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Abstract: Background: Tumor cells are commonly exposed to a hypoxic environment, which can
easily induce the epithelial–mesenchymal transition (EMT) of tumor cells, further affecting tumor
proliferation, invasion, metastasis, and drug resistance. However, the predictive role of hypoxia and
EMT-related genes in glioblastoma (GBM) has not been investigated. Methods: Intersection genes
were identified by weighted correlation network analysis (WGCNA) and differential expression
analyses, and a risk model was further constructed by LASSO and Cox analyses. Clinical, immune
infiltration, tumor mutation, drug treatment, and enrichment profiles were analyzed based on the
risk model. The expression level of the MDK gene was tested using RT-PCR, immunohistochemistry,
and immunofluorescence. CCK8 and EdU were employed to determine the GBM cells’ capacity for
proliferation while the migration and invasion ability were detected by a wound healing assay and
transwell assay, respectively. Results: Based on the GBM data of the TCGA and GTEx databases,
58 intersection genes were identified, and a risk model was constructed. The model was verified in
the CGGA cohort, and its accuracy was confirmed by the ROC curve (AUC = 0.807). After combining
clinical subgroups, univariate and multivariate Cox regression analyses showed that risk score
and age were independent risk factors for GBM patients. Furthermore, our subsequent analysis
of immune infiltration, tumor mutation, and drug treatment showed that risk score and high- and
low-risk groups were associated with multiple immune cells, mutated genes, and drugs. Enrichment
analysis indicated that the differences between high- and low-risk groups were manifested in tumor-
related pathways, including the PI3K-AKT and JAK-STAT pathways. Finally, in vivo experiments
proved that the hypoxia environment promoted the expression of MDK, and MDK knockdown
reduced the proliferation, migration, and EMT of GBM cells induced by hypoxia. Conclusions: Our
novel prognostic correlation model provided more potential treatment strategies for GBM patients.

Keywords: glioblastoma; risk model; EMT; hypoxia; immune; drug treatment

1. Introduction

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults,
with 3.2 cases per 100,000 people in the United States [1]. The total incidence of GBM has
been growing year after year and will continue to rise as the population ages [2]. GBM, as
an advanced glioma, has high invasiveness, a poor clinical prognosis, frequent recurrence,
and a high mortality rate [3]. Patients with GBM, which accounts for 60% of gliomas, have
a 5-year survival rate of only 4.7% [1]. Current treatment for GBM consists of maximal
removal of the tumor followed by radiation and chemotherapy [4]. Despite recent progress
in treatment strategies, GBM is prone to recurrence and has a near 100% fatality rate [5].
Therefore, a new diagnostic and therapeutic technique for GBM is urgently needed.

Hypoxia is an almost universal sign of malignant tumor growth, and tumor cells have
a strong capacity to adapt in the face of the harsh environment of hypoxia. Studies have
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shown that the epithelial–mesenchymal transition (EMT) [6] of tumor cells can be induced
by activating the hypoxia-inducible factors (HIFs) signaling pathway [7,8] in the face of
hypoxia stress and further enhance the migration and invasive capacity of tumor cells and
their adaptation to their surroundings. For example, melanoma, a highly advanced skin
tumor, survives in the hypoxic environment and performs EMT by activating HIF-1α and
blocking important immune system signaling pathways [9]. The accumulation of AKT in
mitochondria can induce the phosphorylation of PDK1 at specific sites, reduce tumor cell
death, maintain tumor cell proliferation, and induce EMT in the hypoxic environment [10].
The tumor environment is complex and variable, and the underlying mechanism of hypoxia-
induced EMT in GBM patients has not been fully resolved. Targeted studies on GBM
patients based on the characteristics of hypoxia-induced EMT are more comprehensive and
feasible compared with separate studies on hypoxia or EMT in tumors.

Bioinformatics investigations of genome-wide RNA expression have revealed bio-
logical pathways that govern cell function and disease development at the molecular
level [11,12], allowing for more accurate and personalized molecularly targeted therapeu-
tics [13]. In this study, we used weighted gene co-expression network (WGCNA) and
differential expression genes (DEGs) analyses to process the expression data of GBM in
The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases.
Then, based on least absolute shrinkage and selection operator (LASSO) and Cox analyses,
we established a risk model consisting of the MDK and STC1 genes, and we subjected
this model to the analyses of clinical, immune, mutation, drug treatment, and functional
enrichment. Finally, we selected MDK for further in vitro experiments. Our results suggest
that the development of a differential expression risk score based on two genes (STC1
and MDK) has potential value in predicting the prognosis and guiding the treatment of
GBM patients.

2. Materials and Methods
2.1. Data Gathering

In this study, three public cohorts were gathered. Among them, the TCGA database
(https://portal.gdc.cancer.gov/ (accessed on 10 October 2022), mRNA expression data
and clinical details of GBM patients) [14] and GTEx database (https://www.gtexportal.
org/home/index.html (accessed on 10 October 2022), mRNA information for normal brain
tissues) [15] were used to establish a risk model for prognosis evaluation of GBM patients.
The Chinese Glioma Genome Atlas (CGGA) database (http://www.cgga.org.cn (accessed
on 10 October 2022), mRNA expression data and clinical details of GBM patients) [16,17]
was used to further validate the risk model. Clinical information for all GBM patients is
shown in Supplementary Table S1. In order to minimize any potential batch effects within
or between the three cohorts, the “normalizeBetweenArrays” of the “limma” packages
was used [18]. Moreover, we downloaded 863 hypoxia-related genes, 1253 EMT-related
genes, and the c2.cp.kegg.v7.5.1.symbols dataset from the Molecular Signatures Database
(MsigDB) (http://www.gsea-msigdb.org/gsea/downloads.jsp (accessed on 10 October
2022)) [19] for subsequent expression analysis and functional enrichment analysis. In
addition, 300 chemokine genes and 149 immune checkpoint genes were obtained from the
National Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.
nih.gov/ (accessed on 10 October 2022)) [20] for immune-related analysis.

2.2. Weighted Gene Co-Expression Network Analysis (WGCNA)

The weighted gene co-expression network analysis (WGCNA) [21] was executed
employing the R package “WGCNA”. Expression data from the TCGA and GTEx databases
were subjected to clustering, utilizing an optimal soft power set to 14, leading to the
construction of a dendrogram. Within the clustering results, genes exhibiting comparable
characteristics were grouped into the same module.

https://portal.gdc.cancer.gov/
https://www.gtexportal.org/home/index.html
https://www.gtexportal.org/home/index.html
http://www.cgga.org.cn
http://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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2.3. Detection of Differentially Expressed Genes (DEGs)

The “limma” packages were employed for the identification of differentially expressed
genes (DEGs) in the comparative analysis between GBM and normal brain samples. Sub-
sequently, the ‘ggplot2’ package was utilized to visualize the DEGs through a volcano
diagram. The criteria for defining DEGs were set at |logFC| > 1 and p < 0.001.

