Autoantibodies Targeting G-Protein-Coupled Receptors and RAS-Related Molecules in Post-Acute COVID Vaccination Syndrome: A Retrospective Case Series Study
Abstract
:1. Introduction
2. Cases and Methods
2.1. Cohort of Patients
2.2. Laboratory Assays
2.3. Statistics
3. Results
3.1. Characteristics of Patients and Symptoms
3.2. Autoantibodies
3.3. Correlations with Symptoms
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dotan, A.; Muller, S.; Kanduc, D.; David, P.; Halpert, G.; Shoenfeld, Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 2021, 20, 102792. [Google Scholar] [CrossRef]
- Acosta-Ampudia, Y.; Monsalve, D.M.; Rojas, M.; Rodriguez, Y.; Zapata, E.; Ramirez-Santana, C.; Anaya, J.-M. Persistent Autoimmune Activation and Proinflammatory State in Post-Coronavirus Disease 2019 Syndrome. J. Infect. Dis. 2022, 225, 2155–2162. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Angeli, F.; Verdecchia, P.; Reboldi, G. Long COVID [posst-acute sequelae of coronavirus disease 2019]: Experimental drugs for cardiopulmonary complications. Expert. Opin. Investig. Drugs 2023, 32, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Sotzny, F.; Filgueiras, I.S.; Kedor, C.; Freitag, H.; Wittke, K.; Bauer, S.; Sepúlveda, N.; da Fonseca, D.L.M.; Baiocchi, G.C.; Marques, A.H.C.; et al. Dysregulated autoantibodies targeting vaso- and immunoregulatory receptors in Post COVID Syndrome correlate with symptom severity. Front. Immunol. 2022, 13, 981532. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Ballering, A.V.; van Zon, S.K.R.; Olde Hartman, T.C.; Rosmalen, J.G.M. Persistence of somatic symptoms after COVID-19 in the Netherlands: An observational cohort study. Lancet 2022, 400, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef]
- Ayoubkhani, D.; Bosworth, M.L.; King, S.; Pouwels, K.B.; Glickman, M.; Nafilyan, V.; Zaccardi, F.; Khunti, K.; Alwan, N.A.; Walker, A.S. Risk of Long COVID in People Infected With Severe Acute Respiratory Syndrome Coronavirus 2 After 2 Doses of a Coronavirus Disease 2019 Vaccine: Community-Based, Matched Cohort Study. Open Forum. Infect Dis. 2022, 9, ofac464. [Google Scholar] [CrossRef]
- Krumholz, H.M.; Wu, Y.; Sawano, M.; Shah, R.; Zhou, T.; Arun, A.S.; Khosla, P.; Kaleem, S.; Vashist, A.; Bhattacharjee, B.; et al. Post-Vaccination Syndrome: A Descriptive Analysis of Reported Symptoms and Patient Experiences After COVID-19 Immunization. medRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Finsterer, J. A Case Report: Long Post-COVID Vaccination Syndrome During the Eleven Months After the Third Moderna Dose. Cureus 2022, 14, e32433. [Google Scholar] [CrossRef]
- Finterer, J.; Scorza, F.A. A retrospective analysis of clinically confirmed long post-COVID vaccination syndrome. J. Clin. Transl. Res. 2022, 8, 506–508. [Google Scholar] [PubMed]
- Scholkmann, F.; May, C.A. COVID-19, post-acute COVID-19 syndrome (PACS, “long COVID”) and post-COVID-19 vaccination syndrome (PCVS, “post-COVIDvac-syndrome”): Similarities and differences. Pathol. Res. Pract. 2023, 246, 154497. [Google Scholar] [CrossRef]
- Semmler, A.; Mundorf, A.K.; Kuechler, A.S.; Schulze-Bosse, K.; Heidecke, H.; Schulze-Forster, K.; Schott, M.; Uhrberg, M.; Weinhold, S.; Lackner, K.J.; et al. Chronic Fatigue and Dysautonomia following COVID-19 Vaccination Is Distinguished from Normal Vaccination Response by Altered Blood Markers. Vaccines 2023, 11, 1642. [Google Scholar] [CrossRef]
- Mundorf, A.K.; Semmler, A.; Heidecke, H.; Schott, M.; Steffen, F.; Bittner, S.; Lackner, K.J.; Schulze-Bosse, K.; Pawlitzki, M.; Meuth, S.G.; et al. Clinical and Diagnostic Features of Post-Acute COVID-19 Vaccination Syndrome (PACVS). Vaccines 2024, 12, 790. [Google Scholar] [CrossRef]
- Finsterer, J. Myocarditis, Coagulopathy, and Small Fibre, Sensory, and Multiple Cranial Nerve Neuropathy Complicating BNT162b2 Vaccination: A Case Report. Cureus 2024, 16, e55205. [Google Scholar] [CrossRef]
- Dahan, S.; Tomljenovic, L.; Shoenfeld, Y. Postural Orthostatic Tachycardia Syndrome (POTS)--A novel member of the autoimmune family. Lupus 2016, 25, 339–342. [Google Scholar] [CrossRef]
- Bellucci, M.; Bozzano, F.M.; Castellano, C.; Pesce, G.; Beronio, A.; Farshchi, A.H.; Limongelli, A.; Uccelli, A.; Benedetti, L.; De Maria, A. Post-SARS-CoV-2 infection and post-vaccine-related neurological complications share clinical features and the same positivity to anti-ACE2 antibodies. Front. Immunol. 2024, 15, 1398028. [Google Scholar] [CrossRef] [PubMed]
- Hotz, J.F.; Kellerberger, S.; Elea Jochlinger, S.; Danielova, I.; Temizsoy, H.; Otsch, S.; Goller, J.; Yacob, M.; Zifko, U.; Tsch, S. Exploring cognitive impairments and the efficacy of phosphatidylcholine and computer-assisted cognitive training in post-acute COVID-19 and post-acute COVID-19 Vaccination Syndrome. Front. Neurol. 2024, 15, 1419134. [Google Scholar] [CrossRef]
