
Citation: Shumnalieva, R.; Kotov, G.;

Ermencheva, P.; Monov, S. Pathogenic

Mechanisms and Therapeutic

Approaches in Obesity-Related Knee

Osteoarthritis. Biomedicines 2024, 12, 9.

https://doi.org/10.3390/

biomedicines12010009

Academic Editor: Gurjit Singh

Received: 23 November 2023

Revised: 10 December 2023

Accepted: 14 December 2023

Published: 20 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Review

Pathogenic Mechanisms and Therapeutic Approaches in
Obesity-Related Knee Osteoarthritis
Russka Shumnalieva 1,2 , Georgi Kotov 1,2,* , Plamena Ermencheva 2 and Simeon Monov 1,2

1 Department of Rheumatology, Medical University of Sofia, 1431 Sofia, Bulgaria;
rshumnalieva@yahoo.com (R.S.); doctor_monov@yahoo.com (S.M.)

2 Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 1612 Sofia, Bulgaria; p.ermencheva@gmail.com
* Correspondence: gn_kotov@abv.bg; Tel.: +359-883688333

Abstract: The knee is the joint most frequently involved in osteoarthritis, a common joint disorder
in the adult population that is associated with significant chronic joint pain, reduced mobility and
quality of life. Recent studies have established an association between obesity and the development
of knee osteoarthritis that goes beyond the increased mechanical load on the knees as weight-bearing
joints. This link is based on the maintenance of a chronic low-grade inflammation, altered secretion
of adipokines by the adipose tissue and development of sarcopenia. Major adipokines involved in
the pathogenesis of obesity-related knee osteoarthritis include adiponectin, which appears to have
a protective effect, as well as leptin, resistin and visfatin, which are associated with higher pain
scores and more severe structural damage. Joint pain in knee osteoarthritis may be both nociceptive
and neuropathic and is the result of complex mechanisms driven by nerve growth factor, calcitonin
gene-related peptide and pro-inflammatory cytokines. The role of endogenous cannabinoids and
gut microbiota in common mechanisms between obesity and knee pain has recently been studied.
The aim of the present review is to highlight major pathogenic mechanisms in obesity-related knee
osteoarthritis with special attention on pain and to comment on possible therapeutic approaches.
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1. Introduction

Osteoarthritis (OA) is a common joint disorder in the adult population and is widely
associated with chronic joint pain, reduced mobility and impaired productivity [1–3]. The
knee is the most commonly affected joint, followed by the interphalangeal joints of the hand
and the hip [4]. The development of OA is related to a plethora of factors such as age, sex,
genetics, trauma and increased mechanical load, as well as various concomitant diseases. In
particular, obesity-related OA, also referred to as metabolic syndrome-associated OA, has
recently been recognized as a separate entity [2,3,5]. It has been shown that obesity is related
to knee OA not simply through an increased mechanical load on weight-bearing joints
but through the maintenance of chronic inflammation, altered secretion of adipokines and
development of sarcopenia [2,3]. In addition, a higher degree of obesity has been associated
with a higher pain score [3]. Recent recommendations on the therapeutic management
of knee OA, however, do not include specific guidelines in cases of obesity-related knee
OA [6]. Therefore, the aim of this review was to outline the key pathogenic aspects in
obesity-related knee OA and to present current understanding of pain mechanisms and
therapeutic approaches while commenting, where possible, on those that may be beneficial
in knee OA associated with metabolic syndrome.

2. Joint Alterations in Knee OA

Knee OA is a chronic degenerative joint disease that not only involves the joint cartilage
and the underlying subchondral bone, but also the synovial membrane, adjacent muscles
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and ligaments, as well as Hoffa’s fat pad in a pattern that has been termed ‘whole joint
disease’ [7,8].

Articular cartilage is a connective tissue structure built of specialized cells called
chondrocytes and an extracellular matrix (ECM) that is normally rich in water (more
than 70%) and also contains various organic components. These include collagen type
II, glycosamino-glycans (chondroitin sulfate and keratan sulfate) and protein molecules
such as decorin, aggrecan and fibromodulin. These ECM components are produced by
chondrocytes and their synthesis is the subject of finely tuned regulation that involves
various proteolytic enzymes [8–10]. The organization of the ECM is quite complex. A
network of collagen type II fibrils is intertwined with proteoglycan aggregates made up of
a ‘core protein’ (aggrecan) that is bound to glycosamino-glycans and further connected to a
‘backbone’ of hyaluronic acid [8,9]. The disruption of this complex organization marks the
onset of OA. Two groups of proteolytic enzymes have been implicated in the degradation
of the cartilage ECM. A Disintegrin and Metalloproteinase with Thrombospondin motifs
(ADAMTS) is a family of enzymes responsible for the cleavage of aggrecan from the
hyaluronic acid (in particular ADAMTS-4 and 5), while matrix metalloproteinases (MMPs),
especially MMP-13, break down the collagen network [11,12]. These ECM alterations then
lead to proliferation and hypertrophy of the chondrocytes whose ‘pro-synthetic’ phenotype
is changed into a ‘pro-inflammatory’ one, leading to the production of potent mediators of
inflammation such as interleukin 6 (IL-6), tumor necrosis factor-alpha (TNFα), interleukin
1β (IL-1β), which further stimulate the breakdown of the ECM, contribute to the occurrence
of pain and activate the synovial membrane [8,13]. These pro-inflammatory mediators
upregulate the production of ADAMTS, MMPs, cathepsins, cyclooxygenase-2 (COX-2) as
well as reactive oxygen species (ROS) which can directly cleave collagen and aggrecan,
thereby intensifying cartilage degradation [14]. The significance of proteolytic enzymes
has also been demonstrated in animal studies, where knockout mice lacking ADAMTS-5
or MMP-13 did not develop experimental OA [15,16]. In addition to ECM degradation by
ADAMTS and MMPs, the de novo synthesis of collagen type II and aggrecan is suppressed
in chondrocytes of joints with OA [17].