2.4. Risk Model Construction and Clinical Correlation Analysis

Firstly, by using the “Venn” package, intersection genes from the DEGs and WGCNA
modules were obtained. The Venn diagram was drawn using the “Venn” package. Sub-
sequently, prognosis-related genes were gained using univariate Cox analysis (p < 0.05)
based on survival status, survival time, and expression levels of intersection genes in GBM
patients, followed by LASSO regression analysis using the “glmnet” package to avoid
overfitting. Furthermore, based on regression analysis and multivariate Cox analysis, the
optimal risk model and coef values of genes in the model were obtained. We calculated
a risk score for each patient according to the formula below:

Risk Score = ∑n
i=1 coef(i)*x(i) (1)

where n is the number of prognosis-related genes, coef (i) is the regression coefficient, and
x(i) is the gene expression level. The median risk score (1.0155–1.0161) of the TCGA cohort
divided all GBM samples into high- and low-risk groups. Survival differences between
high- and low-risk groups were calculated by the “survival” and “survminer” packages.
Cox regression and Wilcoxon rank sum tests were used to evaluate the differences in
survival probability and risk scores in clinical subgroups. The “survivalROC” package was
used to calculate and visualize the AUC value to evaluate the accuracy of the risk model.
Univariate and multivariate Cox analyses with clinical information were performed using
the “survival” package. The “rms” package was utilized to develop a nomogram based on
multivariate Cox regression coefficients.

2.5. Immune Infiltration Analysis

Firstly, the association between risk score and multiple immune cells was assessed us-
ing seven algorithms (XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-
abs, and CIBERSORT). Then, we used the “estimate”, “ggpubr”, and “limma” packages to
compare the differences in the tumor microenvironment between the high- and low-risk
groups, and we utilized Pearson correlation analyses to assess the association between risk
score and DNA/RNAss. Following this, immune cell and functional differences between
the high- and low-risk groups were further compared using single-sample gene set enrich-
ment analysis (ssGSEA). Finally, the expression of the immune checkpoint and chemokine
genes in the two groups was investigated by the “limma” package.

2.6. Mutation Analysis

Information on somatic mutations in GBM was downloaded from the TCGA database
for 168 patients. Tumor mutation burden (TMB) was defined as the numbers of inser-
tions/deletions and substitution mutations per million bases. Mutation in the high- and
low-risk groups was analyzed by the “maftools” package. According to the median TMB
score, all samples were divided into a high-TMB group and low-TMB group. Associa-
tions between risk score and TMB were shown in scatter plots, and differences in survival
probability between the high- and low-TMB groups were analyzed by the Kaplan–Meier
survival analysis.

2.7. Analysis of Drug Therapy

To ascertain the relationship between a drug and gene expression levels, the Genomics
of Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/ (accessed on
10 October 2022)) [22] database and the Cancer Therapeutics Response Portal (CTRP)

https://www.cancerrxgene.org/
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(https://portals.broadinstitute.org/ctrp/ (accessed on 10 October 2022)) [23] database
were used. Furthermore, drug sensitivity and CCLE expression data from the PRISM
database (https://depmap.org/repurposing (accessed on 10 October 2022)) [24] were col-
lected to assess the relationship between drug sensitivity and risk score, as well as the
differences in drug sensitivity between high- and low-risk groups.

2.8. Enrichment Analysis

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Gene Set Enrichment Analysis (GSEA) analyses used the “clusterProfile” package, and
a p-value < 0.05 with FDR < 0.05 was regarded as statistically significant for the GO and
KEGG enrichment analyses. In the GSEA enrichment analysis, the minimum to maximum
number of genes was set at 15 to 500. After cyclic sampling 1000 times, the functional
enrichment results of the high- and low-risk groups were obtained, and FDR < 0.25 was
considered significant.

2.9. Immunohistochemistry (IHC)

The collected brain tissue paraffin sections were deparaffinized by xylene and de-
hydrated in ethanol. After blocking with 5% BSA, these sections reacted with anti-MDK
(1:100, ZENBIO, R22526) overnight at 4 ◦C and reacted with the secondary antibody for
1.5 h. Then, these sections were visualized with a DAB kit (Servicebio, Wuhan, China) and
captured using an Olympus fluorescent microscope.

2.10. Cell Culture and Transfection

GBM cell lines U251 and U87 were obtained from the Shanghai Institute of Biochem-
istry and Cell Biology (Shanghai, China). The cells were grown in High-Glucose DMEM
containing 15% Fetal Bovine Serum (FBS, Gibco, CA, USA), 100 U/ML Penicillin, and
100 g/ML Streptomycin (Biosharp, CA, USA) at a suitable environment of 37 ◦C and
5% CO2. To specifically knock down the expression of MDK, the Si-NC and Si-MDK plas-
mids (sense: GGGAAGGGAAAGGACUAGA

TT; anti-sense: UCUAGUCCUUUCCCUUCCCTT) were purchased from RiboBio
(Guangzhou, China) and were transfected to cells with a Lipofectamine3000 Kit (Invitrogen,
Waltham, MA, USA) according to the guidance of the manufacturer.

2.11. RNA Extraction and Real-Time PCR

First, we collected all the RNA of GBM cells, and then these RNAs were combined as
cDNA using the RevertAidTM cDNA Synthesis Kit (Thermo, Waltham, MA, USA). Finally,
the SYBR® Green Master Mix was utilized for RT-PCR to detect the total GAPDH and MDK
levels according to the reagents’ guidance. All primers in this study were as follows: the
forward primer of GAPDH, CCTTCCGTGTCCCCACT; the reverse primer of GAPDH,
GCCTGCTTCACCACCTTC; the forward primer of MDK, CACCCCTAAGTGCCCAAA;
the reverse primer of MDK, TGGGGAAGAACAAAAGCG.