- David, P.; Dotan, A.; Mahroum, N.; Shoenfeld, Y. Immune Thrombocytopenic Purpura (ITP) Triggered by COVID-19 Infection and Vaccination. Isr. Med. Assoc. J. 2021, 23, 378–380. [Google Scholar]
- Finsterer, J. Small fiber neuropathy as a complication of SARS-CoV-2 vaccinations. J. Fam. Med. Prim. Care 2022, 11, 4071–4073. [Google Scholar] [CrossRef] [PubMed]
- Mingot-Castellano, M.E.; Butta, N.; Canaro, M.; Gomez Del Castillo Solano, M.D.C.; Sanchez-Gonzalez, B.; Jimenez-Barcenas, R.; Pascual-Izquierdo, C.; Caballero-Navarro, G.; Ureña, L.E.; González-López, T.J.; et al. COVID-19 Vaccines and Autoimmune Hematologic Disorders. Vaccines 2022, 10, 961. [Google Scholar] [CrossRef]
- Bellavite, P.; Ferraresi, A.; Isidoro, C. Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines 2023, 11, 451. [Google Scholar] [CrossRef]
- Polykretis, P.; Donzelli, A.; Lindsay, J.C.; Wiseman, D.; Kyriakopoulos, A.M.; Morz, M.; Bellavite, P.; Fukushima, M.; Seneff, S.; McCullough, P.A. Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity 2023, 56, 2259123. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Takabatake, H.; Itakura, J.; Fujita, R.; Kayahara, T.; Morimoto, Y.; Notohara, K.; Mizuno, M. Corticosteroid-refractory autoimmune hepatitis after COVID-19 vaccination: A case report and literature review. Clin. J. Gastroenterol. 2023, 16, 554–558. [Google Scholar] [CrossRef]
- Fenoglio, R.; Lalloni, S.; Marchisio, M.; Oddone, V.; De Simone, E.; Del Vecchio, G.; Sciascia, S.; Roccatello, D. New Onset Biopsy-Proven Nephropathies after COVID Vaccination. Am. J. Nephrol. 2022, 53, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.W.; Jeon, J.J.; Kim, Y.H.; Choe, S.J.; Lee, S. Long-term risk of autoimmune diseases after mRNA-based SARS-CoV2 vaccination in a Korean, nationwide, population-based cohort study. Nat. Commun. 2024, 15, 6181. [Google Scholar] [CrossRef]
- Samim, M.M.; Dhar, D.; Goyal, S.; Dey, T.; Parvin, N.; Shah, R.D.; Singh, V.; Chowdhury, S.; Lal, B.M.; Varghese, N.; et al. AI-CoV Study: Autoimmune Encephalitis Associated With COVID-19 and Its Vaccines-A Systematic Review. J. Clin. Neurol. 2022, 18, 692–710. [Google Scholar] [CrossRef] [PubMed]
- Liang, I.; Swaminathan, S.; Lee, A.Y.S. Emergence of de novo cutaneous vasculitis post coronavirus disease (COVID-19) vaccination. Clin. Rheumatol. 2022, 41, 1611–1612. [Google Scholar] [CrossRef]
- Tang, X.; Liu, F.; Li, Q.; Fu, H.; Wang, J.; Mao, J. De Novo Vasculitis after COVID-19 Vaccination. Curr. Rheumatol. Rev. 2023, 19, 151–158. [Google Scholar] [PubMed]
- Camargo Coronel, A.; Jimenez Balderas, F.J.; Quinones Moya, H.; Hernandez Zavala, M.R.; Mandinabeitia Rodriguez, P.; Hernandez Vazquez, J.R.; Zarco, S.Z.; Castillo, S.D. Dermatomyositis post vaccine against SARS-COV2. BMC Rheumatol. 2022, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Ryad, R.; Osman, A.; Almusa, A.; Gerges, P.; Sumbul-Yuksel, B. Dermatomyositis Flare-Up Following the SARS-CoV-2 Vaccine: A Case Report and Literature Review. Cureus 2023, 15, e44324. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Menindez, M.; Sullivan, M.M.; Wang, B.; Majithia, V.; Abril, A.; Butendieck, R.R., Jr.; Ball, C.T.; Berianu, F. Dermatomyositis in Association With SARS-CoV-2 Infection or COVID-19 Vaccine. Arthritis Care Res. 2024, 76, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Angeli, F.; Reboldi, G.; Trapasso, M.; Zappa, M.; Spanevello, A.; Verdecchia, P. COVID-19, vaccines and deficiency of ACE2 and other angiotensinases. Closing the loop on the “Spike effect”. Eur. J. Intern. Med. 2022, 103, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Kowarz, E.; Krutzke, L.; Kulp, M.; Streb, P.; Larghero, P.; Reis, J.; Bracharz, S.; Engler, T.; Kochanek, S.; Marschalek, R.; et al. Vaccine-induced COVID-19 mimicry syndrome. eLife 2022, 11, e74974. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.M.; Shuai, Z.W.; Ye, D.Q.; Pan, H.F. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 2022, 165, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Trougakos, I.P.; Terpos, E.; Alexopoulos, H.; Politou, M.; Paraskevis, D.; Scorilas, A.; Kastritis, E.; Andreakos, E.; Dimopoulos, M.A. Adverse effects of COVID-19 mRNA vaccines: The spike hypothesis. Trends Mol. Med. 2022, 28, 542–554. [Google Scholar] [CrossRef]
- Devaux, C.A.; Camoin-Jau, L. Molecular Mimicry of the Viral Spike in the SARS-CoV-2 Vaccine Possibly Triggers Transient Dysregulation of ACE2, Leading to Vascular and Coagulation Dysfunction Similar to SARS-CoV-2 Infection. Viruses 2023, 15, 1045. [Google Scholar] [CrossRef] [PubMed]
- Parry, P.I.; Lefringhausen, A.; Turni, C.; Neil, C.J.; Cosford, R.; Hudson, N.J.; Gillespie, J. ‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines 2023, 11, 2287. [Google Scholar] [CrossRef]