A major molecular pathway implicated in the development of OA is the nuclear
factor kappa-B (NF-kB) signaling pathway [18]. The nuclear translocation of NF-kB and its
binding to regulatory segments in DNA initiates the cascade of cartilage degradation, as
it leads to increased production of MMP-1, MMP-9 and MMP-13, ADAMTS-4 and 5 and
secretion of the pro-inflammatory cytokines, which is then further stimulated through a
positive feedback loop [19,20]. The mitogen-activated protein kinase (MAPK) pathway has
been shown to upregulate the release of MMP-1 and MMP-13, increase collagen degradation
and yield higher levels of TNFα and IL-1β through activation of regulatory gene p38 [21].
In addition, Wnt/β-catenin is another molecular pathway with a key role in OA. Upon
binding to its receptor, Wnt leads to the activation of proteins which inhibit the cleavage of
β-catenin and allow it to translocate into the nucleus. This is associated with an increase
in MMP-13, ADAMTS-4 and 5 and reduced cartilage thickness [22]. Furthermore, Wnt/β-
catenin inhibition has been shown to reduce cartilage degradation and ameliorate OA
severity in a mouse model [23].

Articular cartilage degradation, however, is not the only hallmark of OA. Subchondral
bone changes in the early stages of OA include remodeling of the subchondral plate, in-
creased porosity, decreased thickness of the trabeculae and bone mineral density. Late-stage
OA, on the other hand, is characterized by subchondral bone sclerosis with increased tra-
becular thickness [24,25]. In addition, subchondral bone cysts in weight-bearing segments
of the joint have been described as containing a high number of osteoblasts, osteoclasts
and osteoprogenitor cells, which indicates significant bone turnover [26]. These osteoblasts
show stronger alkaline phosphatase activity and release higher levels of transforming
growth factor β1 (TGFβ1), insulin-like growth factor 1 (IGF1), vascular endothelial growth
factor (VEGF) and receptor activator of nuclear factor kappa beta-ligand (RANKL) com-
pared to normal osteoblasts [25]. Synovial inflammation has been associated with pain,
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increased cartilage degradation and radiographic progression with narrowing of the joint
space [8,27]. The synovium of OA joints is rich in macrophages, mast cells, T- and B-cells
and the synovial fluid contains a variety of pro-inflammatory mediators, including TNFα,
IL-6, IL-1β, TGFβ1, VEGF, leukotrienes and prostaglandins, which can stimulate the release
of proteolytic enzymes by chondrocytes [27–30]. The role of synovial macrophages in
particular has been widely investigated in OA. Their ability to recognize danger-associated
molecular patterns (DAMPs) such as cartilage fragments and intracellular proteins from
damaged cells leads to an increased secretion of pro-inflammatory cytokines [31]. Clas-
sically, two distinct phenotypes of synovial macrophages have been described. M1, or
pro-inflammatory macrophages, have been associated with progression of OA through
amplification of MMP-1 and 3 and ADAMTS-4 and 5 and downregulation of collagen
and aggrecan synthesis. M2, or anti-inflammatory macrophages promote a ‘protective
environment’ in the OA joint through secretion of IL-4 and 10 [31]. The M1/M2 ratio
has been found to be markedly elevated in OA knees and correlates with radiographic
progression [32]. Finally, pathological manifestations in Hoffa’s fat pad include an in-
crease in vascularization and fibrosis, thickening of the interlobular septa, infiltration of
inflammatory cells and higher levels of VEGF and IL-6 [33].

3. The Link between Obesity and Knee OA

While aging remains the primary cause for development of OA, overweight (defined
as a body mass index (BMI) > 25 kg/m2) and obesity (defined as a BMI > 30 kg/m2)
represent major risk factors associated with knee OA [2,3,34]. In fact, obesity in younger
age groups (20–29 and 30–39) has been associated with a higher incidence of knee but not
of hip OA, suggesting that the impact of obesity predates that of physiological aging [35].
In addition, higher pain scores, impaired mobility and lower physical activity have all
been associated with increased BMI levels [3]. The higher mechanical load exerted on
the knees as weight-bearing joints leads to impaired cartilage homeostasis [2]. Animal
studies found this to be associated with reduced cartilage thickness, rapid degeneration,
increased subchondral bone thickness and occurrence of bone marrow lesions [36,37].
Weight overloading of joints has been shown to upregulate the secretion of TNFα and
IL-1β thus mediating the degradation of cartilage ECM [38]. Furthermore, the higher
thigh girth seen in overweight patients changes the alignment of lower leg joints—greater
abduction of the hip and varus deformity of the knee lead to predominant load transfer
along the medial portion of the knee where articular cartilage suffers earlier damage [2].
While increased body weight leading to altered mechanical load on the knees can certainly
account for some of the risk of OA development, obesity has also been implicated in OA
of non-weight-bearing joints which hints at the role of its systemic effects [3]. Different
measurements of increased body weight such as BMI, fat percentage, abdominal obesity
and amount of visceral abdominal tissue have all been associated with development of
hand OA, while higher BMI correlates with pain intensity in subjects with hand OA [38].
In fact, it has been proposed that obesity’s role in the development and progression of
OA combines the impact of increased body weight and the establishment of a chronic
‘micro-inflammatory state’ [39]. Therefore, obesity-related OA can be categorized as a
separate type of secondary OA, different from aging-associated primary OA and other
cases of OA secondary to trauma or inflammatory arthritis.

