Deep Multiple Instance Learning Model to Predict Outcome of Pancreatic Cancer Following Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. HES Staining and Numerization
2.3. Tile Pre-Processing
2.4. Statistical Analysis
2.4.1. Software
2.4.2. Deep Learning Survival Model
2.4.3. Survival Analysis
2.4.4. TCGA RNAseq Analysis
2.4.5. TCGA Exome Analysis
3. Results
3.1. Dataset Description
3.2. Estimation of the Attention-Guided Multiple Instance Learning Model
3.3. Generation of a Composite Clinical and Image-Based Prognostic Score
3.4. Interpretability of the Deep Learning Image Model
3.5. Description of Molecular Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Bray, F. Cancer Incidence in Five Continents, Ci5plus: IARC CancerBase No. 9. International Agency for Research on Cancer [Internet]. Available online: https://ci5.iarc.who.int (accessed on 7 February 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cancer Statistics Review, 1975–2018—SEER Statistics. Available online: https://seer.cancer.gov/archive/csr/1975_2018/ (accessed on 12 June 2023).
- Wang, H.; Liu, J.; Xia, G.; Lei, S.; Huang, X.; Huang, X. Survival of pancreatic cancer patients is negatively correlated with age at diagnosis: A population-based retrospective study. Sci. Rep. 2020, 10, 7048. [Google Scholar] [CrossRef]
- Dotan, E.; Catalano, P.; Lenchik, L.; Boutin, R.; Yao, X.; Marques, H.S.; Ioffe, D.; Zhen, D.B.; Li, D.; Wagner, L.I.; et al. The GIANT trial (ECOG-ACRIN EA2186) methods paper: A randomized phase II study of gemcitabine and nab-paclitaxel compared with 5-fluorouracil, leucovorin, and liposomal irinotecan in older patients with treatment-naïve metastatic pancreatic cancer—Defining a new treatment option for older vulnerable patients. J. Geriatr. Oncol. 2023, 14, 101474. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Kleeff, J.; Michl, P.; Costello, E.; Greenhalf, W.; Palmer, D.H. Therapeutic developments in pancreatic cancer: Current and future perspectives. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 333–348. [Google Scholar] [CrossRef]
- Hackert, T. Surgery for Pancreatic Cancer after neoadjuvant treatment. Ann. Gastroenterol. Surg. 2018, 2, 413–418. [Google Scholar] [CrossRef]
- Patterns, Timing, and Predictors of Recurrence Following Pancreatectomy for Pancreatic Ductal Adenocarcinoma—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/28338509/ (accessed on 12 June 2023).
- Neoptolemos, J.P.; Stocken, D.D.; Bassi, C.; Ghaneh, P.; Cunningham, D.; Goldstein, D.; Padbury, R.; Moore, M.J.; Gallinger, S.; Mariette, C.; et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: A randomized controlled trial. JAMA 2010, 304, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Sinn, M.; Bahra, M.; Liersch, T.; Gellert, K.; Messmann, H.; Bechstein, W.; Waldschmidt, D.; Jacobasch, L.; Wilhelm, M.; Rau, B.M.; et al. CONKO-005: Adjuvant Chemotherapy With Gemcitabine Plus Erlotinib Versus Gemcitabine Alone in Patients After R0 Resection of Pancreatic Cancer: A Multicenter Randomized Phase III Trial. J. Clin. Oncol. 2017, 35, 3330–3337. [Google Scholar] [CrossRef] [PubMed]
- Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA 2007, 297, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.-L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Zhang, T.; Ren, Y.; Yang, P.; Wang, J.; Zhou, H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death Dis. 2022, 13, 897. [Google Scholar] [CrossRef]