- Kanduc, D.; Shoenfeld, Y. Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: Implications for the vaccine. Immunol. Res. 2020, 68, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Kanduc, D. From Anti-SARS-CoV-2 Immune Response to the Cytokine Storm via Molecular Mimicry. Antibodies 2021, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Lyons-Weiler, J. Pathogenic Priming Likely Contributes to Serious and Critical Illness and Mortality in COVID-19 via Autoimmunity. J. Transl. Autoimmun. 2020, 3, 100051. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, A.; Kharrazian, D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin. Immunol. 2020, 217, 108480. [Google Scholar] [CrossRef] [PubMed]
- Segalla, G. Chemical-physical criticality and toxicological potential of lipid nanomaterials contained in a COVID-19 mRNA vaccine. Int. J. Vaccine Theory Pract. Res. 2023, 3, 787–817. [Google Scholar] [CrossRef]
- Segalla, G. Apparent Cytotoxicity and Intrinsic Cytotoxicity of Lipid Nanomaterials Contained in a COVID-19 mRNA Vaccine. Int. J. Vaccine Theory Pract. Res. 2023, 3, 957–972. [Google Scholar] [CrossRef]
- Mantovani, M.; Grossi, R.; Di Fede, G.; Bellavite, P. Thrombosis With Thrombocytopenia and Post-COVID-Vaccination Syndrome With Anti-G-Protein-Coupled Receptor (GPCR) Antibodies Treated With Therapeutic Plasma Exchange. Cureus 2024, 16, e60019. [Google Scholar] [CrossRef]
- Riis, J.L.; Ahmadi, H.; Hamilton, K.R.; Hand, T.; Granger, D.A. Best practice recommendations for the measurement and interpretation of salivary proinflammatory cytokines in biobehavioral research. Brain Behav. Immun. 2021, 91, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Jeong, S.; Lee, S.K.; Cho, E.J.; Hyun, J.; Park, M.J.; Song, W.; Kim, H.S. Quantitative Analysis of Anti-N and Anti-S Antibody Titers of SARS-CoV-2 Infection after the Third Dose of COVID-19 Vaccination. Vaccines 2022, 10, 1143. [Google Scholar] [CrossRef]
- Geanes, E.S.; McLennan, R.; LeMaster, C.; Bradley, T. Autoantibodies to ACE2 and immune molecules are associated with COVID-19 disease severity. Commun. Med. 2024, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Marques, O.; Halpert, G.; Schimke, L.F.; Ostrinski, Y.; Vojdani, A.; Baiocchi, G.C.; Freire, P.P.; Filgueiras, I.S.; Zyskind, I.; Lattin, M.T.; et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat. Commun. 2022, 13, 1220. [Google Scholar] [CrossRef] [PubMed]
- Colton, T. Statistics in Medicine; Little, Brown and Company: Boston, MA, USA, 1974. [Google Scholar]
- Parums, D.V. Editorial: SARS-CoV-2 mRNA Vaccines and the Possible Mechanism of Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT). Med. Sci. Monit. 2021, 27, e932899. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.W.; Tsai, Z.Y.; Chao, T.H.; Li, Y.H.; Hou, C.J.; Liu, P.Y. Addressing Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT) Following COVID-19 Vaccination: A Mini-Review of Practical Strategies. Acta Cardiol. Sin. 2021, 37, 355–364. [Google Scholar]
- Franchini, M.; Liumbruno, G.M.; Pezzo, M. COVID-19 vaccine-associated immune thrombosis and thrombocytopenia (VITT): Diagnostic and therapeutic recommendations for a new syndrome. Eur. J. Haematol. 2021, 107, 173–180. [Google Scholar] [CrossRef]
- Patone, M.; Handunnetthi, L.; Saatci, D.; Pan, J.; Katikireddi, S.V.; Razvi, S.; Hunt, D.; Mei, X.W.; Dixon, S.; Zaccardi, F.; et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat. Med. 2021, 27, 2144–2153. [Google Scholar] [CrossRef]
- Doubrovinskaia, S.; Mooshage, C.M.; Seliger, C.; Lorenz, H.M.; Nagel, S.; Lehnert, P.; Purrucker, J.; Wildemann, B.; Bendszus, M.; Wick, W.; et al. Neurological autoimmune diseases following vaccinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A follow-up study. Eur. J. Neurol. 2023, 30, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Wu, E.; Mundae, M.; Lim, K. Myocarditis and pericarditis following mRNA vaccination in autoimmune inflammatory rheumatic disease patients: A single-center experience. Rheumatol. Autoimmun. 2022, 2, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.N.; Le, S.H.; Ivanov, D.G.; Ivetic, N.; Nazy, I.; Kaltashov, I.A. Structural Characterization of a Pathogenic Antibody Underlying Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT). Anal. Chem. 2024, 96, 6209–6217. [Google Scholar] [CrossRef] [PubMed]
- Kalin, T.; Passarin, K.; Filipowic-Sinnreich, M.; Semela, D.; Seifert, T.; Sallusto, F.; Vergani, D.; Cerny, A.; Mieli-Vergani, G.; Beretta-Piccoli, B.T.; et al. SARS-CoV-2 mRNA vaccines do not worsen autoimmunity in patients with autoimmune liver diseases. J. Autoimmun. 2024, 149, 103325. [Google Scholar] [CrossRef]
- WHO. Causality Assessment of an Adverse Event Following Immunization (AEFI): User Manual for the Revised WHO Classification, 2nd ed.; 2019 Update in Pharmacovigilance (PVG); World Health Organization, Ed.; World Health Organization: Geneva, Switzerland, 2021; p. 74.
