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Abstract: Chaperone-mediated autophagy (CMA) is a selective proteolytic pathway in the lysosomes.
Proteins are recognized one by one through the detection of a KFERQ motif or, at least, a KFERQ-like
motif, by a heat shock cognate protein 70 (Hsc70), a molecular chaperone. CMA substrates are
recognized and delivered to a lysosomal CMA receptor, lysosome-associated membrane protein
2A (LAMP-2A), the only limiting component of this pathway, and transported to the lysosomal
lumen with the help of another resident chaperone HSp90. Since approximately 75% of proteins
are reported to have canonical, phosphorylation-generated, or acetylation-generated KFERQ motifs,
CMA maintains intracellular protein homeostasis and regulates specific functions in the cells in
different tissues. CMA also regulates physiologic functions in different organs, and is then implicated
in disease pathogenesis related to aging, cancer, and the central nervous and immune systems. In
this minireview, we have summarized the most important findings on the role of CMA in tissue
homeostasis and disease pathogenesis, updating the recent advances for this Special Issue.
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1. Introduction

In recent years, there have been many works that highlight chaperone-mediated au-
tophagy (CMA) as a mechanism of lysosomal protein degradation that is key to maintaining
the homeostasis and different specific functions in the cells of different tissues.

CMA regulates physiologic functions in different organs and is then implicated in
disease pathogenesis related to aging, cancer, and the central nervous and immune sys-
tems. This minireview updates the most important evidence on the role of CMA in tissue
homeostasis and disease pathogenesis, highlighting CMA as an essential mechanism to
understand for the development of future treatments in neurodegenerative diseases, cancer,
and other pathologies.

2. Chaperone-Mediated Autophagy

Autophagy embraces the lysosomal degradation and recycling of a diverse range of
intracellular components, including proteins, organelles, and even invading pathogens.
Autophagy plays an essential role in maintaining proteostasis and organelle turnover, but
also has a pivotal role in regulating cellular energetics, stress responses, pathogen defense,
cellular reprogramming, stem cell maintenance, and other fundamental cellular mechanisms.

In most mammalian cells, three major forms of autophagy coexist, namely macroau-
tophagy, microautophagy, and CMA [1]. The distinctive features of CMA include its
specificity toward substrates, which are exclusively proteins. Unlike macroautophagy,
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CMA does not rely on autophagosome formation; instead, the substrates are directly
translocated into the lysosomes for degradation through a lysosomal–membrane complex.

2.1. Mechanisms of CMA

CMA’s unique features primarily stem from its substrate recognition and targeting
mechanisms. The KFERQ-like motif present in the substrate protein is necessary and
sufficient for targeting the substrate to CMA degradation [2]. The canonical CMA motif
consists of the pentapeptide KFERQ, but alternative, well-defined modifications to this
pentapeptide, with specific alternative amino acids, can also generate alternative KFERQ-
like motifs [2–8]. Approximately 40% of proteins in the mammalian proteome contain a
recognized KFERQ-like motif. Additionally, post-translational modifications, such as phos-
phorylation or acetylation, can generate or complete the KFERQ-like motif, increasing the
number of potential CMA substrates. Additionally, post-translational modifications outside
the motif can also modulate CMA targeting by facilitating conformational changes in the
protein that expose or mask the motif and trigger or avoid CMA-mediated degradation of
the protein.

Hsc70 (heat-shock cognate protein 70) is the chaperone responsible for recognizing and
binding the KFERQ-like motif present in the substrate protein. With the help of additional
co-chaperones, including HSP90, HSP40, HOP, HIP, and BAG-1, the complex substrate–
Hsc70 is targeted to the lysosomal membrane to interact with the transmembrane protein
LAMP-2A (Lysosome-associated membrane protein type 2A) [9,10] (Figure 1).
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Figure 1. Chaperone-mediated autophagy (CMA) mechanism and regulation: CMA substrates
carrying the KFERQ-like motif are recognized by chaperone Hsc70 and co-chaperones (1) and
delivered to the lysosomes where the complex interacts with LAMP-2A, promoting the assembly of
the translocation complex (2). Assisted by lysosomal Hsc70 (lys-Hsc70), the substrate is unfolded
and translocated inside the lysosomal lumen, where it is degraded by lysosomal proteases (3).
Dissociation of LAMP-2A from the translocation complex favors its turnover that occurs in lipid
microdomains by the action of cathepsin A and a metalloproteinase (MP) (4). CMA is regulated by
different cytosolic signals that can promote (+) or inhibit (−) LAMP-2A transcription (left) and by the
mTORC2-AKT1-PHLPP1 axis on the lysosomal membrane that both promote (+) and inhibit (−) the
assembly or disassembly of the CMA translocation complex.