Recent studies have elaborated on the role of adipose tissue as a potential source of
cytokines, chemokines and other mediators, collectively known as adipokines [40]. These
mediators promote either cartilage degradation or the preservation of its integrity through
complex interactions (Table 1) [38,40]. In addition, obesity leads to a change in the cellular
profile of resident macrophages, from the anti-inflammatory M2 phenotype to the pro-
inflammatory M1 phenotype, which stimulates the release of pro-inflammatory cytokines
such as TNFα, IL-6 and IL-1β [41].
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Table 1. Major adipokines implicated in obesity-related knee OA and their impact.

Adipokine Proposed Role in Knee OA

Adiponectin Protective; decreases the levels of TNFα; lowers IL-1β-stimulated expression of
MMP-13; promotes TIMP-2 which inhibits MMP-2 and ADAMTS.

Leptin Harmful; upregulates IL-6, IL-1β, prostaglandin E2, MMP-1, 3, 9 and 13;
mediates subchondral bone remodeling; correlates with higher pain score.

Resistin Harmful; upregulates MMPs and pro-inflammatory cytokines; correlates with
development of cartilage and bone marrow lesions and higher pain score.

Visfatin Harmful; upregulates TNFα, IL-6, IL-1β, MMP-3 and 13 and ADAMTS-4 and 5;
correlates with structural damage and OA symptoms.

ADAMTS–A Disintegrin and Metalloproteinase with Thrombospondin motifs; IL-1β–interleukin-1 beta; IL-6–
interleukin-6; MMP–matrix metalloproteinase; TIMP–tissue inhibitor of matrix metalloproteinase-2; TNFα–tumor
necrosis factor alpha.

One major adipokine implicated in the development of knee OA with an apparently
contrasting impact is adiponectin. Higher serum levels of adiponectin have been associated
with the formation of osteophytes, narrowing of the joint space and higher radiographic
score [42]. On the other hand, adiponectin appears to have anti-inflammatory properties
by altering the phenotype of resident adipose tissue macrophages from M1 to M2 and by
decreasing the levels of TNFα [43]. Moreover, adiponectin has been shown to lower serum
levels of triglycerides and free fatty acids, thereby reducing the level of oxidative stress [44].
At the joint level, adiponectin upregulates the expression of the tissue inhibitor of MMP-2
(TIMP-2), which also counters the action of ADAMTS and inhibits the IL-1β-stimulated
expression of MMP-13 [44,45].

The serum levels of another major adipokine, leptin, are also increased in overweight
patients [46]. They correlate with a higher BMI, a higher Western Ontario and McMaster
Universities Arthritis Index (WOMAC) pain score and structural damage [47]. On the other
hand, the decrease of serum leptin seen in weight loss has been associated with the improve-
ment of patients’ symptoms [46]. Chondrocytes from OA joints have also demonstrated
higher leptin levels and this local increase in the concentration of this particular adipokine
upregulates a plethora of pro-inflammatory cytokines such as IL-6, IL-1β, vascular cell
adhesion molecule-1 (VCAM-1) and prostaglandin E2, as well as multiple MMP subtypes
(namely MMP-1, 3, 9 and 13) by chondrocytes, which promote cartilage degradation [48,49].
In addition, leptin stimulates synovial fibroblasts to release IL-6 and IL-8 and mediates
subchondral bone remodeling by increasing the alkaline phosphatase activity of osteoblasts,
where its expression is higher than that of normal osteoblasts [50].

Resistin, an adipokine associated with the progression and severity of knee OA, drives
the production of MMPs and pro-inflammatory cytokines by chondrocytes and promotes
structural damage [51–53]. Its serum levels are higher in OA patients compared to healthy
controls and correlate with the development of cartilage defects and bone marrow lesions,
which are associated with higher pain score and more pronounced structural alterations [53].
Visfatin is a pro-inflammatory adipokine implicated in the pathogenesis of OA through
its upregulation of TNFα, IL-6, IL-1β, MMP-3 and 13 and ADAMTS-4 and 5. It is among
the major promoters of cartilage degradation by inhibiting the synthesis of collagen type II
and proteoglycans with high molecular weight. Serum and synovial fluid levels of visfatin
show a positive correlation with structural damage, markers indicating degradation of
collagen type II and aggrecan, CRP levels and OA symptoms [54].

Dyslipidemia, another major aspect of obesity, as well as the associated lipotoxic-
ity have recently been implicated in OA [55,56]. Altered lipid metabolism and an up-
regulation of two key enzymes—25-hydroxycholesterol 7α-hydroxylase and cholesterol
25-hydroxylase—have been reported in OA and likely play a key role in structural dam-
age through the promotion of MMP and ADAMTS. This, in turn, has been associated
with structural changes such as synovitis, formation of osteophytes and subchondral
bone sclerosis [57]. Cartilage degradation is also worsened through the action of reactive
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oxygen species (ROS) and free fatty acids which induce mitochondrial dysfunction in
chondrocytes and stimulate the release of pro-inflammatory cytokines [58–60]. A recent
cross-sectional study found higher levels of total cholesterol, triglycerides and low-density
lipoprotein (LDL) in patients with symptomatic knee OA [61]. These data confirmed earlier
observations that hypertriglyceridemia and decreased high-density lipoprotein (HDL) are
associated with more severe knee pain [62]. In addition, higher levels of LDL provoke
synovial inflammation and ectopic bone formation by stimulating synovial cells and are
associated with higher knee pain [55].