- Tan, H.N.C.; Catedral, L.I.G.; San Juan, M.D. Prognostic Significance of Tumor-infiltrating Lymphocytes on Survival Outcomes of Patients With Resected Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-Analysis. J. Immunother. 2021, 44, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.-M.; Gingras, M.-C.; Miller, D.K.; Christ, A.N.; Bruxner, T.J.C.; Quinn, M.C.; et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016, 531, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Fraunhoffer, N.; Hammel, P.; Conroy, T.; Nicolle, R.; Bachet, J.-B.; Harlé, A.; Rebours, V.; Turpin, A.; Ben Abdelghani, M.; Mitry, E.; et al. Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma. Ann. Oncol. 2024, 35, 780–791. [Google Scholar] [CrossRef]
- Echle, A.; Rindtorff, N.T.; Brinker, T.J.; Luedde, T.; Pearson, A.T.; Kather, J.N. Deep Learning in Cancer Pathology: A New Generation of Clinical Biomarkers. Br. J. Cancer 2021, 124, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zhu, X.; Jonnagaddala, J.; Hawkins, N.; Huang, J. Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 2020, 65, 101789. [Google Scholar] [CrossRef]
- Vienot, A.; Monnien, F.; Truntzer, C.; Mougey, V.; Bouard, A.; Pallandre, J.-R.; Molimard, C.; Loyon, R.; Asgarov, K.; Averous, G.; et al. SALL4-related gene signature defines a specific stromal subset of pancreatic ductal adenocarcinoma with poor prognostic features. Mol. Oncol. 2023, 17, 1356. [Google Scholar] [CrossRef]
- Knijnenburg, T.A.; Wang, L.; Zimmermann, M.T.; Chambwe, N.; Gao, G.F.; Cherniack, A.D.; Fan, H.; Shen, H.; Way, G.P.; Greene, C.S.; et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018, 23, 239–254.e6. [Google Scholar] [CrossRef]
- Macenko, M.; Niethammer, M.; Marron, J.S.; Borland, D.; Woosley, J.T.; Guan, X.; Schmitt, C.; Thomas, N.E. A Method for Normalizing Histology Slides for Quantitative Analysis. In Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 28 June–1 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1107–1110. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556v6. [Google Scholar]
- Hothorn, T.; Lausen, B. On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 2003, 43, 121–137. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; et al. TCGAbiolinks: An R/Bioconductor Package for Integrative Analysis of TCGA Data. Nucleic Acids Res. 2016, 44, e71. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.N.; Sergushichev, A. Fast gene set enrichment analysis. bioRxiv, 2021; preprint. [Google Scholar] [CrossRef]
- Covington, K.R.; Shinbrot, E.; Wheeler, D.A. Mutation signatures reveal biological processes in human cancer. bioRxiv, 2016; preprint. [Google Scholar] [CrossRef]
- Dreyer, S.B.; Rae, S.; Bisset, K.; Upstill-Goddard, R.; Gemenetzis, G.; Johns, A.L.; Dickson, E.J.; Mittal, A.; Gill, A.J.; Duthie, F.; et al. The Impact of Molecular Subtyping on Pathological Staging of Pancreatic Cancer. Ann. Surg. 2023, 277, e396–e405. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Ruan, B.; Zhong, M.; Xiong, J.; Jiang, Y.; Song, Z. Silencing LINC00491 Inhibits Pancreatic Cancer Progression through MiR-188-5p-induced Inhibition of ZFP91. J. Cancer 2022, 13, 1808–1819. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, M.; Liu, Z.; Zhang, M.; Yuan, H.; Dan, Z.; Wang, D.; Ma, B.; Yang, Y.; Yang, F.; et al. Comprehensive analysis of alfa defensin expression and prognosis in human colorectal cancer. Front. Oncol. 2023, 12, 974654. [Google Scholar] [CrossRef]
- Patel, H.; Zanos, T.; Hewitt, D.B. Deep Learning Applications in Pancreatic Cancer. Cancers 2024, 16, 436. [Google Scholar] [CrossRef]