Lysosomal LAMP-2A stands as the pivotal player in CMA. There are three LAMP2
splicing variants (LAMP-2A, LAMP-2B, and LAMP-2C), differing only in the small cytosolic
tail exposed outside the lysosome [11]. Only the LAMP-2A variant is essential for CMA
since its cytosolic tail is required for the lysosomal docking of the Hsc70–substrate complex.
Under resting conditions, LAMP-2A is found as a monomer and is mainly located in
lipid-enriched microdomains within the lysosomal membrane [12]. The interaction of
the Hsc70–substrate complex facilitates the assembly of the CMA translocation complex,
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where LAMP-2A proteins join in homotrimeric structures. This assembly creates a channel
through which the substrate protein unfolds and is translocated into the lysosomal lumen,
initiating its degradation (Figure 1).

The LAMP-2A abundance on the lysosomal membrane is the limiting factor for CMA
and is primarily regulated by the dynamic distribution and turnover of the LAMP-2A
protein rather than de novo synthesis. LAMP-2A monomers can be cleaved and degraded
when monomeric LAMP-2A is inside lipid microdomains, subsequently downregulating
CMA. Conversely, the exclusion of LAMP-2A from lipid microdomains prevents cleavage
and facilitates the assembly of LAMP-2A multimers necessary for CMA substrate uptake
and an increase in CMA activity. Changes in the lipid composition of the lysosomal
membrane can affect the stability of the translocation complex and the levels of LAMP-
2A [13–15].

In addition to the modulation of LAMP-2A levels in the lysosomal membrane, CMA
activity is tightly controlled through other signaling pathways that can upregulate or
downregulate CMA in response to changing cellular conditions.

Most of these mechanisms of CMA regulation are based on the transcriptional modula-
tion of LAMP-2A (Figure 1). Unlike its role in macroautophagy, retinoic acid receptor alpha
(RARα) signaling negatively regulates the CMA pathway. RARα signaling inhibits CMA
activity by decreasing the expression of LAMP-2A, Rab11, and Rab-interacting lysosomal
protein (RILP) [16]. Subsequently, genetic or pharmacological inhibition of RARα can
promote LAMP-2A trafficking to lysosomes and promote CMA activity. Recently, different
inhibitors and antagonists of RARα compounds like AR7, GR2, QX77, CA77.1, and CA
39, have been shown to be good pharmacological CMA activators in different models of
neurodegenerative diseases, both in vitro and in vivo [17–20].

TFEB is a master regulator of lysosomal biogenesis and autophagy. It controls the
expression of many autophagy-related genes, although previous studies demonstrated that
LAMP-2A is not transcriptionally regulated by TFEB [21]. Recent works suggested that
TFEB activation could enhance LAMP-2A levels and CMA activity, as well as the inhibition
of TFEB translocation to the nucleus through phosphorylation, which can downregulate
LAMP-2A transcription and CMA activity [22,23].

2.2. Selective Regulation in Response to Stress and Cellular Conditions

Under specific conditions or stressors like oxidative stress, genotoxic damage, or hy-
poxia, LAMP-2A levels can be selectively upregulated in response to stress and cellular
conditions [24–27]. For instance, the generation of reactive oxygen species (ROS) during
T cell activation promotes the nuclear translocation of the nuclear factor of activated T
cells-1 (NFAT1) that directly binds the Lamp2 promoter region, increasing Lamp2a expres-
sion [24] and, consequently, increasing CMA. Furthermore, this CMA activation triggers the
degradation of two signaling inhibitors of T cell activation, Rcan-1 and Itch, (Y85,87,117),
endorsing the process of T cell activation, proliferation, and differentiation.

Under oxidative stress, the Nrf2–Keap1–ARE signaling mechanism is activated as an
antioxidant response [28] and Nrf2 promotes the transcription and expression of LAMP-2A
and activates CMA. This promotion of Lamp2a expression and CMA activity can be achieved
with the pharmacological activation of Nrf2 and downregulated when Nrf2 knockdown is
performed [29].