Age-related muscle tissue loss and dysfunction also play a key role in the development
of knee OA. However, it is a special type of body composition entity, known as sarcopenic
obesity, which has recently been studied in the context of knee OA and appears to be more
tightly associated with it than non-sarcopenic obesity [63]. It refers to cases in which the
increase in body weight caused by obesity is compensated for by a loss of muscle mass [63].
Sarcopenic obesity has a complex pathogenesis which is influenced by age-related changes
in physical activity, nutrition and hormonal profile (such as altered secretion of insulin,
parathyroid hormone, sex hormones and vitamin D) [63]. Adipokines, as mediators of
systemic chronic inflammation, are another factor behind progressive muscle loss. The
serum levels of leptin are negatively correlated with skeletal muscle mass and are increased
in subjects with sarcopenic obesity [64]. This is thought to be a result of decreased number
of leptin receptors and development of leptin resistance, which in turn causes elevated
systemic levels of TNFα, IL-6 and promotes insulin resistance [64]. Conversely, high
adiponectin levels have been reported in the serum of sarcopenic subjects as a compensatory
mechanism aimed at countering the breakdown of their muscle proteins [65]. Furthermore,
adiponectin levels are low in obese patients and subjects with insulin resistance [64]. This
suggests that obese patients who subsequently develop sarcopenia would have low serum
adiponectin levels and thus be unable to compensate for muscle loss. Sarcopenia has
recently been found in as many as 45.2% of cases of knee OA, which is twice as high as in
healthy controls [66]. A possible pathogenic mechanism linking the two entities could be
an impaired afferent input from the OA knee leading to an altered efferent motor neuron
impact on the quadriceps [66]. The latter causes quadricep inhibition and weakness and is
a separate risk factor for knee OA progression and OA-related pain.

4. Pain in Knee OA

While the hallmark of OA is the degradation of articular cartilage, blood vessels and
nerve endings are not present inside the cartilage and so it cannot generate pain sensation
directly [67,68]. However, the synovium, joint capsule, adjacent ligaments, subchondral
bone and Hoffa’s fat pad are all richly innervated by sensory and sympathetic nerve fibers
and can produce nociceptive pain. Nociceptor nerve terminals register stimuli of mechanic,
chemical or thermal origin and release an array of neuropeptides, including substance P
(SP) and calcitonin gene-related peptide (CGRP) [69]. The pain signal is then transmitted
along the dorsal root ganglia to the posterior horn of the spinal cord and the bodies of
the sensory neurons, leading to an upregulation of the NOD-like receptor (NLR) family
pyrin domain—containing protein 3 (NLRP3) inflammasome, C-C motif chemokine ligand
2 (CCL2) and its receptor (CCR2) and the Wnt/β-catenin pathway [68]. Additional local
release of SP and CGRP recruits second-order neurons through which the pain stimulus is
ultimately conveyed via ascending pathways to the central nervous system (CNS) where
the conscious awareness of pain takes place [70–72].

Apart from nociceptive pain arising from damaged tissue, knee pain in OA may
also be driven by neuropathic pathways [68]. Cytokines such as TNFα, IL-6, IL-1β and
nerve growth factor (NGF) and chemokines such as CCL2 are implicated not only in the
occurrence of nociceptive pain but also in the peripheral sensitization of sensory nerve
fibers [73]. This persistence of the pain stimulus ultimately causes central sensitization
leading to hyperalgesia and tenderness around the joint, which is typical of neuropathic
pain [70,71]. These findings are supported by the fact that patients with less severe joint
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alterations may experience debilitating persistent joint pain [74]. In addition, pain intensity
and central sensitization in OA patients were positively correlated with NGF levels in
the synovial fluid [75]. While OA pain is usually located at the site of the affected joint
and elicited during weight bearing, exercise, walking and climbing or descending stairs
and is relieved at rest, increased central sensitization leading to neuropathic pain may be
associated with pain at rest, poorly located pain around the joint structures and postopera-
tive pain persistence following total joint arthroplasty [68,75,76]. Multiple pain mediators
including growth factors, cytokines and chemokines have been studied in the context of
both nociceptive and neuropathic pathways in OA and are reviewed below.

NGF is a primary cytokine regulating pain stimulus transduction which is upregulated
in OA joints through increased mechanical stress and the action of IL-1β TNFα and visfatin,
which promote its synthesis by synoviocytes, chondrocytes, macrophages, mast cells and
neutrophils [77,78]. NGF acts on tropomyosin receptor kinase A (TrkA) which leads to the
upregulation of an array of inflammatory cytokines, as well as neurotransmitters such as
SP and CGRP, which are involved both in peripheral and central pain mechanisms. Knee
OA models based on destabilization of the medial meniscus have been associated with
higher expression of NGF and pain-related behavioral changes in mice [79]. A recent study
on a model of knee OA induced by medial meniscectomy found that NGF expression in
the synovium increased in early OA and subsequently decreased in advanced stages but
continued to increase in osteochondral channels and bone marrow [80]. These changes
were mirrored by similar time- and site-specific increases in CGRP-mediated sensory
innervation [80]. Consequently, a number of clinical trials attempted to use anti-NGF
antibodies for treatment of OA but results of rapidly progressive cartilage degradation
halted these investigations. These therapeutic interventions will be discussed further below.

The generation and maintenance of pain patterns in OA including mechanical allody-
nia and movement-evoked pain are associated with molecular changes in sensory neurons
of the dorsal root ganglia, including chemokines and their receptors [68]. CCL2 and its
interaction with receptor CCR2 has recently been implicated in the development of knee
OA pain through local accumulation of macrophages and monocytes [81]. On the other
hand, blockade of CCL2/CCR2 signaling led to a decrease in macrophage recruitment
and ameliorated the severity of knee synovitis and cartilage lesions in a mouse model of
OA [82]. The intra-articular injection of recombinant CCL2 caused knee hyperalgesia by
directly stimulating sensory neurons rich in CCR2. Conversely, the administration of a
receptor antagonist resolved the established hyperalgesia [83]. These data suggest that
CCL2 acts both through local recruitment of inflammatory cells and subsequent action
of mediators on nociceptors, as well as through direct activation of sensory neurons and
upregulated afferent pain transduction.