2.12. Western Blotting (WB)

RIPA buffer (Servicebio, Wuhan, China) was utilized for cell lysis to obtain total cellular
proteins, and 10 µg of these proteins were separated through SDS-PAGE electrophoresis
according to different protein molecules and transferred to PVDF membranes. Next, these
membranes were sealed with a quick blocking solution (Servicebio, Wuhan, China) and
incubated with the corresponding primary antibodies and HRP-conjugated secondary
antibodies in turn. Finally, the enhanced ECL Reagent (Biosharp, CA, USA) was utilized to
expose and visualize the blots. The primary antibodies in this study included anti-MDK
(1:1000, R22526, ZENBIO, Suzhou, China), anti-E-cadherin (1:1000, Proteintech, 20874-1-
AP), anti-Vimentin (1:1000, 10366-1-AP, Proteintech, Waltham, MA, USA), anti-snail (1:1000,
13099-1-AP, Proteintech, Waltham, MA, USA), and anti-tubulin (1:5000, M20005, Absmart,
Shenzhen, China).

https://portals.broadinstitute.org/ctrp/
https://depmap.org/repurposing
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2.13. Immunofluorescence Staining

The treated cells were immobilized for 15 min by paraformaldehyde and permeabi-
lized for 10 min by 0.2% Triton. Next, these cells were blocked for 45 min by 5% BSA
(Sigma, Shanghai, China) and incubated overnight with anti-MDK (1:100, R22526, ZENBIO)
at 4 ◦C. These cells were exposed to Alexa Fluor 488-conjugated secondary antibody (1:100,
GB25301, Servicebio) for 30 min and were then captured and analyzed with an Olympus
fluorescent microscope.

2.14. Cell Viability and EdU Assay

A CCK8 kit (Biosharp, CA, USA) was utilized to detect the cell viability. The transfected
cells were planted in 96-well plates with 5000 cells per well. After a period of culture, these
cells were incubated with CCK8 reagent for 1 h. Finally, the absorbance (450 nm) was
measured and analyzed using a microplate reader (Molecular Devices, CA, USA). For the
EdU assay, after incubation with the EdU solution (Beyotime, Shanghai, China) in a dark
environment at 37 ◦C for 1 h, the cells were immobilized with paraformaldehyde for 20 min,
and DAPI (Sigma, Shanghai, China) was utilized to visualize the nucleus. Subsequently,
EDU-positive cells were captured and counted using an Olympus fluorescent microscope.

2.15. Wound Healing and Transwell Assays

For wound healing, in short, the transfected cells were planted in 6-well plates and
cultivated to the density of 80%. A pipette tip (100 µL) was used to create scratches and
the cells were incubated with serum-free medium for 24 h. Finally, the wound healing
photographs were captured using an inverted microscope (Olympus, Tokyo, Japan) and
the movement distance of cells was calculated using Image J. For the transwell assay,
the transfected cells were planted in the upper transwell chamber supplemented with
the serum-free medium, and the serum medium was added into the lower transwell
chamber. After incubation at 37 ◦C for 24 h, these cells were immobilized and stained.
Subsequently, an inverted microscope (Olympus, Japan) was utilized to take images and
count the cell numbers.

2.16. Statistical Analysis

R studio (version 4.2.0) and GraphPad Prism (9.0.0) software were used to analyze all
the data. To analyze the differences between the two groups, Student’s t-test was used. For
comparisons involving three or more groups, one-way analysis of variance (ANOVA) was
employed. A statistically significant difference was defined as p < 0.05.

3. Results
3.1. The Flowchart of the Study

The research flow chart is shown in Figure 1. GBM expression data from the TCGA
and GTEx cohorts were used to obtain 330 hypoxia-related DEGs, 607 EMT-related DEGs,
and 2314 genes from the MEdarkgrey module, respectively. The intersection genes were
further used for subsequent clinical, immune infiltration, mutation, drug treatment, and
enrichment analysis. Furthermore, we selected the prognostic related gene MDK for further
in vitro validation, including the expression of MDK in the environment of hypoxia, the
proliferation and migration situation of GBM cells after MDK knockdown, and the EMT of
GBM cells after MDK knockdown under a hypoxia condition.
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Figure 1. Flow chart of this study. Normal and tumor data of GBM patients in the TCGA and GTEx
databases were used for WGCNA and differential analysis. The 59 genes obtained were further
analyzed by Cox and LASSO regression analyses to construct a risk model. Based on the risk model,
clinical correlation analysis, enrichment analysis, immune analysis, mutation analysis, and drug
treatment analysis were continued. Finally, the MDK gene associated with prognosis was used for
in vitro experiment verification.

3.2. Identification of DEGs in Collected Datasets

We combined the TCGA and GTEx cohorts to analyze the DEGs between GBM and
healthy samples. We obtained 607 EMT-related DEGs (Figure 2A) and 330 hypoxia-related
DEGs (Figure 2B) by setting |logFC| > 1 and p < 0.001 as the criteria. The TCGA and GTEx
combined cohort was then used to create a co-expression network using the “WGCNA”
package. Based on two evaluation criteria (scale independence and average connectivity), a
soft threshold of 14 was set (Figure 2C,D) and genes were divided into 11 modules, with the
MEdarkgrey module having the highest correlation with gene characteristics, comprising
2314 genes (Figure 2E,F). The 59 intersection genes in the three sets of filtered genes were
then identified using Venn diagrams (Figure 2G).
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Figure 2. Identification of DEGs in the collected datasets. (A,B) Based on the TCGA and GTEx
cohorts, EMT- and hypoxia-related DEGs were screened, respectively. Red represents upregulated
genes with logFC > 1, black represents genes with no significant difference, and blue represents
downregulated genes with logFC < −1. The p for both red and blue distributed genes was less
than 0.001. (C,D) The selection of soft-thresholding power and construction of a scale-free net-
work. (E) Module–trait relationships, where the ME darkgrey module has the highest correlation
(cor = 0.91 and p = 0). (F) Cluster dendrogram in which similar genes are grouped into the same
module. (G) Venn diagram screening 59 DEGs in 3 GBM cohorts.



Biomedicines 2024, 12, 92 8 of 25

3.3. Construction of Risk Models and Clinical Correlation Analysis

We used intersection genes to perform univariate Cox analysis, LASSO regression
analysis, and multivariate Cox analysis in order to create the most efficient risk model for
analyzing clinical traits and prognosis prediction. Screening by the criteria of p < 0.05, we
obtained 22 genes that were connected to prognosis (Figure 3A). Further LASSO regression
analysis and multivariate Cox regression analysis identified two genes (STC1 and MDK)
associated with prognosis (Figure 3B,C). Based on the level of the two genes and matching
coefficients, the risk score was calculated: risk score = (0.2138 × SEC1) + (0.2702 × MDK).
The TCGA-GBM cohort’s median risk score (1.0155 to 1.0161) was used to classify patients
into two risk subgroups: high- and low-risk groups. The risk score, survival status, and
two gene expression levels of GBM patients in the TCGA cohort are shown in Figure 3D.
In addition, the Kaplan–Meier survival curve shows that all GBM patients in the high-
risk group had significantly shorter survival probability than those in the low-risk group
(Figure 3E). The results of the CGGA cohort’s risk score, survival status, two genes, and
Kaplan–Meier survival curve were in line with those from the TCGA cohort (Figure 3F,G).
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selection in the LASSO regression model. (D) The risk score, survival status, and risk genes in the
TCGA cohort. (E) Kaplan–Meier survival analysis between the low- and high-risk groups in TCGA
cohort, p < 0.05 was considered significant. (F) The risk score, survival status, and risk genes in the
CGGA cohort. (G) Kaplan–Meier survival analysis between the low- and high-risk groups in CGGA
validation cohort, p < 0.05 was considered significant.