Beyond the transcriptional regulation of LAMP-2A, the mTORC2–AKT1–PHLPP1 axis
exerts the dual regulation of CMA by acting on AKT1 [30]. This axis stands out for its distinc-
tive localization on the lysosomal membrane compared to other pathways that rely on cyto-
plasmic signals. Moreover, its signaling depends on phosphorylation/dephosphorylation
mechanisms rather than the transcriptional regulation of LAMP-2A. mTORC2, localized
into the lysosomal membrane, phosphorylates downstream AKT1, promoting GFAP phos-
phorylation. This process stabilizes GFAP, preventing its binding to the LAMP-2A– Hsc70
complex and leading to an inhibitory effect on CMA [30,31]. In contrast, PHLPP1 dephos-
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phorylates AKT, which promotes GFAP dephosphorylation and enhances the assembly
and disassembly of LAMP-2A, thus boosting CMA activity [30] (Figure 1).

3. Biological Functions of CMA
3.1. Protein Quality Control

CMA basal activity, as a protein quality control mechanism in most cells and tissues,
contributes to proteome remodeling through its circadian properties, degrading misfolded
or damaged proteins to maintain their localization, levels, and conformation [25,32–35].
Although in some cases the failure of CMA due to aging or the persistence of stress stimuli
can be solved with bi-directional compensatory mechanisms such as macroautophagy or the
ubiquitin–proteasome system (UPS) [36], in neurons, activated T cells, and hematopoietic
stem cells [37,38], there is not any compensatory crosstalk among mechanisms. In these cases,
damaged proteins are accumulated, leading to cellular stress due to proteotoxicity [20,39,40].
Furthermore, uncompensated CMA failure also drives unfunctional proteins due to protein
aggregation because of protein accumulation [41]. That is the case of pathogenic proteins
related to protein conformational disorders [42], such as LRRK2, alpha α-synuclein, and
tau, which are aggregated at the lysosomal surface by CMA failure, and subsequently
exacerbate the effects of the CMA impairment, promoting a proteotoxicity proteome [22]
(Figure 2).

Biomedicines 2024, 12, x FOR PEER REVIEW  4  of  15 
 

GFAP  phosphorylation.  This  process  stabilizes  GFAP,  preventing  its  binding  to  the 

LAMP-2A– Hsc70 complex and leading to an inhibitory effect on CMA [30,31]. In contrast, 

PHLPP1 dephosphorylates AKT, which promotes GFAP dephosphorylation and enhances 

the assembly and disassembly of LAMP-2A, thus boosting CMA activity [30] (Figure 1). 

3. Biological Functions of CMA 

3.1. Protein Quality Control 

CMA basal activity, as a protein quality control mechanism in most cells and tissues, 

contributes  to  proteome  remodeling  through  its  circadian  properties,  degrading mis-

folded  or  damaged  proteins  to maintain  their  localization,  levels,  and  conformation 

[25,32–35]. Although in some cases the failure of CMA due to aging or the persistence of 

stress stimuli can be solved with bi-directional compensatory mechanisms such as macro-

autophagy or the ubiquitin–proteasome system (UPS) [36], in neurons, activated T cells, 

and  hematopoietic  stem  cells  [37,38],  there  is  not  any  compensatory  crosstalk  among 

mechanisms. In these cases, damaged proteins are accumulated, leading to cellular stress 

due  to proteotoxicity  [20,39,40]. Furthermore, uncompensated CMA  failure also drives 

unfunctional proteins due to protein aggregation because of protein accumulation [41]. 

That is the case of pathogenic proteins related to protein conformational disorders [42], 

such as LRRK2, alpha α-synuclein, and tau, which are aggregated at the lysosomal surface 

by CMA failure, and subsequently exacerbate the effects of  the CMA  impairment, pro-

moting a proteotoxicity proteome [22] (Figure 2). 

 

Figure 2. Biological functions of CMA and its physiological role in cells. CMA participates in the 

protein quality control of cells  through  the degradation of nonfunctional, damaged, or unfolded 

proteins. CMA also has regulatory functions contributing to cellular energetics, among others, such 

as the regulation of cellular reprogramming, defense, and remodeling, which selectively modulates 

the proteome to regulate several processes. 

3.2. Cellular Energetics 

CMA  also  has  regulatory  functions, degrading  functional  proteins  to  finish  their 

function and regulate different cellular processes. In fact, CMA has a role in the mainte-

nance of cellular energetics, degrading enzymes implicated in glucose hydrolysis, in ad-

dition to inactive forms, to maintain glucose levels during starvation [8,43]. Furthermore, 

CMA regulates lipid metabolism, degrading lipogenic enzymes, regulator proteins of li-

pid mobilization, and limiting enzymes in fat acid metabolism to prevent the lipid accu-

mulation [41,43–46]. Additionally, CMA also controls lipid droplet mobilization, eliminat-

ing enzymes that regulate lipogenesis through lipid uptake/synthesis [45,46], and ensur-

ing efficient lipolysis, such as in the case of PLIN2 and PLIN3 [47]. 