- Watson, M.D.; Baimas-George, M.R.; Murphy, K.J.; Pickens, R.C.; Iannitti, D.A.; Martinie, J.B.; Baker, E.H.; Vrochides, D.; Ocuin, L.M. Pure and Hybrid Deep Learning Models can Predict Pathologic Tumor Response to Neoadjuvant Therapy in Pancreatic Adenocarcinoma: A Pilot Study. Am. Surg. 2021, 87, 1901–1909. [Google Scholar] [CrossRef] [PubMed]
- Vezakis, I.; Vezakis, A.; Gourtsoyianni, S.; Koutoulidis, V.; Polydorou, A.A.; Matsopoulos, G.K.; Koutsouris, D.D. An Automated Prognostic Model for Pancreatic Ductal Adenocarcinoma. Genes 2023, 14, 1742. [Google Scholar] [CrossRef]
- Malcolm, J.A.; Tacey, M.; Gibbs, P.; Lee, B.; Ko, H.S. Current state of radiomic research in pancreatic cancer: Focusing on study design and reproducibility of findings. Eur. Radiol. 2023, 33, 6659–6669. [Google Scholar] [CrossRef]
- Yao, J.; Cao, K.; Hou, Y.; Zhou, J.; Xia, Y.; Nogues, I.; Song, Q.; Jiang, H.; Ye, X.; Lu, J.; et al. Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer: A Retrospective Multicenter Study. Ann. Surg. 2023, 278, e68. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Wismans, L.V.; Mustafa, D.A.M.; Reinders, M.J.T.; van Eijck, C.H.J.; Stubbs, A.P.; Li, Y. Robust deep learning model for prognostic stratification of pancreatic ductal adenocarcinoma patients. iScience 2021, 24, 103415. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Liu, X.; Hamilton, R.B.; Suriawinata, A.A.; Hassanpour, S. Graph Convolutional Neural Networks for Histologic Classification of Pancreatic Cancer. Arch. Pathol. Lab. Med. 2023, 147, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, K.; Yan, L.; Yao, H.; Shi, H.; Lin, R. Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database. Cancer Med. 2023, 12, 12413–12424. [Google Scholar] [CrossRef] [PubMed]
- Saillard, C.; Delecourt, F.; Schmauch, B.; Moindrot, O.; Svrcek, M.; Bardier-Dupas, A.; Emile, J.F.; Ayadi, M.; Rebours, V.; de Mestier, L.; et al. Pacpaint: A histology-based deep learning model uncovers the extensive intratumor molecular heterogeneity of pancreatic adenocarcinoma. Nat. Commun. 2023, 14, 3459. [Google Scholar] [CrossRef]
- Chen, R.J.; Lu, M.Y.; Williamson, D.F.K.; Chen, T.Y.; Lipkova, J.; Noor, Z.; Shaban, M.; Shady, M.; Williams, M.; Joo, B.; et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell 2022, 40, 865–878.e6. [Google Scholar] [CrossRef]
- Nimgaonkar, V.; Krishna, V.; Krishna, V.; Tiu, E.; Joshi, A.; Vrabac, D.; Bhambhvani, H.; Smith, K.; Johansen, J.S.; Makawita, S.; et al. Development of an artificial intelligence-derived histologic signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer. Cell Rep. Med. 2023, 4, 101013. [Google Scholar] [CrossRef]
Variables | Besançon Cohort, N = 206 1 | TCGA Cohort, N = 166 1 | p-Value 2 |
---|---|---|---|
Sex | data | 0.43 | |
F | 103 (50%) | 74 (45%) | |
M | 101 (50%) | 92 (55%) | |
Unknown | 1 | - | |
Age | 67 (40, 86) | 66 (36; 89) | |
Unknown | 1 | - | |
Neoadjuvant treatment | - | ||
No | 194 (95%) | 165 (99%) | 0.03 |
Yes | 10 (5%) | 1 (1%) | |
Unknown | 1 | - | |
Adjuvant treatment | <1.10−3 | ||
No | 46 (24%) | 51 (44%) | |
Yes | 146 (76%) | 66 (56%) | |
Unknown | 13 | 49 | |
Resection | 0.003 | ||
0 | 161 (80%) | 99 (65%) | |
1 | 37 (18%) | 49 (32%) | |
2 | 2 (2%) | 5 (3%) | |
Unknown | 5 | 13 | |
Histological grade | 0.003 | ||
1 | 42 (21%) | 23 (14%) | |
2 | 125 (61%) | 90 (55%) | |
3 | 32 (16%) | 50 (30.5%) | |
4 | 5 (2%) | 1 (0.5)% | |
Unknown | 1 | 2 | |
Tumor status | <1.10−3 | ||