CGRP is a neuropeptide largely found in nociceptive neurons in the dorsal root ganglia
and in nerve fibers reaching the posterior horn of the spinal cord [68]. In addition, CGRP
acts upon synoviocytes, endothelial and inflammatory cells, thus influencing local angio-
genesis and inflammation. Elevated levels of CGRP have been found in the serum, synovial
fluid and synovial tissue of OA patients and have been correlated with pain intensity [84].
Moreover, CGRP-containing nerve fibers can directly regulate bone remodeling through
promotion of osteogenesis and inhibition of osteoclastogenesis [84]. These findings are
supported by the established association between serum and synovial fluid levels of CGRP
and osteophyte formation in the knee as a whole and in the medial compartment alone [85].
In addition, as OA progresses, sensory nerve terminals rich in CGRP grow along newly
formed blood vessels into channels that penetrate articular cartilage [86]. Therefore, joint
structures that are normally not innervated might subsequently become sources of pain [87].
Nevertheless, the precise role of CGRP in OA pain remains to be fully elucidated.

As outlined above, pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6 have
been well studied in the pathogenesis of OA, however their role in pain mechanisms
remain controversial. Notably, clinical trials of anti-cytokine medication in OA patients
did not lead to satisfactory pain relief [68]. An earlier study found no correlation between
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IL-6 levels and WOMAC pain score [88]. This was later challenged by other authors
who established a statistically significant positive correlation between IL-6 levels in the
synovial fluid and WOMAC pain score [89]. One study found that while synovial levels
of TNFα correlated with total WOMAC score, pain during movement and while at rest,
synovial levels of IL-1β were inversely associated with knee pain [90]. Injection of TNF
induced persistent sensitization of peripheral sensory neurons in the knee, assessed through
development of mechanical allodynia. The concomitant administration of TNFα-inhibitor
etanercept or a COX-inhibitor reversed that development [91]. It was later reported that
IL-1β and IL-6 were negatively correlated with knee pain score and Kellgren-Lawrence
score and hypothesized that pain in the early stage of knee OA may be of inflammatory
origin and driven by the above cytokines. Conversely, in late-stage OA other sources
of pain rather than inflammation need to be investigated [92]. These observations are
further supported by an earlier report which found that levels of TNFα and IL-6 were
significantly higher in early as opposed to late-stage knee OA [93]. IL-1β has been shown to
increase the production of proteolytic enzymes by chondrocytes and to promote osteoclast
differentiation [94]. In addition, it is directly involved in pain genesis by upregulating the
expression of NGF [95]. A recent paper on an experimental model of knee OA found that
a deficiency in type 1 interleukin-1 receptor (IL-1R1) did not alter the course of cartilage
degradation but prevented the occurrence of pain [96]. The NLRP3 inflammasome is part of
the innate immune system which regulates active IL-1β [68]. As previously demonstrated,
the activation of the inflammasome leads to an upregulation of IL-1β, followed by the
release of other pro-inflammatory cytokines and the synthesis of proteolytic enzymes
such as MMP-13 and ADAMTS5, which directly cause synovial inflammation and cartilage
degradation [97]. On the other hand, OA-related risk factors such as oxidized LDL, elevated
cholesterol, hydroxyapatite crystals and others are recognized as DAMPs which trigger
the NLRP3 pathway and lead to a specialized type of programmed cell death of the
chondrocytes, known as pyroptosis [98]. These pyroptotic chondrocytes release IL-1β
and TNFα, which in turn promote the release of MMPs and ADAMTS causing further
cartilage damage in a vicious cycle. In addition, the crosstalk between neutrophils and
macrophages may also be implicated. Neutrophil extracellular traps (NETs) may prime
macrophages and promote the activation of the NLRP3 inflammasome, which upregulates
IL-1β and IL-18 that further stimulate neutrophils to form NETs—A cascade which has
been recently studied in inflammatory conditions such as atherosclerosis and rheumatoid
arthritis [99,100]. Since inflammasomes are involved in the low-grade inflammation seen
in obesity and metabolic syndrome, they are likely key structures in the development of
obesity-related OA. The inhibition of the NLRP3 inflammasome in a rat model of knee
OA via an intra-articular injection of the anti-inflammatory molecule dexmedetomidine
improved pain and cartilage tissue damage, which was associated with lower levels of
TNFα, IL-1β, IL-6, MMP-13 and an upregulation of collagen type II [101].