Figure 2. Biological functions of CMA and its physiological role in cells. CMA participates in the
protein quality control of cells through the degradation of nonfunctional, damaged, or unfolded
proteins. CMA also has regulatory functions contributing to cellular energetics, among others, such
as the regulation of cellular reprogramming, defense, and remodeling, which selectively modulates
the proteome to regulate several processes.

3.2. Cellular Energetics

CMA also has regulatory functions, degrading functional proteins to finish their func-
tion and regulate different cellular processes. In fact, CMA has a role in the maintenance of
cellular energetics, degrading enzymes implicated in glucose hydrolysis, in addition to inac-
tive forms, to maintain glucose levels during starvation [8,43]. Furthermore, CMA regulates
lipid metabolism, degrading lipogenic enzymes, regulator proteins of lipid mobilization,
and limiting enzymes in fat acid metabolism to prevent the lipid accumulation [41,43–46].
Additionally, CMA also controls lipid droplet mobilization, eliminating enzymes that reg-
ulate lipogenesis through lipid uptake/synthesis [45,46], and ensuring efficient lipolysis,
such as in the case of PLIN2 and PLIN3 [47].
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On the other hand, CMA prevents mitochondrial dysfunction and regulates dynamics
through protein and enzyme degradation, including Krebs enzymes and proteins contribut-
ing to mitochondrial metabolism in the cells [43,48] (Figure 2).

3.3. Cellular Reprogramming

CMA has an important role in cellular reprogramming through its selective regula-
tory function of remodeling the proteome. It participates in the metabolic switch needed
for hematopoietic stem cell (HSC) activation, and its failure in old organisms impairs
hematopoietic function and HSC Proliferation [41]. Furthermore, it controls the self-
renewal/differentiation of embryonic stem cells (ESCs), modulating epigenome changes
through the degradation of enzymes implicated in the α-ketoglutarate metabolism [49].
Activated CMA degrades isocitrate dehydrogenase (IDH) 1 and IDH2, leading to the reduc-
tion in the intracellular levels of α-ketoglutarate, which are involved in the pluripotency
maintenance of mouse ESCs. Thus, in quiescent ESC, as CMA is inactive through the
Lamp2a gene silencing through binding of the transcriptional factors OCT4 and SOX2
to a distal promoter region, IDH1 and IDH2 are accumulated and promote high levels
of α-ketoglutarate. During cell differentiation, the inactivation of CMA and subsequent
metabolic changes that determine the self-renewal of ESCs are prevented through the
silencing of SOX2 and OCT4 genes [49].

Additionally, CMA activity regulates cell differentiation in different systems, and its
failure with age leads to consequent cell alterations that can enhance significant inflam-
matory lesions in the organism [46,50]. The blockage of CMA in vascular smooth muscle
cells leads to transdifferentiation [46], whereas in rat mesenchymal stem cells, it induces
osteoblast differentiation [50].

CMA also regulates the adaptive immune response through the recycling of negative
regulators of T cell activation such as ITCH and RCAN. Thus, its deficiency in aged T cells
impairs T cell function against pathogens such as bacterial infection [24].

On the opposite, an aberrant increase in CMA flux in B cells seems to be responsible
for the abnormal B cell responses in lupus autoimmune diseases [51] (Figure 2).

3.4. Other Cellular Processes

CMA also has a role in cellular remodeling through its selective function of regulating
cell growth and survival through the degradation of the transcription factors PAX2, MEF2D,
MEF2A, and the HMBG1 [52]. Furthermore, CMA activity contributes to regulating the cell
cycle in response to stress, timely degrading cell cycle modulators such as Chk1, RND3,
HIF-1α, and TP73 [53,54]. In fact, CMA also participates in circadian rhythm regulation,
eliminating the transcription factors BMAL1, CLOCK, and REVERBα [32] (Figure 2).

3.5. Cellular Defense

It is important to highlight another important function of CMA as a cellular defense.
CMA regulates cell death by contributing to the prevention of stress-induced apopto-
sis [39,55], but in contrast, promoting ferroptosis [56]. ER stress-induced CMA is essential
for maintaining cellular homeostasis and protecting cells from cell death through the regu-
lation of the unfolded protein response [39,40]. Furthermore, CMA activity in response to
other stressors suppresses apoptosis, mediating the degradation of damaged proteins [55],
however, it is required to enhance ferroptosis in some contexts through the degradation of
the glutathione peroxidase (GPX4) [56].