- Suzuki, Y.J.; Gychka, S.G. SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human Host Cells: Implications for Possible Consequences of COVID-19 Vaccines. Vaccines 2021, 9, 36. [Google Scholar] [CrossRef]
- Canas, C.A.; Posso-Osorio, I.; Bedoya-Joaqui, V.; Lopez, H.E.; Tobon, G.J. An idiotypic network dysregulation could be related to the pathogenesis of vaccine-induced immune thrombotic thrombocytopenia (VITT) following vaccination with vaccines expressing Spike protein of SARS CoV2. Intern. Emerg. Med. 2022, 17, 1249–1250. [Google Scholar] [CrossRef] [PubMed]
- Geanes, E.S.; LeMaster, C.; Fraley, E.R.; Khanal, S.; McLennan, R.; Grundberg, E.; Selvarangan, R.; Bradley, T. Cross-reactive antibodies elicited to conserved epitopes on SARS-CoV-2 spike protein after infection and vaccination. Sci. Rep. 2022, 12, 6496. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Cui, H.; Liang, H.; Wang, X.; Yu, H.; Wang, J.; Wang, W.; Liu, D.; Zhang, Y.; Dong, E. SARS-CoV-2 spike protein acts as a beta-adrenergic receptor agonist: A potential mechanism for cardiac sequelae of long COVID. J. Intern. Med. 2024, 296, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.H.; Cheng, D.; Huang, S.W.; Chuang, Y.C.; Yeh, T.M.; Wang, J.R. Serological responses triggered by different SARS-CoV-2 vaccines against SARS-CoV-2 variants in Taiwan. Front. Immunol. 2022, 13, 1023943. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, C.; Kato, M.; Otsuka, A. Cutaneous manifestations of COVID-19 and COVID-19 vaccination. J. Dermatol. 2023, 50, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Bellavite, P. Renin-Angiotensin System, SARS-CoV-2 and Hypotheses about Adverse Effects Following Vaccination. EC Pharmacol. Toxicol. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Rodriguez-Perez, A.I.; Labandeira, C.M.; Pedrosa, M.A.; Valenzuela, R.; Suarez-Quintanilla, J.A.; Cortes-Ayaso, M.; Mayán-Conesa, P.; Labandeira-Garcia, J.L. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J. Autoimmun. 2021, 122, 102683. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, J.Y.H.; Cai, J.; Situ, J.; Lam, W.J.; Shun, E.H.K.; Leung, J.K.Y.; Chen, L.L.; Chan, B.P.C.; Yeung, M.L.; Li, X.; et al. Autoantibodies against angiotensin-converting enzyme 2 (ACE2) after COVID-19 infection or vaccination. J. Med. Virol. 2023, 95, e29313. [Google Scholar] [CrossRef] [PubMed]
- Lebedin, M.; Garcia, C.V.; Spatt, L.; Ratswohl, C.; Thibeault, C.; Ostendorf, L.; Alexander, T.; Paul, F.; Sander, L.E.; Kurth, F. Discriminating promiscuous from target-specific autoantibodies in COVID-19. Eur. J. Immunol. 2023, 53, e2250210. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Cheng, Y.W.; Chao, C.H.; Chang, Y.Y.; Chen, C.D.; Tsai, W.J.; Wang, S.; Lin, Y.S.; Chang, C.P.; Chuang, W.J. Antigenic Cross-Reactivity Between SARS-CoV-2 S1-RBD and Its Receptor ACE2. Front. Immunol. 2022, 13, 868724. [Google Scholar] [CrossRef]
- Naveed, A.; Naz, D.; Rahman, S.U. Idiotype/anti-idiotype antibodies: As a glorious savior in COVID-19 pandemics. Transl. Med. Commun. 2021, 6, 18. [Google Scholar] [CrossRef]
- Murphy, W.J.; Longo, D.L. A Possible Role for Anti-idiotype Antibodies in SARS-CoV-2 Infection and Vaccination. N. Engl. J. Med. 2022, 386, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Kurbel, S. Jerne’s “immune network theory”, of interacting anti-idiotypic antibodies applied to immune responses during COVID-19 infection and after COVID-19 vaccination. Bioessays 2023, 45, e2300071. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, M.; Marino, F. The spike hypothesis in vaccine-induced adverse effects: Questions and answers. Trends Mol. Med. 2022, 28, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Talotta, R. Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms 2023, 11, 1686. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Peng, K.; Song, L.; Luo, L.; Liang, P.; Liang, Y. Association between Genetic Polymorphisms in Methylenetetrahydrofolate Reductase and Risk of Autoimmune Diseases: A Systematic Review and Meta-Analysis. Dis. Markers 2022, 2022, 4568145. [Google Scholar] [CrossRef] [PubMed]