These data underscore the complexity of pain generation and maintenance in OA and
provide a platform for further studies into pain mechanisms in obesity-related knee OA.
As outlined above, obesity-related knee OA is associated with higher levels of the pro-
inflammatory cytokines (and, therefore, with increased joint pain and structural damage)
and an altered adipokine profile. To the best of our knowledge, the link between adipokines
and pain at the molecular level has only been studied in a 2014 paper, where the authors
found that visfatin increases the synthesis of NGF and can modulate pain occurrence [77].
Clinical outcome-based studies identified that a higher degree of obesity is associated with
a higher pain and disability score [3]. An imaging-based study found that the occurrence
of bone marrow lesions on magnetic resonance imaging (MRI) was associated with various
components of dyslipidemia, including hypercholesterolemia, hypertriglyceridemia and
low levels of high-density lipoproteins (HDL) [102]. A recent paper by Valdes attempted to
‘connect the dots’ between obesity and OA pain on the molecular level [103]. The transient
receptor potential cation channel vanilloid subfamily member 1 (TRPV1) is involved in the
modulation of nociceptive pain afferents to the spinal cord and has been associated with OA
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pain. TRPV1 knockout mice did not develop hypertension and impaired glucose tolerance
and did not have an increased nociception when placed on a high-fat diet compared to
controlled wild-type mice on the same diet, thus suggesting a common molecular pathway
between OA and metabolic syndrome [104]. The action of some peripheral endogenous
cannabinoids appears to provide a second link between OA and obesity. These mediators
control appetite and energy metabolism and can reduce pain by acting on TRPV1 [105].
Cannabinoid receptor antagonists with peripheral action reduce body weight and improve
dyslipidemia and insulin resistance and may prove beneficial as analgesics in OA [106]. The
gut microbiome and its function provide another interesting association between metabolic
syndrome and pain in OA. It has recently been demonstrated that gut microbiome dysbiosis
is associated with OA pain and structural damage [107]. On the other hand, modulation of
the gut microbiome via a higher dietary fiber intake is associated with lower body weight,
total cholesterol and systolic blood pressure and protects against metabolic syndrome,
coronary artery disease and diabetes [103]. In addition, an experimental study in mice
revealed that obesity can itself modulate the gut microbiome by increasing the number
of key pro-inflammatory species, which then drive the onset of systemic inflammation,
accompanied by macrophage recruitment to the synovium and progression of OA dam-
age [108]. These common molecular mechanisms, however, merit further investigation in
future studies.

5. Therapeutic Approaches in Knee OA with Possible Benefit in Obesity-Related Knee OA

While recent years have seen an abundant amount of research into the pathogenesis
of obesity-related OA, no specific therapeutic guidelines have been published [6]. The
American College of Rheumatology (ACR) and the Osteoarthritis Research Society Interna-
tional (OARSI) have regularly updated their guidelines for the management of knee OA
in general and they should be applied to obesity-related OA as well (Table 2) [109,110].
Nevertheless, before deciding on a particular therapeutic approach one should consider
any possible adverse outcomes stemming from other possible obesity-associated conditions
such as hypertension, insulin resistance or diabetes and dyslipidemia, to name a few.

Both ACR and OARSI guidelines strongly recommend exercise and weight loss which
are of particular importance in subjects with obesity-related knee OA. Weight loss of ≥5%
has been associated with better functional improvement and less pain intensity [109].
Another study found that losing between 10 and 20% of baseline body weight had a better
impact on clinical and mechanical outcome as opposed to weight loss of <10%, and the
results were statistically significant [111]. A randomized control trial of 89 patients with
obesity and knee OA found that subjects who had adhered to a low-calorie diet and were
frequently followed by a dietician achieved a mean weight loss of 10.9 kg and a statistically
significant decrease in the WOMAC pain score [112]. Furthermore, weight loss decreases
the impact of mechanical load on the knee and strategies to achieve it are a major element
of efforts to slow down knee OA progression [2]. Literature data suggest that weight loss is
associated with structural benefits in the knee such as increased proteoglycan content in the
ECM and reduction in cartilage thickness loss, as well as increased serum levels of cartilage
synthesis markers and decreased serum levels of cartilage degradation markers [113,114].
In one randomized control trial, 289 obese subjects were instructed to follow an exercise
program aimed at strengthening the quadriceps over a period of two years, which was
associated with a statistically significant decrease in knee pain [115]. Resistance training is
also important in promoting muscle strength which improves joint mobility and reduces
pain in 50–70% of patients with obesity-related knee OA [2]. Finally, exercise and weight
loss are pivotal in the management of traditional cardiovascular risk factors associated with
obesity [6].
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Table 2. ACR and OARSI guidelines on the management of knee osteoarthritis by strength of
recommendation [109,110].

Type of Recommendation ACR OARSI

Strongly recommended

Exercise
Self-efficacy and
self-management
programs
Weight loss
Cane
Tibiofemoral knee brace
Tai Chi
Oral and topical NSAIDs
Intraarticular CSs

Core recommendation–Arthritis
Education; Structured Land-Based
Exercise Programs (Type
1–strengthening and/or cardio
and/or balance
training/neuromuscular exercise OR
Type 2–Mind-body Exercise including
Tai Chi or Yoga) with or without
Dietary Weight Management
Topical NSAIDs

Conditionally
recommended

Heat, Therapeutic cooling
Cognitive behavioral
therapy
Acupuncture
Kinesiotaping
Balance training
Patellofemoral knee brace
Yoga
Acetaminophen
Tramadol
Duloxetine
Topical capsaicin

Aquatic exercise
Gait aids
Self-management programs
Cognitive behavioral therapy with
exercise
Non-selective NSAIDs with or
without PPIs (excluding patients with
GI or CV comorbidities)
COX-2 inhibitors (excluding patients
with CV comorbidities)
Intraarticular CSs
Intraarticular hyaluronic acid

COX-2–cyclooxygenase-2; CSs–corticosteroids; CV–cardiovascular; GI–gastrointestinal; NSAIDs–non-steroidal
anti-inflammatory drugs; PPIs–proton pump inhibitors.