Moreover, the regulation function of the mitochondrial dynamics and function by
CMA may also regulate cell death [48]. CMA regulates mitochondrial dynamics through
the degradation of MARCHF5, a ubiquitin ligase required for mitochondrial fission. Thus,
CMA prevents mitochondrial dysfunction due to the excessive fragmentation of mitochon-
dria [48].

Indeed, CMA has a defense function in macrophages, degrading the enzyme TRIM21
to prevent cell death in response to pathogens such as bacterial infection [57]. In addition,
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CMA modulates the innate immune response, reducing antiviral immune responses and
enhancing viral infection through the degradation of key inflammation factors, such as
NLRP3 [45], TBK1 [58], STING [59], and other specific regulator proteins [59,60] (Figure 2).

4. CMA and Human Diseases: Role in Pathogenesis
4.1. Neurodegenerative Diseases

A mounting body of evidence underscores the crucial involvement of proteolytic path-
way dysregulation in the initiation and/or progression of neurodegenerative diseases [53].
Certain unfolded, modified, damaged, or mutant proteins exhibit a tendency to aggregate,
and considering that neurons are post-mitotic cells, they rely on intracellular degradative
mechanisms to handle protein accumulation and aggregation. The failure of these cleaning
systems and the subsequent accumulation of toxic aggregates represent a common hallmark
in numerous neurodegenerative disorders.

During aging, a decrease in CMA activity caused by a decrease in LAMP-2A levels
has been found in mammals in almost all cell types and tissues [24,36,41,61,62]. Recently,
the contribution of CMA to the maintenance of the metastable neuronal proteome, under
physiological conditions, highlighted the essential role of CMA in neuronal homeostasis [20]
and showed that in the central nervous system, both macroautophagy and CMA display
non-redundant functions. Indeed, CMA is instrumental in avoiding neuronal proteotoxicity
and guaranteeing proteostasis maintenance.

Consequently, CMA failure due to aging or due to the presence of pathogenic proteins
associated with neurodegenerative diseases has a strong impact on the neuronal proteome,
promoting protein insolubility and aggregate formation.

4.1.1. Parkinson’s Disease (PD)

PD is characterized by dopaminergic neuron loss and abnormal protein aggregate
accumulation, known as Lewy bodies (LB), where the primary component is aggregated
α-synuclein [63]. Among neurodegenerative diseases, PD was the first associated with
CMA because α-synuclein was one of the first substrates identified as a CMA substrate and,
although alternative proteolytic pathways can also contribute to α-synuclein degradation,
the neuron primarily relies on the CMA pathway for its physiological turnover. Alterations
in CMA activity directly impact α-synuclein levels, with the loss of CMA activity linked
to α-synuclein accumulation in numerous in vitro and in vivo PD models, as well as in
samples derived from PD patients [64–66].

The observed failure of CMA activity in PD may stem from multiple causes, including
the age-dependent decline of CMA and the presence of pathogenic proteins associated with
the disease. For instance, mutant variants of α-synuclein, such as A53T and A30P, interact
with LAMP-2A, hindering the CMA translocation complex on the lysosomal membrane,
impeding the internalization of synuclein, and compromising the CMA degradation of other
substrates [67]. This situation exacerbates the accumulation of toxic aggregated proteins,
contributing to neurodegeneration. Post-translational modifications of α-synuclein, like
phosphorylation and dopamine modification, also interfere with CMA, preventing their
own degradation and the CMA-dependent degradation of various protein substrates [68].

CMA defects extend beyond α-synuclein; other PD-related proteins, including UCH-
L1 and LRRK2, can also impact CMA function. UCH-L1 and LRRK2 pathogenic variants
directly interact with the LAMP-2A translocation complex blocking CMA in an analo-
gous mechanism as mutant synuclein. Other PD-related proteins can affect CMA activity
without directly interacting with LAMP-2A. For example, Vacuolar protein sorting-35
(VPS35) is essential for the endosome-to-Golgi retrieval of LAMP-2A; mutations or de-
ficiency can promote LAMP-2A degradation in dopamine neurons, contributing to PD
pathogenesis [69].