To investigate the relationship between the clinical subgroup and the probability of
survival, the difference in the risk score between each clinical subgroup, we extracted
the clinical data of age, gender, IDH status, 1p19q status, and MGMTp status, excluded
samples with missing information, and used Cox regression analysis on the remaining
samples, yielding the correlation between clinical subgroups and the probability of survival
(Figure 4A–E) and the correlation between clinical subgroups and risk score (Figure 4F–J).
Our results showed that patients aged ≥ 40 years had a significantly lower probability of
survival compared to the patients aged < 40 years (p < 0.001). Patients with the IDH wild
type have a significantly higher probability of survival than those with the IDH mutation
(p < 0.05). In contrast, there appeared to be no significant differences in survival probability
for gender (male and female), 1p19q status (codel and non-codel), and MGMTp status
(unmethylated and methylated). In addition, we analyzed the differences in the risk score
between subgroups. Age, IDH status, 1p19q status, and MGMTp status were different in
the high- and low-risk groups. Risk scores were higher in the age ≥ 40 years, IDH wild
type, 1p19q non-codel, and MGMTp non-methylation groups.
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considered significant).



Biomedicines 2024, 12, 92 10 of 25

The ROC curve then confirmed that the risk score-based model had an AUC value of
0.807, indicating that it was reliable (Figure 5A). As shown in Figure 5B, a nomogram com-
bining the risk score with other important clinical traits was constructed to predict patient
survival at 1, 3, and 5 years in the TCGA cohort (C-index = 0.6410, 95% CI: 0.5911–0.6909,
p = 3.1124 × 10−8). Furthermore, in both the univariate and multivariate Cox analyses, the
p value of the risk score was less than 0.05, with HR > 1, indicating that the risk score was
an independent risk factor for the prognosis of GBM patients (Figure 5C,D). In the CGGA
validation cohort, the AUC value of the risk score-based model was 0.653 (Figure 5E). The
C-index of the constructed nomogram was 0.6093, 95% CI: 0.5598–0.6588, p = 1.4823 × 10−5

(Figure 5F). Univariate and multivariate Cox analyses equally demonstrated that risk score
was an independent prognostic factor for GBM patients (Figure 5G,H).
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Figure 5. The risk score could be an independent factor for predicting the overall survival of GBM
patients. (A) ROC curve for the risk model in the TCGA cohort. (B) Nomogram was based on clinical
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traits and risk score in CGGA validation cohort. (C) Univariate Cox analysis in the TCGA cohort.
(D) Multivariate Cox analysis in the TCGA cohort. (E) ROC curve for the risk score in the CGGA
validation cohort. (F) Nomogram was based on clinical traits and risk score in CGGA validation
cohort. (G) Univariate Cox analysis in the CGGA validation cohort. (H) Multivariate Cox analysis in
the CGGA validation cohort. (" – " is considered not significant, * p < 0.05, ** p < 0.01, *** p < 0.001,
p <0.05 was considered significant).

3.4. Overview of Immune Cell Infiltration

The relationship between the risk score and immune cells was examined. Firstly,
we used seven algorithms to calculate the correlation between the risk score and multi-
ple immune cells/functions. The results revealed that cancer-associated fibroblasts had
a significant positive correlation with risk score (Figure 6A). As seen in Figure 6B, the
Stromal score and Estimate Score for the high-risk group were significantly higher than
in the low-risk group (p <0.05). Additionally, the relationship between the risk score and
DNAss/RNAss is depicted in Figure 6C,D, and the findings reveal a significant negative
relationship (R = −0.57, p < 0.001) between the risk score and RNAss. Finally, the expression
of 16 immune cell types in the high- and low-risk groups were also examined using the
ssGSEA algorithm. The box plot demonstrates that the proportion of immune cells were
significantly higher in the high-risk group compared to the low-risk group (Figure 6E).
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Figure 6. Immune infiltration analysis. (A) Seven algorithms (XCELL, TIMER, QUANTISEQ, MCP-
COUNTER, EPIC, CIBERSORT-ABS, CIBERSORT) were used to determine the relationship between
risk score and immune cells. (B) TME score for high- and low-risk groups. (C) Relationship between
risk score and RNAss. (D) Relationship between risk score and DNAss. (E) Differences in immune
cells and function between high- and low-risk groups (ns is considered not significant, * p < 0.05,
** p < 0.01, *** p < 0.001, p < 0.05 was considered significant).
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Immune checkpoints and chemokines are noted to be major factors of tumor im-
munotherapy because they regulate immune cell function. We looked into the variations
in chemokines and immune system checkpoints between the high- and low-risk groups.
The immune checkpoint-related genes, such as LIF, VEGFA, and SPP1, were found to be
significantly elevated in the high-risk group (Figure 7A,B). And the chemokines’ related
genes, for instance, CXCL8, CXCL2, THBS1, and POSTN, were elevated in the high-risk
group when PI16 and ADCYAP1R1 were found to be significantly elevated in the low-risk
group (Figure 7C,D).
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Figure 7. Expression of immune checkpoints, chemokines in high- and low-risk groups. (A) Volcano
plot of the distribution of immune checkpoint-associated genes in high- and low-risk groups. The right
side of the vertical axis is p < 0.05, logFC >1, and the left side is p < 0.05, logFC < −1. (B) Heatmap of
the expression of immune checkpoint-related genes in high- and low-risk groups. (C) Volcano
plot of the distribution of chemokines in high- and low-risk groups. The right side of the ver-
tical axis is p < 0.05, logFC > 1, and the left side is p < 0.05, logFC < −1. (D) Heatmap of the
expression of chemokines in high- and low-risk groups. (** p < 0.01, *** p < 0.001, p < 0.05 was
considered significant).