Oral non-steroidal anti-inflammatory drugs (NSAIDs) and intra-articular injections
of corticosteroids (CSs) are strongly recommended in knee OA in the general population.
However, such drugs should be used with caution in patients with obesity-related knee
OA who have a greater cardiovascular risk due to comorbidities associated with metabolic
syndrome [6]. It is therefore advisable to prefer topical over oral NSAIDs in these patients,
considering their equivalent therapeutic effect but more favorable safety profile due to a
much slower absorption [116]. Intra-articular injections of either hyaluronic acid or CSs
have been universally used with a favourable therapeutic outcome and few adverse effects.
ACR’s guidelines, however, while strongly recommending the use of intra-articular CSs,
do not include a statement on the use of hyaluronic acid [109]. OARSI’s guidelines, on the
other hand, suggest the use of intra-articular injections of CSs as a means to provide short-
term pain relief, whereas injections of hyaluronic acid are recommended for pain relief
over a longer period (12 weeks and beyond) and are considered a safer option compared to
repeated CS injections [110]. However, one must consider that the effect of intra-articular
injections is lower in patients with higher BMI [6]. The use of anti-obesity drugs has been
suggested for patients with BMI > 30 but has not yet been fully studied in associated knee
OA [117].

An interesting therapeutic approach has recently been suggested based on the molecu-
lar subtype of knee OA and identified pathogenic mechanisms [118]. The authors distin-
guished between four separate subtypes of progressive knee OA, each represented by the
presence of distinct molecular profiles, summarized in Table 3. In addition, they suggested
pathogenesis-based preferential treatment options, which are indicated in Table 4.
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Table 3. Molecular subtypes of knee osteoarthritis and key mediators [118].

Knee Osteoarthritis Subtype Representative Molecules

Cartilage degradation-driven subtype CTX-II, C2C, C2M, C-Col X

Bone remodeling-driven subtype ALP, CTX-I, C1M, NTX-I

Pain-driven subtype Bradykinin, CGRP, hs-CRP, NGF

Inflammation-driven subtype IL-1β, IL-1Ra, IL-6, TNFα
ALP–alkaline phosphatase; CGRP–calcitonin gene-related peptide; CTX-I–C-telopeptide fragments of collagen
type I; CTX-II–C-telopeptide fragments of collagen type II; C2C–cleavage neoepitope of collagen type II; C1M–
fragments of collagen type I degraded my matrix metalloproteinases; C2M–fragments of collagen type II degraded
my matrix metalloproteinases; C-Col X–C-terminus of collagen type X; hs-CRP–high sensitive C-reactive protein;
IL-1β–interleukin-1 beta; IL-1Ra–interleukin-1 receptor antagonist; IL-6–interleukin-6; NGF–nerve growth factor;
NTX-I–N-telopeptide of collagen type I; TNFα–tumor necrosis factor alpha.

Table 4. Potential pathogenesis-based preferential therapeutic approaches based on molecular
subtype of knee osteoarthritis [118].

Knee Osteoarthritis Subtype Treatment Principle Potential Beneficial
Therapies

Cartilage degradation-driven
subtype

Supplementation of cartilage
extracellular matrix
components

Hyaluronic acid, chondroitin,
glucosamine, undenatured
collagen type II

Bone remodeling-driven
subtype Anti-bone resorption Bisphosphonates, calcitonin,

osteoprotegerin

Pain-driven subtype Analgesia, anti-inflammation
NSAIDs, opioids, CGRP
inhibitor, NGF inhibitor,
capsaicin

Inflammation-driven subtype Anti-inflammation
TNFα-inhibitor, IL-1-inhibitor,
IL-1Ra, NSAIDs,
COX-2-inhibitor

CGRP–calcitonin gene-related peptide; COX-2–cyclooxygenase 2; IL-1–interleukin-1; IL-1Ra–interleukin-1 receptor
antagonist; NSAIDs–non-steroidal anti-inflammatory drugs; NGF–nerve growth factor.

Considering that obesity-related knee OA shares features of all the above molecular
subtypes, it could be difficult to point to a single therapeutic approach. A comprehen-
sive literature review on the repeated intra-articular administration of hyaluronic acid
at 6-month-long intervals found pain reduction from baseline and sustained or further
reduced pain over the course of repeated injections, with the longest follow up period
being 25 months [119]. A post-hoc analysis of the prospective, double-blind, randomized,
multicenter and parallel-group ‘HAV-2012 trial’ compared pain and function scores before
and six months after intra-articular viscosupplementation, and juxtaposed the results with
weight status (obese vs. non-obese) and structural changes (assessed through mild, mod-
erate or severe radiological severity based on OARSI’s 1, 2 or 3 grade) [120]. The study
found that WOMAC pain score decreased significantly in all patient subgroups—obese,
OARSI grade 3, obese and OARSI grade 3, neither obese nor OARSI grade 3. However,
the WOMAC pain score was significantly lower in non-obese versus obese patients and in
patients with knee OA OARSI grade 1 or 2 versus grade 3. Still, in patients who responded
to treatment, the pain score at baseline and its subsequent decease were not related to
weight status and radiological severity. Therefore, the authors concluded that while it
was less likely for obese patients to respond to treatment, for those reporting benefit from
the therapy, pain relief would be similar to that in non-obese patients [120]. Based on
these findings, we would suggest that the intra-articular administration of hyaluronic acid
could be recommended in obese patients. However, if no clinical benefit (i.e., pain relief,
improved mobility) is reported by the patient at six months from baseline, then repeated
injections would not be advisable. A recent meta-analysis on a total of 3793 patients, 1067
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of whom received a combination of glucosamine and chondroitin as treatment for knee OA,
found a statistically significant improvement in the total WOMAC score and the joint space
narrowing in the combination group, but no difference in the pain score assessed on a visual
analog scale (VAS) [121]. Considering the need to avoid NSAIDs and CSs in patients with
obesity-related knee OA, glucosamine, chondroitin and some natural antioxidants such
as curcumin, oleuropein and ginger extracts, may be preferred owing to their favorable
benefit/risk ratio and potential positive impact on both metabolic syndrome and OA [6].
Experimental animal studies with curcumin showed a marked chondroprotective role via
suppression of aggrecan degradation, inhibition of MMP-3, 8 and 13 and ADAMTS-5 and
upregulation of the synthesis of collagen type II [122–124]. Oleuropein, a potent antioxi-
dant extracted from olive tree leaves and found in olive oil, has anti-obesity effects and
lowers systemic inflammation, blood pressure and cholesterol levels [125]. In a study on
human chondrocytes, oleuropein downregulated the IL-1β-induced activation of the NFκB
pathway and reduced the levels of MMP-1, MMP-13, and ADAMTS5, thus countering
cartilage matrix degradation [126]. However, a recent randomized control trial on 124
subjects with knee pain taking oleuropein as a dietary supplement on a daily basis for 6
months showed no difference to placebo with regard to serum levels of inflammatory and
cartilage remodeling biomarkers and a significant effect was only reported in a subgroup
of patients with severe walking pain at baseline [127].