The first genetic risk factor for PD is the presence of a mutation in the GBA gene [70,71].
GBA encodes β-glucocerebrosidase (β-GCase or GBA), a lysosomal enzyme with the pri-
mary function of hydrolyzing GlcCer into ceramide and glucose. Mutations associated
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with PD result in a loss of GCase activity and the consequent accumulation of GBA sub-
strates, including sphingolipids and other lipids like gangliosides and cholesterol, all of
them the primary components of lipid microdomains in the lysosomal membrane. These
changes in lysosomal lipid components favor the presence of LAMP-2A as a monomer,
preventing the assembly of the CMA–translocation complex, inhibiting CMA activity, and
promoting α-synuclein accumulation [15]. Restoring CMA function has been explored as
a potential therapeutic target for PD. Increasing CMA activity or upregulating key CMA
components such as LAMP-2A has been shown to mitigate neurotoxicity associated with α-
synuclein and protect against dopaminergic neuron loss: genetic overexpression of Lamp2a
has demonstrated clearance of α-synuclein in dopaminergic neurons and reduced cell loss
in vivo [72] and, pharmacologically, the use of alphaRAR inhibitors like AR7 and QX77 or
other CMA activators like the peptide Humanin has been shown to enhance LAMP-2A
levels and CMA activity in various in vitro PD models [15,18,19].

4.1.2. Alzheimer’s Disease (AD)

AD is characterized by the accumulation of Aβ plaques and intracellular tau tan-
gles. CMA activity has been shown to decrease in Alzheimer’s disease, and several
AD-associated proteins have been shown to interact with CMA.

CMA is involved in the degradation of wild-type tau, but mutant forms of tau can
bind to LAMP-2A and disrupt its lysosomal membrane translocation, impairing CMA
activity [20].

Additionally, other AD-related proteins, such as RCAN1, are degraded by CMA as
part of the regulatory mechanism to prevent excessive tau phosphorylation. The loss of
CMA can indirectly promote the hyperphosphorylation of tau [73,74].

Like in other neurodegenerative diseases, the modulation of CMA has been shown to
have therapeutic benefits in AD management. The pharmacological CMA activator CA77.1
(an AR7 analog and based on the inhibition of RARα) has been shown to present beneficial
effects in AD-related pathology in two different in vivo AD mouse models [20].

Amyloid-beta precursor protein (APP) has also been identified as a substrate for
CMA, revealing its interaction with Hsc70 in a manner dependent on IKKα/β. The
authors proposed metformin as a new CMA activator treatment, via activation of TAK1-
IKKα/β signaling that leads to the phosphorylation of Hsc70. Activating CMA through
Hsc70 overexpression or the administration of metformin substantially diminished the
accumulated brain Aβ plaque levels in an APP/PS1 mouse model [75].

4.1.3. Other Neurodegenerative Diseases

Huntington’s disease (HD) and other neurodegenerative disorders, such as prion
diseases and frontotemporal dementia (FTD) are also related to CMA dysfunction through
disease-related proteins that have been confirmed as CMA substrates. In HD, mutant
huntingtin protein (Htt) is identified as a CMA substrate and interacts with CMA ma-
chinery. Additionally, CMA activity is initially upregulated in the early stages of HD as a
compensatory response to macroautophagy impairment, however, it decreases with age,
contributing to cellular failure and the onset of pathological manifestations [76–78]. CMA
is also implicated in the degradation of PrP in prion diseases and TDP-43 in ALS and
FTD. Mutations or dysfunctions in various proteins, including PLK3 and SCA21-related
TMEM240, affect CMA activity in these disorders [79,80].

We cannot discard that numerous proteins linked to neurodegeneration might be CMA
substrates. In many of these circumstances, the failed CMA does not solely impact the
individual degradation of a specific disease-associated protein, but also adds to the overall
failure of CMA, thereby contributing to neuronal proteotoxicity.

The involvement of CMA dysfunction in various neurodegenerative diseases has been
substantiated by the therapeutic impact of activating CMA to counteract the pathogenic
phenotype. Recently, the validation of pharmacological CMA activation, achieved through
AR7 analogs termed CMA activators (CAs), was observed in vivo across diverse neurode-
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generative models including Alzheimer’s disease (AD), as previously discussed [75], and in
a mouse model of retinitis pigmentosa [17]. In this model, characterized by the progressive
degeneration of neurons in the retina, treatment with CA compounds (CA39 and CA77)
effectively alleviated retinal degeneration, underscoring their potential as a therapeutic
strategy against neuronal degeneration in vivo and validating their promise for addressing
other neurodegenerative diseases.