- Quintero, O.L.; Amador-Patarroyo, M.J.; Montoya-Ortiz, G.; Rojas-Villarraga, A.; Anaya, J.M. Autoimmune disease and gender: Plausible mechanisms for the female predominance of autoimmunity. J. Autoimmun. 2012, 38, J109–J119. [Google Scholar] [CrossRef]
- Lahita, R.G. Sex and gender influence on immunity and autoimmunity. Front. Immunol. 2023, 14, 1142723. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Jeong, M.; Park, J.; Jung, H.; Lee, H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp. Mol. Med. 2023, 55, 2085–2096. [Google Scholar] [CrossRef]
- Xie, C.; Yao, R.; Xia, X. The advances of adjuvants in mRNA vaccines. NPJ Vaccines 2023, 8, 162. [Google Scholar] [CrossRef] [PubMed]
- Camperi, J.; Lippold, S.; Ayalew, L.; Roper, B.; Shao, S.; Freund, E.; Nissenbaum, A.; Galan, C.; Cao, Q.; Yang, F.; et al. Comprehensive Impurity Profiling of mRNA: Evaluating Current Technologies and Advanced Analytical Techniques. Anal. Chem. 2024, 96, 3886–3897. [Google Scholar] [CrossRef] [PubMed]
- Konig, B.; Kirchner, J.O. Methodological Considerations Regarding the Quantification of DNA Impurities in the COVID-19 mRNA Vaccine Comirnaty((R)). Methods Protoc. 2024, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Manniche, V.; Schmeling, M.; Gilthorpe, J.D.; Hansen, P.R. Reports of Batch-Dependent Suspected Adverse Events of the BNT162b2 mRNA COVID-19 Vaccine: Comparison of Results from Denmark and Sweden. Medicina 2024, 60, 1343. [Google Scholar] [CrossRef] [PubMed]
- Boros, L.G.; Kyriakopoulos, A.M.; Brogna, C.; Piscopo, M.; McCullough, P.A.; Seneff, S. Long-lasting, biochemically modified mRNA, and its frameshifted recombinant spike proteins in human tissues and circulation after COVID-19 vaccination. Pharmacol. Res. Perspect. 2024, 12, e1218. [Google Scholar] [CrossRef] [PubMed]
- Jerne, N.K. Idiotypic networks and other preconceived ideas. Immunol. Rev. 1984, 79, 5–24. [Google Scholar] [CrossRef]
- Kzhyshkowska, J.; Gratchev, A.; Goerdt, S. Stabilin-1, a homeostatic scavenger receptor with multiple functions. J. Cell Mol. Med. 2006, 10, 635–649. [Google Scholar] [CrossRef]
- Takahashi, W.; Mizuno, T.; Hara, K.; Ara, Y.; Hurutani, R.; Agatsuma, T.; Fujimori, M. Association of Systemic Adverse Reactions and Serum SARS-CoV-2 Spike Protein Antibody Levels after Administration of BNT162b2 mRNA COVID-19 Vaccine. Intern. Med. 2022, 61, 3205–3210. [Google Scholar] [CrossRef]
- Takahashi, Y.; Haga, S.; Ishizaka, Y.; Mimori, A. Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases. Arthritis Res. Ther. 2010, 12, R85. [Google Scholar] [CrossRef]
- Khajeh Pour, S.; Scoville, C.; Tavernier, S.S.; Aghazadeh-Habashi, A. Plasma angiotensin peptides as biomarkers of rheumatoid arthritis are correlated with anti-ACE2 auto-antibodies level and disease intensity. Inflammopharmacology 2022, 30, 1295–1302. [Google Scholar] [CrossRef]
- Skultetyova, D.; Filipova, S.; Riecansky, I.; Skultety, J. The role of angiotensin type 1 receptor in inflammation and endothelial dysfunction. Recent. Pat. Cardiovasc. Drug Discov. 2007, 2, 23–27. [Google Scholar] [CrossRef]