3.5. Mutation Situation

We started with identifying the 15 most frequently mutated genes in the high- and low-
risk groups (Figure 8A,B). Following that, TMB levels in the high- and low-risk groups were
compared, and the relationship between risk score and TBM was investigated (Figure 8C,D).
The findings revealed no discernible difference in TMB between the two groups and no
significant relationship between the risk score and TMB score. According to the median
TMB score, patients were split into two groups: high and low TMB score. Patients with
high TMB had a higher probability of survival than those with low TMB, as shown in the
Kaplan–Meier survival curve (Figure 8E). The worst prognosis was seen in the group of
a low TMB score combined a high risk score (Figure 8F).
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Figure 8. Tumor mutation status. (A) The 15 mutation genes in the high-risk group. (B) The
15 mutation genes in the low-risk group. (C) Relationship between risk scores and TMB.
(D) Differences in TMB in high- and low-risk groups. (E) Differences in survival probability be-
tween the high- and low-TMB groups. (F) Differences in survival probability between high TMB in
the low-risk group, high TMB in the high-risk group, low TMB in the low-risk group, and low TMB
in the high-risk group. (p < 0.05 was considered significant).

3.6. Drug Treatment

Using the GDSC and CTRP databases, we summarized the associations between gene
expression and drug sensitivity in different cancers, with 30 drugs having the strongest
correlations as listed (Figure 9A,B). We also analyzed the relationship between risk score
and responsiveness to drugs (Figure 9C). The results showed that 20 drugs, LY2090314,
TMC647055, TMC647055, methscopolamine, 3-AQC, niraparib, chloroxine, mCPP, L-
732,138, BRD4770, AZD2858, nifekalant, simeprevir, hydrocortisone-hemisuccinate, CEP-
32496, atiprimod, homochlorcyclizine, ciclesonid, AMG-232, CGM097, and idasanutlin,
were positively associated with the risk score. Compared with the low-risk group, idasanut-
lin, CGM097, AMG-232, and CEP-32496 were significantly upregulated while LY2090314
and 3-AQC were significantly downregulated in the high-risk group (Figure 9D–I).
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Figure 9. Drug treatment. (A) Relationship between risk score and drug sensitivity in the CTRP
database. (B) The relationship between risk score and drug sensitivity in the GDSC database.
(C) Relationship between risk scores and drug sensitivity in the PRISM database. (D–I) Relationship
between risk scores and drug sensitivity in drugs (idasanutlin, CGM097, AMG-232, CEP-32496,
LY2090314, 3-AQC). (* p < 0.05, ** p < 0.01, *** p < 0.001, p < 0.05 was considered significant.)
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3.7. Results of Enrichment Analysis

We sought to elucidate the potential biological functions and pathways associated with
the two prognostic genes (STC1 and MDK). According to the expression of the high- and
low-risk groups, we identified eight DEGs (|logFC| > 1 and p < 0.05). Then, KEGG enrich-
ment analysis showed that the differences between high- and low-risk groups were mainly
focused on cancer signaling pathways such as the PI3K-AKT and JAK-STAT pathways
(Figure 10A). GO enrichment analysis showed that the differences between two groups
were mainly related to the extracellular matrix (ECM) and cytokines (Figure 10B). Further-
more, GSEA enrichment analysis showed that the high-risk group was mainly enriched
in cancer signaling pathways and the extracellular matrix while the low-risk group was
mainly enriched in amino acid metabolism (Figure 10C).
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Figure 10. Enrichment analysis. (A) The KEGG diagram was made according to the DEGs between
the high- and low-risk groups. (B) The GO diagram was made according to the DEGs between the
high- and low-risk groups. (C) Gene set enrichment analysis of high- and low-risk groups.

3.8. MDK Is Elevated in GBM Patients and Related to Poor Prognosis

In previous studies, we found that hypoxia increased the expression of MDK in human
umbilical vein endothelial cells [25] and MDK promoted the proliferation and migration
of human breast cancer cells [26]. However, in GBM, the relationship between MDK and
hypoxia and EMT has not been researched. Therefore, we chose MDK for further in vitro
experiments to verify the efficacy of our model. First, in the TCGA database, we found that
MDK was highly expressed in GBM (Figure 11A) and closely related to important clinical
pathological features such as IDH wild type and 1p19q co-deletion (Figure 11B,C). At the
same time, our clinical samples achieved the same results (Figure 11D,E). Finally, to verify
the impact of MDK on the prognosis of GBM, the K-M curve demonstrated that the patients
with high expression of MDK had a worse prognosis (Figure 11F–H). In conclusion, MDK
was highly expressed in GBM and might be a potential prognostic marker.
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Figure 11. MDK is elevated in GBM patients and related to poor prognosis. (A) The gene expression
of MDK in GBM in the TCGA database. (B,C) The gene expression of MDK in GBM with IDH
status and 1p19q status in the TCGA database. (D,E) Representative IHC images of clinical samples,
quantitative statistical analysis is shown below. Images on the right represent areas within the square
magnified. (F–H) The K-M survival analysis of MDK in GBM in the TCGA database. (* p < 0.05,
** p < 0.01, *** p < 0.001, p < 0.05 was considered significant).

3.9. Hypoxia Increases MDK Expression in GBM Cells

The growth of GBM is often accompanied by hypoxia, which causes GBM cells to alter
the heredity and metabolism to adapt to this environment. In this article, we attempted
to investigate the connection between MDK and hypoxia in GBM. First, in the TCGA
database, we found that the expression of MDK was significantly positively correlated with
hypoxia-related markers (HIF1A, HK2, VEGFA, and CA9) (Figure 12A). Then, GBM cells
were cultured under 1% O2 conditions to simulate a hypoxia environment. According to
PCR findings, hypoxia significantly increased the expression of MDK mRNA (Figure 12B).
As shown in Figure 12C,D, MDK protein expression peaked after 24 h of hypoxia. At
the same time, the fluorescence intensity of MDK in the hypoxia group was significantly
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increased (Figure 12E–H). In conclusion, hypoxia significantly induced the expression of
MDK in GBM cells.
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Figure 12. Hypoxia increases MDK expression in GBM cells. (A) Correlation between MDK and
hypoxia-related markers such as HIF1F, HK2, VEGFA, and CA9 in the TCGA database. (B) The
mRNA levels of MDK after GBM cells were cultured in hypoxia. (C,D) The protein levels of MDK
after GBM cells were cultured in hypoxia, quantitative statistical analysis is shown on the right.
(E–H) After GBM cells were cultured in hypoxia for 24 h, immunofluorescence was used to assess
the MDK expression and relative fluorescence intensity was statistically analyzed. Scale bars: 20 µm.
(* p < 0.05, ** p < 0.01, *** p < 0.001, p < 0.05 was considered significant).