4.2. Cancer
4.2.1. CMA Regulation: Pro-Tumor versus Anti-Tumor Roles

As CMA activity is needed for different cellular functions in the cells, its failure with
age or any dysregulation of its physiological activity levels leads to different affected
physiological processes causing diseases such as cancer [24,41,45,46,81]. During aging,
LAMP-2A levels at the lysosomal membrane are less stable, which promotes deficient CMA
activity, consequently leading to deficient control of the protein quality in the cells and,
therefore, malignant cell transformation [82,83]. Importantly, CMA in basal levels is needed
to maintain cell homeostasis and prevent malignant cell transformation by increasing pro-
teostasis and avoiding DNA damage [84]. However, if CMA activity is dysregulated, has a
pro-oncogenic role, and transformed cells aberrantly upregulate CMA activity, eliminating
several anti-tumor proteins that negatively regulate tumor cell survival and prolifera-
tion [82,85,86]. Moreover, CMA has a role in the regulation of cellular energetics with a
pro-oncogenic function, modulating metabolic switches that contribute to tumor growth
and survival [82]. CMA constitutively upregulated in different types of cancer cells is
needed to degrade glycolytic enzymes required to induce the anaerobic glycolysis which is
essential to support the Warburg metabolism in cancer cells for tumor progression [82,85].
However, functional CMA is needed to sustain the Warburg effect in cancer cells. As has
been demonstrated in melanoma cells and lung cancer, CMA blockage stabilizes P53 which,
in contrast, decreases the transcriptional levels of glycolytic enzymes [85]. Additionally,
increased CMA sustains cancer cells, affecting many cellular processes that control protein
synthesis through the degradation of translation components [87].

4.2.2. Identified Substrates in Different Types of Cancers

In recent years, more and more different protein substrates have been identified as
CMA substrates to prevent the transformation of healthy cells through their anti-oncogenic
function. That is the case of the proto-oncogenic protein mouse double-minute 2 homo-
logue (MDM2) [88] and the translational-controlled tumor-associated protein (TCTP) [89],
whose reduced levels in the cell through CMA activity seem to be related to the prevention
of the spontaneous liver tumors that appear with the age [36]. CMA regulates the transcrip-
tion factors that regulate cell proliferation and apoptosis such as the paired-box protein
PAX2 [90]. And it is also involved in the regulation of the transcription factor c-Myc, since
it degrades the protein phosphatase 2A (CIP-2A), which is responsible for the degradation
of this proto-oncogene [84]. Moreover, the P65, a component of the nuclear factor-κB, is de-
graded by CMA activity preventing the increase in NF-κB signaling in epithelial cells and a
subsequent epithelial–mesenchymal transition that leads to tumorigenesis [91]. Hexokinase
II and pyruvate kinase-II, glycolytic enzymes required for tumorigenesis, are regulated by
degradation through CMA in some types of cancers [8,92], but specific post-translational
modifications in those proteins affect their degradation, leading to pro-oncogenic effects
that support CMA function in the energy maintenance of cancer cells. CMA is involved in
DNA repair mechanisms and the re-entry of cells into the cell cycle. In response to DNA
damage, CMA degrades activated Chk1, preventing a persistent activation and induction
of genome instability as it occurs in cancer cells [6]. Conversely, CMA has been shown to be
essential in regulating cell proliferation and promoting tumor cell invasion in gastric cancer,
degrading RND3, a Rho family GTPase, an anti-proliferative protein related to preventing
tumorigenesis and metastasis [7]. In addition, the nerve growth factor (NGFR), which is
upregulated in several types of cancers, promotes the survival of transformed cells, binding
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to the tumor suppressor p53, which enhances its degradation by CMA [93]. Moreover,
the hypoxia-inducible factor1 (HIF-1), a CMA substrate, is another transcription factor
that controls gene transcription under hypoxic conditions, leading to cell proliferation in
healthy cells, whereas if it is degraded by cyclin-dependent kinase 2-induced CMA activity
in some types of cancer cells, tumor cell proliferation in enhanced [26].

4.2.3. Targeting CMA in the Tumor Microenvironment

CMA has been identified in different stages of tumors and is highly induced for tumor
cell proliferation and survival in multiple types of cancers, including renal, prostate, breast,
lung, colon, melanoma, and hepatocellular and cervical carcinoma [82,85,94,95]. LAMP-
2A has been also suggested as a potential prognosis marker in glioblastoma [96], gastric
cancer [7] and renal carcinoma [95], as its expression is correlated with the high CMA
activity needed to maintain the metabolic requirements of cancer stem cells which initiate
tumorigenesis.

Importantly, the tumor cell not only just upregulates Lamp2a expression and, therefore,
increases CMA activity for its proliferation and survival, but it even promotes aberrant
upregulation in the cells of the tumor microenvironment for its own benefit [86,97]. That is
the case of perivascular cells in glioblastoma cancer, known as pericytes [97], which are also
located in other microvascularized cancers and show an immunosuppressive pro-tumor
function [98]. Stable tumor cell–pericytes interactions, and the ablation of the anti-tumor
immune function of pericytes driven by aberrantly increased CMA activity, promote tumor
cell proliferation and survival [99,100].