- Yonker, L.M.; Swank, Z.; Bartsch, Y.C.; Burns, M.D.; Kane, A.; Boribong, B.P.; Davis, J.P.; Loiselle, M.; Novak, T.; Senussi, Y.; et al. Circulating Spike Protein Detected in Post-COVID-19 mRNA Vaccine Myocarditis. Circulation 2023, 147, 867–876. [Google Scholar] [CrossRef]
- Brogna, C.; Cristoni, S.; Marino, G.; Montano, L.; Viduto, V.; Fabrowski, M.; Lettieri, G.; Piscopo, M. Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. Proteom. Clin. Appl. 2023, 17, 2300048. [Google Scholar] [CrossRef] [PubMed]
Patient Code | Age | Gender | Doses and Brand of Vaccine * | Date of Last Vaccination | Onset of Symptoms (Days After Vaccine) | Onset of Symptoms (After Dose n.) | Interval (Months) ** | Anti-S (4.3 BAU) | Anti-N (1.1 BAU) | IL-1b (143 ng/mL) | IL-8 (110 ng/mL) | ANG1,7 (226 ng/mL) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 48 | M | 2 P | Jan-22 | 14 | 1 | 18 | 40,000 | 0.74 | 46.4 | 146.6 | nd |
2 | 49 | M | 1 P | Jan-22 | 90 | 1 | 16 | 32.62 | 0.12 | 323.1 | 81 | 239 |
3 | 44 | F | 1 P | Nov-21 | 14 | 1 | 19 | 27 | 1 | 234.7 | 152.6 | 210 |
4 | 45 | F | 3 P | Dec-21 | 1 | 2 | 19 | 1764 | 0.43 | 272.2 | 84 | 332.9 |
5 | 53 | M | 3 P | Feb-22 | 1 | 1 | 15 | 873 | 0.07 | 557.2 | 228.4 | nd |
6 | 37 | F | 3 P | Jan-22 | 15 | 3 | 14 | 446 | 0.67 | 364.8 | 66.8 | 229.4 |
7 | 40 | M | 2 P, 1 M | Dec-21 | 10 | 2 | 16 | 115 | 0.08 | 46.4 | 146.6 | 279.8 |
8 | 38 | F | 1 P | Jun-21 | 7 | 1 | 24 | 434 | 0.05 | 318.3 | 79.8 | 310.2 |
9 | 46 | F | 2 P | Dec-21 | 20 | 1 | 20 | 8.24 | 0.92 | 158.9 | 49 | 217.4 |
10 | 37 | F | 1 AZ | Dec-21 | 7 | 1 | 20 | 147 | 0.58 | 164 | 49 | 167 |
11 | 50 | F | 2 P | Dec-21 | 10 | 1 | 21 | 103 | 0.1 | 216.9 | 200 | 292.2 |
12 | 42 | F | 2 P, 1 M | Feb-22 | 7 | 1 | 18 | 220.2 | 0.09 | 51.6 | 1402 | 214.9 |
13 | 51 | F | 2 P, 1 M | Feb-22 | 10 | 2 | 21 | 297 | 0.03 | 1052 | 200 | 360.4 |
14 | 36 | F | 1 AZ | Lug-21 | 7 | 1 | 27 | 400 | 0.88 | 574.1 | 144.5 | 155.3 |
15 | 54 | F | 3 P | Jan-22 | 10 | 2 | 21 | 3732 | 0.34 | 364.4 | 283 | 374.3 |
16 | 41 | F | 1 P | Apr-21 | 1 | 1 | 32 | 758 | 0.94 | 30 | 303.2 | 365.7 |
17 | 38 | F | 1 P | Feb-22 | 10 | 1 | 22 | 1834 | 0.45 | 595.9 | 488 | 387.5 |
Mean | 44.1 | 13.8 | 1.4 | 20.2 | 3011.2 | 0.4 | 315.9 | 241.4 | 275.7 | |||
SD | 6.0 | 20.3 | 0.6 | 4.5 | 9579.7 | 0.4 | 263.7 | 319.5 | 77.2 | |||
Median | 44 | 10 | 1 | 20 | 400 | 0.43 | 272.2 | 146.6 | 279.8 | |||
Min | 36 | 1 | 1 | 14 | 8.24 | 0.03 | 30 | 49 | 155.3 | |||
Max | 54 | 90 | 3 | 32 | 40,000 | 1 | 1052 | 1402 | 387.5 |
Patient Code | Asthenia or Chronic Fatigue | Loss of Memory or Concentration, Mental Fog | Neuralgia, Paresthesia | Resting or Orthostatic Tachycardia | Osteoarticular and Muscular Pain | Widespread Burning Sensation | Hypertension | Recurrent Headache | Fainting or Dizziness | Gastritis or Enteritis and/or Dysbiosis | Dysmenorrhea or Amenorrhea | Skin Bruising | Skin Edema and/or Rashes | Thrombosis and/or Embolism | Fasciculations | Lowering of Vision | Lymphadenopathy or Tonsillitis | Tinnitus | Tumor |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | + | + | + | + | + | + | + | + | + | ||||||||||
2 | + | + | + | + | + | + | + | + | |||||||||||
3 | + | + | + | + | + | ||||||||||||||
4 | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
5 | + | + | + | + | + | ||||||||||||||
6 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
7 | + | + | + | + | + | + | + | + | + | + | |||||||||
8 | + | + | + | + | |||||||||||||||
9 | + | + | + | + | + | + | + | + | |||||||||||
10 | + | + | + | + | + | + | + | + | + | + | + | ||||||||
11 | + | + | + | + | + | ||||||||||||||
12 | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||
13 | + | + | + | + | + | ||||||||||||||
14 | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