3.10. Knockdown MDK Inhibits GBM Cells’ Proliferation and EMT

To analyze the role of MDK on the proliferation and EMT of GBM cells, we knocked
down the expression of MDK by transient transfection and WB was utilized to verify the
success of plasmid construction (Figure 13G,H). As shown in Figure 13A–C, the knockdown
of MDK significantly inhibited the proliferation of GBM cells. In the TCGA database, the
results revealed that MDK was significantly positively correlated with EMT-related markers
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(ZEB1, Snail1, Vimentin, and N-cadherin) (Figure 13D). Additionally, the knockdown of
MDK reduced the number of GBM cells invading (Figure 13E,F). According to WB results,
the knockdown of MDK dramatically enhanced the expression of epithelial cell-related
marker E-cadherin while significantly decreasing the expression of mesenchymal cell-
related markers (Vimentin and Snail1) (Figure 13G,H). In short, the knockdown of MDK
inhibited the proliferation and EMT of GBM cells.
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detect the proliferation of GBM cells transfected with MDK plasmid, EdU-positive cells were defined
as EdU cells/blue cells. (D) Correlation between MDK and EMT-related markers such as ZEB1, Snail1,
Vimentin, and N-cadherin in the TCGA database. (E,F) The transwell assay was utilized to detect the
invasive ability of GBM cells transfected with MDK plasmid and the results were statistically analyzed.
Scale bars: 50 µm. (G,H) WB showing the protein levels of E-cadherin, Vimentin, Snail1, and MDK
and quantitative statistical analysis is shown on the right. (* p < 0.05, ** p < 0.01, *** p < 0.001, p < 0.05
was considered significant).

3.11. Knockdown MDK Reverses Hypoxia-Induced EMT in GBM Cells

A hypoxic environment is regarded as the main driving force of the malignant behav-
ior of tumors and stimulates EMT to enhance tumor metastasis and diffusion [27]. In our
study, we found that hypoxia can induce the expression of MDK in GBM cells, and then
we speculated whether MDK mediates hypoxia-induced EMT. As shown in Figure 14A–C,
hypoxia significantly increased the migratory distance of GBM cells, but the knockdown of
MDK reversed this result. In addition, the knockdown of MDK blocked the enhancement
of the invasion of GBM cells by hypoxia (Figure 14D,E). Finally, the knockdown of MDK
decreased hypoxia-induced Vimentin and Snaila expression and increased E-cadherin ex-
pression (Figure 14F,G). These results indicated that MDK mediates hypoxia-induced EMT.
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Figure 14. Knockdown MDK reverses hypoxia-induced EMT in GBM cells. (A–C) The wound healing
assay was utilized to detect the migratory ability of MDA knockdown GBM cells in hypoxia and the
results were statistically analyzed. Scale bars: 100 µm. (D,E) The transwell assay was utilized to detect
the invasive ability of MDA knockdown GBM cells in hypoxia and quantitative statistical analysis
is shown. Scale bars: 50 µm. (F,G) WB was performed to measure the expression of E-cadherin,
Vimentin, Snail1, and MDK. Tubulin was utilized as internal control. ** p < 0.01, *** p < 0.001. Protein
levels of E-cadherin, Vimentin, Snail1, and MDK and quantitative statistical analysis are shown on
the right.

4. Discussion

GBM has the characteristics of high incidence, strong invasiveness, low survival, and
a high recurrence rate. Although the traditional treatment methods have made great
progress, they are still not enough to solve the problem of frequent recurrence in GBM
patients, which prompt people to more actively study the pathophysiology and molecular
targeted therapy of gliomas. Hypoxia can induce EMT, promote tumor migration, and
promote invasion, anti-apoptosis, and the degradation of the extracellular matrix. As far as
we are aware, this is the first paper combining bioinformatics techniques to construct a risk
model and investigate the EMT induced by hypoxia in GBM patients. In this paper, we
used multiple public datasets to investigate the predictive role of novel biomarkers in GBM
patients. The differential expression of GBM and normal samples and WGCNA analysis
were used to identify 59 differentially expressed genes related to both hypoxia and EMT.
LASSO and Cox regression analyses were used to screen out the best two prognostic genes
(STC1 and MDK) and construct the risk model. The risk score could accurately predict the
overall survival of GBM patients and serve as an independent risk factor. Based on the risk
model, we further discussed the differences in high- and low-risk groups with common
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clinical traits, immune cell infiltration, tumor mutation, drug treatment, and enrichment
analysis. The prognostic gene MDK was used for an in vitro experiment to verify the
promoting effect of MDK on tumor proliferation, invasion, and metastasis in the hypoxic
environment. This investigation marks the initial discovery that the downregulation of the
MDK gene effectively diminishes the proliferation, migration, and epithelial–mesenchymal
transition (EMT) of glioblastoma multiforme (GBM) cells in response to hypoxic conditions.

In this study, we constructed a risk model that included two genes: STC1 and MDK.
STC1 is a protein-coding gene associated with diseases including colon [28] and breast
cancers [29], it can enhance the metastasis potential of HCC through the JNK signaling
pathway [30], and it reduces the immune function of macrophages [31–33]. MDK is
a secreted protein that acts as a cytokine and growth factor, and it is mediated by cell
surface proteoglycan and non-proteoglycan receptors [34–41]. It regulates the inflammatory
response, cell proliferation, cell adhesion, cell growth, cell survival, tissue regeneration, cell
differentiation, cell migration, and other processes [35–43]. For example, MDK can promote
T-cell proliferation through the NFAT signaling pathway and Th1 cell differentiation, inhibit
the emergence of drug-resistant dendritic cells, and thereby inhibit the differentiation of
regulatory T cells [43]. It has also been reported that the MDK gene can promote the
proliferation of human cancer cells, such as gastric cancer cells [44] and glioma cells [45].
As a result of binding to anaplastic lymphoma kinase (ALK), insulin receptor substrate
1(IRS1) is phosphorylated and mitogen-activated protein kinase (MAPK) and pi3 kinase are
activated, which promotes cell growth [40]. The transition of epithelial cells to mesenchymal
cells is promoted through interaction with NOTCH2 [34]. Then, we performed a clinical
analysis based on this two-gene risk model, and the Kaplan–Meier survival curve showed
that the survival probability of patients in the high-risk group was significantly lower
(p < 0.01). Patients with an age ≥ 40 years had a lower survival probability than those aged
<40 years, and the IDH wild type group had a lower survival rate than the IDH mutation
group. Clinical subgroup analyses showed that age ≥ 40, IDH wild type, 1p19q non-
codel, and MGMTp un-methylated people have a higher risk score in the high-risk group
compared to the low-risk group. Age has been reported as a risk factor for glioma [46],
patients with IDH mutations have a better prognosis [47], patients with the 1p19q codel
have a better prognosis [48,49], and MGMT methylated patients are more sensitive to
treatment with TMZ [50,51]. Meanwhile, the AUC value of the risk score reached 0.807,
giving our risk model an advantage in terms of accuracy compared to models constructed in
previous studies [52,53]. In addition, the nomogram constructed with clinical information
in the TCGA and CGGA cohorts could be used to predict patient survival at 1, 3, and
5 years, while univariate and multivariate Cox analyses showed that age and risk score
were independent risk factors for patient prognosis.