All these findings lead us to think that CMA could be a good target for cancer. How-
ever, the role of CMA in certain stages of the tumor and the need for it to be functional
in certain cells to prevent their transformation [94], including its essential role in different
cell types of the cellular microenvironment useful to eliminate the tumor [99], makes it
critical to better understand the physiological and pathological functions of CMA in dif-
ferent types of cells. It is necessary to consider the type of tumor and stage to develop
selective molecules against CMA activity. Currently, nothing is known other than some
CMA-modulating molecules that make it deficient without eliminating it completely, and
that may have undesirable effects since they can also affect other mechanisms of the cell,
without being selective [82,86,101].

4.3. Aging-Associated Diseases and Other Pathologies

CMA activity presents a protective role in bronchial epithelial cells through increased
Lamp2a expression dependent on activated Nrf2 and in response to oxidative stress such
as cigarette smoke [40]. Chronic obstructive pulmonary disease (COPD) is a representa-
tive, aging-associated pulmonary disease, based on persistent airflow limitation with an
abnormal inflammatory response related to harmful gases and particles [102]. The deficient
CMA activity due to reduced levels of LAMP-2A, as occurs in COPD, negatively affects the
bronchial epithelial cell survival and, subsequently, pulmonary function [40,102].

Aging-associated metabolic disorders, such as liver diseases, have also been reported
to be related to affected CMA activity [36,43,103,104]. CMA protects hepatocytes from
lipotoxicity and oxidative stress in normal conditions [43,44]. In contrast, reduced levels of
LAMP-2A and other positive regulators of CMA in the liver of non-alcoholic and alcoholic
fatty liver patients, including hepatic steatosis, drive deficient CMA that unbalances the
lipid metabolism in response to oxidative stress [103–105].

CMA failure can also be implicated in cardiovascular diseases, as reduced LAMP-2A
levels in vascular smooth muscle cells and macrophages promote risks and severity of
atherosclerotic plaques and exacerbated pro-inflammatory function. In addition, aging can
aggravate these effects due to the deficient CMA activity that deregulates lipid metabolism
and impairs NLPR3 inflammasome degradation [45,46].

On the other hand, dysfunction of CMA as a consequence of some diseases can
aggravate the pathology. That is the case in the involvement of suppressed CMA activity in
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several pathologic conditions in the kidney [106]. The accumulation of CMA substrates by
impaired CMA in the renal cortex during acute diabetes mellitus might also be associated
with the development of diabetic-induced renal hypertrophy [106,107].

CMA dysfunction is also implicated in the pathogenesis of Mucolipidosis type IV
(MLIV), a lysosomal storage disorder, as its activity is deficient in fibroblasts from these
patients [108].

CMA also plays an important role in immune responses against pathogens [24,57],
and its dysfunction by Salmonella Typhimurium, results in impaired protection against
oxidative stress in the infected macrophages that subsequently leads to cell death as a
key virulence strategy [57]. Moreover, CMA failure in T cells sensitizes them to pathogen
infection, such as Listeria and thus, with age, the T cell effector response against bacterial
infection is more vulnerable [24]. In contrast, CMA is aberrantly upregulated in B cells
during the autoimmune disease lupus, enhancing the inflammatory effects that contribute
to pathogenesis [51].

CMA is also involved in the pathogenesis of ulcerative colitis, through its aberrant
induction led by increased protein expression levels of LAMP-2A, which subsequently
leads to inflammatory symptoms of bowel disease [109]. In contrast, induced CMA ac-
tivity prevents the pathogenesis of intestinal fibrosis through inhibition of the epithelial-
mesenchymal transition through the downregulation of NF-κB (p65/RelA) signaling [91].

5. Conclusions

More and more findings are emerging with CMA as an attractive therapeutic target
to treat multiple pathologies, attempting to restore its activity levels by modulating its
components or restoring normal levels of the lysosomal receptor LAMP-2A, which is
affected by aging. However, in many other inflammatory pathologies, including cancer,
CMA levels are abnormally overactivated, and what would be of interest is to suppress
the expression of LAMP-2A or modulate the activity of CMA through other components,
correcting it to physiological levels.

Although the regulators of CMA to modulate the pathway are increasingly better
known, more studies are needed to deepen knowledge of the dynamics of substrate translo-
cation and new physiological functions attributed to CMA. A better understanding of
CMA regulatory roles in different systems and tissues, including the consequences of
their loss with aging and pathophysiology, would facilitate possible future treatments for
multiple diseases.
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