15 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
16 | + | + | + | + | + | + | + | + | |||||||||||
17 | + | + | + | + | + | + | + | + | + | + | + | ||||||||
N with symptom | 16 | 15 | 14 | 13 | 12 | 12 | 10 | 10 | 8 | 8 | 5 | 6 | 5 | 4 | 5 | 4 | 4 | 2 | 2 |
% with symptom | 94.1 | 88.2 | 82.4 | 76.5 | 70.6 | 70.6 | 58.8 | 58.8 | 47.1 | 47.1 | 38.5 * | 35.3 | 29.4 | 23.5 | 29.4 | 23.5 | 23.5 | 11.8 | 11.8 |
Patient Code | ATR1 (17 U/mL) | ETAR (17 U/mL) | ADRA1A (11 U/mL) | ADRA2A (15 U/mL) | ADRB1 (15 U/mL) | ADRB2 (14 U/mL) | CHRM1 (9 U/mL) | CHRM2 (9 U/mL) | CHRM3 (10 U/mL) | CHRM4 (10.7 U/mL) | CHRM5 (14.2 U/mL) | ACE2 (9.8 U/mL) | MAS1 (25 U/mL) | PAR1 (4.2 U/mL) | CXCR3 (40 U/mL) | STAB1 (40 U/mL) | Total Positive | % Positive |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 55.7 | 56.1 | 53.4 | 10.7 | 70.8 | 83.8 | 7.0 | 6.4 | 69.3 | 61.8 | 12.2 | 36.0 | 52.3 | 3.1 | 11.3 | 24.0 | 9 | 56.3 |
2 | 3.8 | 6.7 | 6.5 | 7.4 | 3.7 | 4.2 | 2.3 | 6.0 | 5.8 | 7.4 | 7.9 | 21.0 | 30.9 | 4.0 | 7.1 | 11.6 | 2 | 12.5 |
3 | 4.2 | 6.5 | 7.5 | 5.7 | 5.3 | 5.0 | 2.2 | 3.6 | 4.0 | 6.6 | 6.9 | 4.7 | 28.7 | 3.1 | 9.7 | 16.5 | 1 | 6.3 |
4 | 7.4 | 8.7 | 11.2 | 15.0 | 10.9 | 9.8 | 7.5 | 9.9 | 8.8 | 11.8 | 13.4 | 31.5 | 48.8 | 3.5 | 17.8 | 95.1 | 6 | 37.5 |
5 | 13.6 | 14.8 | 19.7 | 6.7 | 27.9 | 34.5 | 2.1 | 5.7 | 27.6 | 25.9 | 7.2 | 9.7 | 53.1 | 7.2 | 13.1 | 17.2 | 7 | 43.8 |
6 | 12.6 | 6.7 | 7.1 | 10.1 | 9.7 | 9.0 | 5.1 | 7.0 | 4.5 | 5.9 | 11.1 | 19.3 | 38.4 | 10.3 | 9.2 | 11.6 | 3 | 18.8 |
7 | 9.3 | 9.9 | 8.9 | 10.3 | 12.0 | 12.7 | 4.1 | 4.7 | 8.9 | 9.6 | 6.6 | 7.5 | 54.1 | 10.8 | 15.4 | 11.6 | 2 | 12.5 |
8 | 7.0 | 8.2 | 10.6 | 8.6 | 11.0 | 11.6 | 3.8 | 6.0 | 7.5 | 9.5 | 9.0 | 8.2 | 48.0 | 4.7 | 21.5 | 15.6 | 2 | 12.5 |
9 | 8.7 | 15.6 | 6.4 | 15.1 | 21.1 | 18.2 | 8.2 | 8.3 | 15.2 | 15.4 | 15.8 | 6.8 | 47.0 | 3.2 | 20.1 | 17.0 | 7 | 43.8 |
10 | 14.9 | 28.9 | 15.2 | 15.3 | 30.0 | 38.1 | 5.4 | 9.5 | 21.1 | 27.9 | 15.9 | 24.7 | 65.7 | 3.8 | 83.6 | 33.4 | 12 | 75.0 |
11 | 13.0 | 15.8 | 22.8 | 26.6 | 26.1 | 27.2 | 9.8 | 36.2 | 19.4 | 35.1 | 19.6 | 32.3 | 11.0 | 55.8 | 128.7 | 125.9 | 13 | 81.3 |
12 | 9.8 | 10.1 | 9.4 | 12.1 | 14.0 | 15.8 | 3.8 | 6.0 | 8.9 | 14.5 | 11.3 | 20.3 | 42.2 | 1.5 | 13.5 | 24.8 | 4 | 25.0 |
13 | 13.1 | 15.1 | 12.5 | 18.4 | 26.1 | 29.1 | 6.6 | 11.6 | 12.7 | 13.8 | 13.5 | 8.4 | 51.5 | 5.6 | 15.4 | 22.2 | 9 | 56.3 |
14 | 17.3 | 21.3 | 18.8 | 17.3 | 32.7 | 46.2 | 10.2 | 13.9 | 19.0 | 19.7 | 10.1 | 17.4 | 75.3 | 3.8 | 15.4 | 32.6 | 12 | 75.0 |
15 | 7.6 | 7.8 | 11.5 | 11.0 | 9.7 | 6.1 | 4.0 | 4.6 | 4.3 | 10.5 | 7.1 | 36.4 | 38.2 | 2.2 | 8.1 | 10.5 | 3 | 18.8 |
16 | 11.5 | 12 | 11.2 | 12 | 19.2 | 33.2 | 9.4 | 11.8 | 12.6 | 18.5 | 12.6 | 35.7 | 51.8 | 6.4 | 42.3 | 45.7 | 12 | 75.0 |
17 | 8.1 | 10.4 | 6.4 | 10.9 | 12.1 | 11.7 | 3.8 | 10.2 | 7.1 | 8.7 | 24.7 | 15.6 | 44.6 | 5.6 | 10.0 | 12.1 | 5 | 31.3 |
Total positive | 2 | 3 | 9 | 5 | 8 | 9 | 3 | 7 | 8 | 10 | 4 | 11 | 16 | 8 | 3 | 3 | ||
% positive | 11.8 | 17.6 | 52.9 | 29.4 | 47.1 | 52.9 | 17.6 | 41.2 | 47.1 | 58.8 | 23.5 | 64.7 | 94.1 | 47.1 | 17.6 | 17.6 |
ATR1 | ETAR | ADRA1A | ADRA2A | ADRB1 | ADRB2 | CHRM1 | CHRM2 | CHRM3 | CHRM4 | CHRM5 | ACE2 | MAS1 | PAR1 | CXCR3 | STAB1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ATR1 | 1.000 | |||||||||||||||
ETAR | 0.819 | 1.000 | ||||||||||||||
ADRA1A | 0.708 | 0.620 | 1.000 | |||||||||||||
ADRA2A | 0.449 | 0.645 | 0.360 | 1.000 | ||||||||||||
ADRB1 | 0.890 | 0.968 | 0.689 | 0.536 | 1.000 | |||||||||||
ADRB2 | 0.897 | 0.936 | 0.683 | 0.485 | 0.982 | 1.000 | ||||||||||
CHRM1 | 0.474 | 0.602 | 0.363 | 0.791 | 0.501 | 0.514 | 1.000 | |||||||||