In addition to prognostic value, we discovered that the risk model was linked to
tumor immunity and tumor mutations. A growing body of evidence suggests that tumor
immunity is important in tumorigenesis and treatment response [54,55]. The high-risk
group had a significantly higher Stromal Score and Estimate Score than the low-risk group,
according to immunological analysis. The risk score was significantly inversely related to
RNAss, implying that as the risk score increased, tumor stem cell differentiation decreased.
The proportion of immune cells in the high-risk group was significantly higher than in
the low-risk group. As immune checkpoints or chemokines, LIF, VEGFA, SPP1, CCL2,
CXCL8, THBS1, and POST genes were significantly higher in the high- and low-risk groups,
suggesting that they could be used as therapeutic targets. For example, studies have shown
that infiltrating tumor-associated macrophages promote tumor growth partly by secreting
SPP1, which can promote glioma cell survival and angiogenesis [56]. In the presence of
the Spp1 protein, KPDC cell migration was significantly increased, whereas basal KPC cell
migration was significantly decreased after Spp1 inhibition [57]. VEGFA is also upregulated
in many tumors, and its expression is associated with tumor development, including
ovarian carcinomas, and is a target in many cancer therapies under development [58,59].
Tumor mutation analysis revealed that the missense mutations in the TTN gene were the
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most common, and the difference in TMB between the high- and low-risk groups was not
statistically significant. However, patients in the high-TMB group had a lower survival
probability with the lowest survival probability in the high-risk group in combination with
high TMB. Those with higher TMB were more likely to be recognized and attacked by
immune cells, and they responded more significantly to immunotherapy [60,61]. There
were significant differences in drug sensitivity between the high- and low-risk groups for
idasanutlin, CGM097, AMG-232, CEP-32496, LY2090314, and 3-AQC.

Furthermore, pathway enrichment revealed that the extracellular matrix and cytokine
pathways were the most different between the high- and low-risk groups. The high-risk
group was concentrated on cancer signaling pathways and the extracellular matrix, whereas
the low-risk group was concentrated on amino acid metabolism. Cancer cells have been
shown to regulate the cytokine environment in order to change the cell composition of the
microenvironment, which promotes tumor progression [62–64]. Extracellular matrix (ECM)
components in particular have been identified as key regulators of cancer progression [65].

Finally, we selected MDK, a prognostic gene, for a further in vitro experiment, which
was shown to be highly expressed in GBM and associated with a poorer prognosis. The
expression of MDK was elevated in the hypoxic environment, and the proliferation and
migration ability of GBM cells were reduced after knockdown of the MDK gene. The
knockdown of the MDK gene in the hypoxic environment could reverse hypoxia-induced
EMT, indicating that the hypoxia-induced EMT of GBM is mediated by MDK.

In conclusion, we used bioinformatics to effectively construct a risk model which
performed admirably in survival and prognosis prediction in GBM patients. The model’s
predictions in training and validation cohorts verified its viability, and an in vitro exper-
iment revealed that MDK mediates the EMT of tumor cells in a hypoxic environment.
Nonetheless, our research has some limitations. On the one hand, our model is based
on a retrospective analysis and will need to be validated in prospective studies. On the
other hand, while this study is primarily based on bioinformatics techniques, the functional
mechanisms and interactions of genes are important for validation, necessitating more
complex and experimental data collection and evaluation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines12010092/s1, Table S1: Demographic and Clinical
Baseline Data of Glioma Patients.

Author Contributions: M.X. and S.T. performed the data analysis and wrote the manuscript. L.G.
participated in the study design, figures, writing, and revised the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was supported by National Science Foundation of China (Project # 82270861 to
Gao), the Fundamental Research Funds for the Central Universities (Project # 2042020kf1079 to Gao),
the Planned international development Project of Wuhan University (Project # WHU-GJZDZX TS03
to Gao), China UK joint training program for young scientist of Wuhan University.

Institutional Review Board Statement: This study was approved by the Ethics Committee of the
Renmin Hospital of Wuhan University (approval number: 2012LKSZ (010) H). All methods were
performed in accordance with the relevant guidelines and regulations. All patients had signed
informed consent, and brain resections were collected from GBM patients.

Data Availability Statement: https://www.jianguoyun.com/p/DdCiP5UQiKCaCxj23vQEIAA.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/biomedicines12010092/s1
https://www.mdpi.com/article/10.3390/biomedicines12010092/s1
https://www.jianguoyun.com/p/DdCiP5UQiKCaCxj23vQEIAA


Biomedicines 2024, 12, 92 23 of 25

Abbreviations

EMT: Epithelial–mesenchymal transition; GBM: glioblastoma; WGCNA: weighted cor-
relation network analysis; HIFs: hypoxia-inducible factors; DEGs: differential expression
genes; TCGA: The Cancer Genome Atlas; GTEx: Genotype-Tissue Expression; LASSO: least
absolute shrinkage and selection operator; CGGA: Chinese Glioma Genome Atlas; MsigDB:
Molecular Signatures Database; NCBI: National Center for Biotechnology Information;
TMB: tumor mutation burden; GDSC: Genomics of Drug Sensitivity in Cancer; CTRP:
Cancer Therapeutics Response Portal; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of
Genes and Genomes; GSEA: Gene Set Enrichment Analysis; ALK: anaplastic lymphoma
kinase; IRS1: insulin receptor substrate 1; MAPK: mitogen-activated protein kinase; ECM:
extracellular matrix.