1 | 24 (14%) | 6 (4%) | |
2 | 110 (64%) | 23 (11%) | |
3 | 39 (23%) | 137 (83%) | |
4 | 0 (0%) | 4 (2%) | |
Node status | <1.10−3 | ||
0 | 49 (24%) | 45 (27.5%) | |
1 | 83 (41%) | 115 (72.5%) | |
2 | 72 (35%) | 0 | |
Unknown | 1 | 2 |
Univariate | Multivariate | ||||||
---|---|---|---|---|---|---|---|
Variables | N | HR 1 | 95% CI 1 | p-Value | HR 1 | 95% CI 1 | p-Value |
Histological grade | 370 | ||||||
1 | — | — | — | — | |||
2 | 1.16 | 0.85, 1.60 | 0.35 | 1.37 | 0.98, 1.91 | 0.063 | |
3 | 1.87 | 1.29, 2.70 | <0.001 | 2.22 | 1.50, 3.30 | <0.001 | |
4 | 1.33 | 0.51, 3.43 | 0.56 | 1.78 | 0.61, 5.21 | 0.29 | |
Age | 372 | 1.01 | 1.00, 1.02 | 0.25 | |||
Sex | 372 | ||||||
F | — | — | |||||
M | 0.86 | 0.69, 1.09 | 0.21 | ||||
Tumor size status | 343 | ||||||
1 | — | — | |||||
2 | 1.26 | 0.80, 1.97 | 0.32 | ||||
3 | 1.07 | 0.69, 1.67 | 0.77 | ||||
Node status | 370 | ||||||
0 | — | — | — | — | |||
1 | 1.34 | 1.00, 1.79 | 0.053 | 1.25 | 0.92, 1.70 | 0.15 | |
2 | 2.03 | 1.45, 2.83 | <0.001 | 2.05 | 1.44, 2.91 | <0.001 | |
Resection | 356 | ||||||
0 | — | — | |||||
1 | 1.56 | 1.20, 2.03 | 0.001 | 1.52 | 1.16, 2.00 | 0.002 | |
2 | 3.16 | 1.48, 6.75 | 0.003 | 2.52 | 1.17, 5.43 | 0.018 | |
Adj. treatment | 371 | ||||||
0 | — | — | |||||
1 | 0.82 | 0.64, 1.04 | 0.10 |
Univariate | Multivariate | ||||||
---|---|---|---|---|---|---|---|
Variables | N | HR 1 | 95% CI 1 | p-Value | HR 1 | 95% CI 1 | p-Value |
Histological grade | 370 | ||||||
1 | — | — | — | — | |||
2 | 1.16 | 0.85, 1.60 | 0.35 | 1.37 | 0.98, 1.91 | 0.065 | |
3 | 1.87 | 1.29, 2.70 | <0.001 | 2.28 | 1.54, 3.38 | <0.001 | |
4 | 1.33 | 0.51, 3.43 | 0.56 | 1.55 | 0.53, 4.55 | 0.42 | |
Resection | 356 | ||||||
0 | — | — | — | — | |||
1 | 1.56 | 1.20, 2.03 | 0.001 | 1.51 | 1.15, 1.97 | 0.003 | |
2 | 3.16 | 1.48, 6.75 | 0.003 | 2.60 | 1.21, 5.59 | 0.015 | |
Node status | 370 | ||||||
0 | — | — | — | — | |||
1 | 1.34 | 1.00, 1.79 | 0.053 | 1.23 | 0.91, 1.68 | 0.18 | |
2 | 2.03 | 1.45, 2.83 | <0.001 | 1.95 | 1.37, 2.77 | <0.001 | |
IBP score | 372 | ||||||
Low | — | — | — | — | |||
High | 0.67 | 0.53, 0.85 | <0.001 | 0.71 | 0.55, 0.90 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truntzer, C.; Ouahbi, D.; Huppé, T.; Rageot, D.; Ilie, A.; Molimard, C.; Beltjens, F.; Bergeron, A.; Vienot, A.; Borg, C.; et al. Deep Multiple Instance Learning Model to Predict Outcome of Pancreatic Cancer Following Surgery. Biomedicines 2024, 12, 2754. https://doi.org/10.3390/biomedicines12122754
Truntzer C, Ouahbi D, Huppé T, Rageot D, Ilie A, Molimard C, Beltjens F, Bergeron A, Vienot A, Borg C, et al. Deep Multiple Instance Learning Model to Predict Outcome of Pancreatic Cancer Following Surgery. Biomedicines. 2024; 12(12):2754. https://doi.org/10.3390/biomedicines12122754
Chicago/Turabian StyleTruntzer, Caroline, Dina Ouahbi, Titouan Huppé, David Rageot, Alis Ilie, Chloe Molimard, Françoise Beltjens, Anthony Bergeron, Angelique Vienot, Christophe Borg, and et al. 2024. "Deep Multiple Instance Learning Model to Predict Outcome of Pancreatic Cancer Following Surgery" Biomedicines 12, no. 12: 2754. https://doi.org/10.3390/biomedicines12122754
APA StyleTruntzer, C., Ouahbi, D., Huppé, T., Rageot, D., Ilie, A., Molimard, C., Beltjens, F., Bergeron, A., Vienot, A., Borg, C., Monnien, F., Bibeau, F., Derangère, V., & Ghiringhelli, F. (2024). Deep Multiple Instance Learning Model to Predict Outcome of Pancreatic Cancer Following Surgery. Biomedicines, 12(12), 2754. https://doi.org/10.3390/biomedicines12122754