CHRM2 | 0.445 | 0.589 | 0.261 | 0.767 | 0.504 | 0.494 | 0.778 | 1.000 | ||||||||
CHRM3 | 0.818 | 0.928 | 0.691 | 0.460 | 0.943 | 0.931 | 0.463 | 0.432 | 1.000 | |||||||
CHRM4 | 0.757 | 0.900 | 0.789 | 0.556 | 0.892 | 0.880 | 0.538 | 0.430 | 0.927 | 1.000 | ||||||
CHRM5 | 0.304 | 0.575 | 0.074 | 0.689 | 0.442 | 0.380 | 0.521 | 0.794 | 0.392 | 0.397 | 1.000 | |||||
ACE2 | 0.248 | 0.211 | 0.485 | 0.287 | 0.139 | 0.167 | 0.349 | 0.270 | 0.163 | 0.409 | 0.238 | 1.000 | ||||
MAS1 | 0.608 | 0.584 | 0.409 | 0.191 | 0.656 | 0.728 | 0.288 | 0.199 | 0.624 | 0.483 | 0.010 | −0.059 | 1.000 | |||
PAR1 | 0.198 | 0.052 | 0.049 | −0.011 | 0.076 | 0.109 | 0.115 | 0.336 | 0.156 | −0.030 | 0.108 | −0.144 | 0.111 | 1.000 | ||
CXCR3 | 0.300 | 0.561 | 0.341 | 0.612 | 0.507 | 0.523 | 0.601 | 0.569 | 0.561 | 0.570 | 0.511 | 0.012 | 0.366 | 0.272 | 1.000 | |
STAB1 | 0.474 | 0.625 | 0.571 | 0.634 | 0.604 | 0.617 | 0.611 | 0.668 | 0.633 | 0.722 | 0.563 | 0.329 | 0.285 | 0.003 | 0.722 | 1.000 |
Symptoms Presence | Antibody Positivity | Antibody in Serum (U/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|
Antibody | Type of Symptom Yes/No | N | - | + (%) | p * | Median | Interquartile Range | p ** | |
ATR1 | Lymphadenopathy or tonsillitis | No | 13 | 13 | 0 | 0.007 | 9.8 | 8.1–13.0 | 0.784 |
Yes | 4 | 2 | 2 (50) | 12.5 | 5.7–36.5 | ||||
PAR1 | Lymphadenopathy or tonsillitis | No | 13 | 5 | 8 (61.5) | 0.031 | 5.6 | 3.5–7.2 | 0.13 |
Yes | 4 | 4 | 0 (100) | 3.5 | 2.7–3.9 | ||||
ADRA2A | Loss of memory or mental fog | No | 2 | 0 | 2 (100) | 0.074 | 22.5 | 18.4–26.6 | 0.015 |
Yes | 15 | 12 | 3 (20) | 10.9 | 8.6–15.0 | ||||
ACE2 | Skin bruising | No | 11 | 6 | 5 (45.4) | 0.043 | 9.7 | 7.5–35.7 | 0.301 |
Yes | 6 | 0 | 6 (100) | 20.7 | 19.3–31.5 | ||||
ACE2 | Skin edema or rashes | No | 12 | 6 | 6 (50) | 0.102 | 12.7 | 7.9–20.7 | 0.014 |
Yes | 5 | 0 | 5 (100) | 32.3 | 31.5–35.7 | ||||
ACE2 | Bruising or skin edema or rashes | No | 9 | 6 | 3 (33.3) | 0.009 | 8.4 | 7.5–15.6 | 0.015 |
Yes | 8 | 0 | 8 (100) | 26.3 | 19.8–34.0 | ||||
MAS1 | Burning sensation | No | 5 | 1 | 4 (80) | 0.294 | 30.9 | 28.7–44.6 | 0.009 |
Yes | 12 | 0 | 12 (100) | 51.6 | 45.1–53.6 | ||||
STAB1 | Skin edema or rashes | No | 12 | 12 | 0 | 0.015 | 17.1 | 13.9–24.4 | 0.501 |
Yes | 5 | 2 | 3 (60) | 45.7 | 11.6–95.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantovani, M.; Bellavite, P.; Fazio, S.; Di Fede, G.; Tomasi, M.; Belli, D.; Zanolin, E. Autoantibodies Targeting G-Protein-Coupled Receptors and RAS-Related Molecules in Post-Acute COVID Vaccination Syndrome: A Retrospective Case Series Study. Biomedicines 2024, 12, 2852. https://doi.org/10.3390/biomedicines12122852
Mantovani M, Bellavite P, Fazio S, Di Fede G, Tomasi M, Belli D, Zanolin E. Autoantibodies Targeting G-Protein-Coupled Receptors and RAS-Related Molecules in Post-Acute COVID Vaccination Syndrome: A Retrospective Case Series Study. Biomedicines. 2024; 12(12):2852. https://doi.org/10.3390/biomedicines12122852
Chicago/Turabian StyleMantovani, Mauro, Paolo Bellavite, Serafino Fazio, Giuseppe Di Fede, Marco Tomasi, Daniele Belli, and Elisabetta Zanolin. 2024. "Autoantibodies Targeting G-Protein-Coupled Receptors and RAS-Related Molecules in Post-Acute COVID Vaccination Syndrome: A Retrospective Case Series Study" Biomedicines 12, no. 12: 2852. https://doi.org/10.3390/biomedicines12122852
APA StyleMantovani, M., Bellavite, P., Fazio, S., Di Fede, G., Tomasi, M., Belli, D., & Zanolin, E. (2024). Autoantibodies Targeting G-Protein-Coupled Receptors and RAS-Related Molecules in Post-Acute COVID Vaccination Syndrome: A Retrospective Case Series Study. Biomedicines, 12(12), 2852. https://doi.org/10.3390/biomedicines12122852