References
1. Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS

Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008–2012. Neuro Oncol.
2015, 17 (Suppl. S4), iv1–iv62. [CrossRef] [PubMed]

2. Dobes, M.; Khurana, V.G.; Shadbolt, B.; Jain, S.; Smith, S.F.; Smee, R.; Dexter, M.; Cook, R. Increasing incidence of glioblastoma
multiforme and meningioma, and decreasing incidence of Schwannoma (2000–2008): Findings of a multicenter Australian study.
Surg. Neurol Int. 2011, 2, 176. [PubMed]

3. Davis, M.E. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016, 20 (Suppl. S5), S2–S8. [CrossRef]
[PubMed]

4. Asthagiri, A.R.; Pouratian, N.; Sherman, J.; Ahmed, G.; Shaffrey, M.E. Advances in brain tumor surgery. Neurol Clin. 2007, 25,
975–1003. [CrossRef] [PubMed]

5. Choi, S.H.; Stuckey, D.W.; Pignatta, S.; Reinshagen, C.; Khalsa, J.K.; Roozendaal, N.; Martinez-Quintanilla, J.; Tamura, K.; Keles,
E.; Shah, K. Tumor Resection Recruits Effector T Cells and Boosts Therapeutic Efficacy of Encapsulated Stem Cells Expressing
IFNbeta in Glioblastomas. Clin. Cancer Res. 2017, 23, 7047–7058. [CrossRef]

6. Tsai, J.H.; Yang, J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013, 27, 2192–2206. [CrossRef]
7. Bertout, J.A.; Patel, S.A.; Simon, M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer. 2008, 8, 967–975. [CrossRef]
8. Semenza, G.L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci.

2012, 33, 207–214. [CrossRef]
9. Lequeux, A.; Noman, M.Z.; Xiao, M.; Van Moer, K.; Hasmim, M.; Benoit, A.; Bosseler, M.; Viry, E.; Arakelian, T.; Berchem, G.; et al.

Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination
immunotherapy. Oncogene 2021, 40, 4725–4735. [CrossRef]

10. Chae, Y.C.; Vaira, V.; Caino, M.C.; Tang, H.-Y.; Seo, J.H.; Kossenkov, A.V.; Ottobrini, L.; Martelli, C.; Lucignani, G.; Bertolini, I.;
et al. Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming. Cancer Cell 2016, 30, 257–272. [CrossRef]

11. Kim, K.H.; Moon, M.; Yu, S.B.; Mook-Jung, I.; Kim, J.I. RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at
early stage of disease pathology. J. Alzheimers Dis. 2012, 29, 793–808. [CrossRef] [PubMed]

12. Mirnics, K.; Korade, Z.; Arion, D.; Lazarov, O.; Unger, T.; Macioce, M.; Sabatini, M.; Terrano, D.; Douglass, K.C.; Schor, N.F.; et al.
Presenilin-1-dependent transcriptome changes. J. Neurosci. 2005, 25, 1571–1578. [CrossRef] [PubMed]

13. Tang, K.; Ji, X.; Zhou, M.; Deng, Z.; Huang, Y.; Zheng, G.; Cao, Z. Rank-in: Enabling integrative analysis across microarray and
RNA-seq for cancer. Nucleic Acids Res. 2021, 49, e99. [CrossRef] [PubMed]

14. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and
core pathways. Nature 2008, 455, 1061–1068. [CrossRef] [PubMed]

15. Huang, C.; Yi, H.; Zhou, Y.; Zhang, Q.; Yao, X. Pan-Cancer Analysis Reveals SH3TC2 as an Oncogene for Colorectal Cancer and
Promotes Tumorigenesis via the MAPK Pathway. Cancers 2022, 14, 3735. [CrossRef] [PubMed]

16. Wang, Y.; Qian, T.; You, G.; Peng, X.; Chen, C.; You, Y.; Yao, K.; Wu, C.; Ma, J.; Sha, Z.; et al. Localizing seizure-susceptible
brain regions associated with low-grade gliomas using voxel-based lesion-symptom mapping. Neuro Oncol. 2015, 17, 282–288.
[CrossRef] [PubMed]

17. Zhao, Z.; Meng, F.; Wang, W.; Wang, Z.; Zhang, C.; Jiang, T. Comprehensive RNA-seq transcriptomic profiling in the malignant
progression of gliomas. Sci. Data 2017, 4, 170024. [CrossRef] [PubMed]

18. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

19. Ning, W.; Acharya, A.; Li, S.; Schmalz, G.; Huang, S. Identification of Key Pyroptosis-Related Genes and Distinct Pyroptosis-
Related Clusters in Periodontitis. Front. Immunol. 2022, 13, 862049. [CrossRef]

https://doi.org/10.1093/neuonc/nov189
https://www.ncbi.nlm.nih.gov/pubmed/26511214
https://www.ncbi.nlm.nih.gov/pubmed/22276231
https://doi.org/10.1188/16.CJON.S1.2-8
https://www.ncbi.nlm.nih.gov/pubmed/27668386
https://doi.org/10.1016/j.ncl.2007.07.006
https://www.ncbi.nlm.nih.gov/pubmed/17964023
https://doi.org/10.1158/1078-0432.CCR-17-0077
https://doi.org/10.1101/gad.225334.113
https://doi.org/10.1038/nrc2540
https://doi.org/10.1016/j.tips.2012.01.005
https://doi.org/10.1038/s41388-021-01846-x
https://doi.org/10.1016/j.ccell.2016.07.004
https://doi.org/10.3233/JAD-2012-111793
https://www.ncbi.nlm.nih.gov/pubmed/22507954
https://doi.org/10.1523/JNEUROSCI.4145-04.2005
https://www.ncbi.nlm.nih.gov/pubmed/15703411
https://doi.org/10.1093/nar/gkab554
https://www.ncbi.nlm.nih.gov/pubmed/34214174
https://doi.org/10.1038/nature07385
https://www.ncbi.nlm.nih.gov/pubmed/18772890
https://doi.org/10.3390/cancers14153735
https://www.ncbi.nlm.nih.gov/pubmed/35954399
https://doi.org/10.1093/neuonc/nou130
https://www.ncbi.nlm.nih.gov/pubmed/25031032
https://doi.org/10.1038/sdata.2017.24
https://www.ncbi.nlm.nih.gov/pubmed/28291232
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.3389/fimmu.2022.862049


Biomedicines 2024, 12, 92 24 of 25

20. Nair, G.G.; Liu, J.S.; Russ, H.A.; Tran, S.; Saxton, M.S.; Chen, R.; Juang, C.; Li, M.-L.; Nguyen, V.Q.; Giacometti, S.; et al. Author
Correction: Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived beta cells. Nat.
Cell Biol. 2019, 21, 792. [CrossRef]

21. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef] [PubMed]

22. Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Gonçalves, E.; Barthorpe, S.; Lightfoot,
H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166, 740–754. [CrossRef] [PubMed]

23. Zou, Y.; Palte, M.J.; Deik, A.A.; Li, H.; Eaton, J.K.; Wang, W.; Tseng, Y.-Y.; Deasy, R.; Kost-Alimova, M.; Dančík, V.; et al.
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