]. The expression of
the AT genotype of rs2274907A>T also increased sensitivity to CAD, as demonstrated by
Jha et al. [92]. Additionally, these researchers discovered a connection between the genotype
distribution of rs2274907A>T SNP and the levels of HDL, LDL, and total cholesterol. These
findings align with related research in the literature [93,94].

The impact of genetic variations in the omentin-1 gene on omentin-1 expression and
function needs further elucidation [95]. In addition, it is important to investigate whether
specific genetic polymorphisms are associated with altered susceptibility to vascular and
metabolic disorders [96].

6. Conclusions

A schematic diagram summarizing the key actions of omentin-1 is presented (Figure 1).
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Omentin-1 is an adipocytokine with antioxidative and anti-inflammatory properties
that is widely expressed in a variety of cells. This adipokine exhibits a wide range of thera-
peutic potentials in diabetes treatment through its actions in reducing comorbidities linked
to type 2 diabetes mellitus, such as vascular diseases and diabetic nephropathy [97,98]. In
addition, omentin-1 inhibits insulin resistance, atherosclerosis, and inflammation through
the intracellular signaling pathways of AMP-activated protein kinase/Akt/nuclear factor-
κB/mitogen-activated protein kinase (ERK, p38, and JNK). Notably, of the major adipocy-
tokines that inhibit atherosclerosis, omentin-1 has a strong correlation with inflammation,
macrophage differentiation, arterial calcification, and plaque formation [99]. Omentin-1
may be used as a biomarker for metabolic syndrome, obesity, diabetes, atherosclerosis, is-
chemic heart disease, and inflammatory diseases. This review sheds light on how omentin-1
might be used to treat these diseases and serve as a biomarker.
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