As indicated in Table 4, bisphosphonates may have beneficial effect in knee OA of the
bone-remodeling subtype. One meta-analysis of seven randomized, placebo-controlled
trials of bisphosphonates in knee OA did not show an improvement in either symptoms
or radiographic progression [128]. However, the authors suggested that bisphosphonates
may be potentially beneficial in patients with high subchondral bone turnover. A recent
randomized, double-blinded, placebo-controlled trial of zoledronic acid in 223 participants
with knee OA, which used bone marrow lesions seen on MRI as evidence of subchondral
bone remodeling, found that an early infusion of zoledronic acid did not reduce knee
pain or the size of bone marrow lesions significantly over 24 months [129]. In addition, it
has been reported that bisphosphonates may slow down radiographic progression, but
their results were significant only in non-overweight patients with mild radiographic
damage at baseline [130]. Their secondary analysis in obese patients found no significant
effect [130]. These data show that the use of bisphosphonates in knee OA is likely not
sufficiently beneficial and there is currently not enough evidence to support their use in
cases of obesity-related knee OA. The use of calcitonin was also refuted by two randomized,
double-blind, multi-center, placebo-controlled trials, which found no effect on joint space
narrowing and non-significant effect on the total WOMAC score [131].

While initially considered especially promising in treating chronic OA pain, NGF
inhibitors demonstrated considerable side effects including osteonecrosis and progressive
cartilage damage, leading to a temporary suspension of clinical trials, which were resumed
in 2012 [68,132]. Currently, lower doses of the anti-NGF monoclonal antibody tanezumab
(2.5 to 5 mg, administered subcutaneously) have shown a statistically significant improve-
ment in WOMAC pain and WOMAC function score, while having a favorable safety profile
and an occurrence of rapidly-progressive OA in only 1.4–2.8% of subjects [133]. Another
strategy to limit the adverse effects of NGF blockade could be to target its receptor, TrKA.
A significant reduction in WOMAC pain and functional benefits has been reported in
patients with painful knee OA following intra-articular administration of a TrKA inhibitor
and an acceptable safety profile, with transient and self-limited reactions at the injection
site [134]. Another novel therapeutic strategy targets TRPV-1 through intra-articular in-
jections of capsaicin and resiniferatoxin (RTX). Highly purified synthetic trans-capsaicin,
which specifically targets TRPV1-containing pain nociceptors while sparing sensory fibers
for touch or pressure, has shown a rapid and significant impact on WOMAC walking pain
scores and a favorable safety profile [135,136]. An injectable form of RTX has recently been
developed and given a ‘breakthrough therapy’ status by the United States Food and Drug
Administration (FDA) [137]. It is currently being investigated for the treatment of knee OA
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pain in a Phase III clinical trial but preliminary results from the Phase IB trial showed that
83% of patients had a statistically significant, clinically meaningful decrease in the WOMAC
walking pain score [138]. Side effects included injection site pain, nausea, vomiting and
headache but were manageable and well tolerated [138]. Despite these promising data, a
separate analysis of these novel molecules in obesity-related knee OA is still lacking.

Anti-cytokines have long been studied as a possible disease-modifying treatment in
OA, however results remain controversial. An open-label randomized control trial compar-
ing the intra-articular administration of TNFα-inhibitor adalimumab versus hyaluronic
acid in patients with moderate to severe knee OA reported that pain improvement on
VAS and decrease of the WOMAC pain score were significantly greater in the adalimumab
group [139]. A similar study of etanercept versus hyaluronic acid in moderate to severe
knee OA also found a greater decrease in pain on VAS at post-injection weeks one and two
and in the WOMAC pain score on post-injection week four in the group treated with the
TNFα-inhibitor [140]. Conversely, the recent OKINADA randomized clinical trial on the
efficacy and safety of adalimumab in inflammatory OA of the knee found no significant
improvement in pain and joint function in patients with established radiographic knee
OA [141]. A novel drug currently under investigation in patients with painful knee OA
is the monoclonal antibody MEDI7352, which binds specifically to NGF and TNFα, thus
blocking both mediators of pain and inflammation [68]. Autologous conditioned serum
(ACS) is another therapeutic option with pain-modifying and anti-inflammatory properties,
mainly mediated by the blockade of IL-1′s action via the IL-1 receptor antagonist (IL-1Ra). It
is derived from the patient’s own blood and is rich in cytokines and growth factors secreted
by platelets upon stimulation with glass beads [142]. A crucial step in the preparation is
the incubation time, varying anywhere between 1 and 24 h, however a recent study found
that incubation for 3 h had the optimal ratio between anti- to pro-inflammatory cytokines,
with higher IL-1Ra levels and lower TNFα levels [143]. In addition, levels of IL-1Ra and
platelet-derived growth factor (PDGF) were significantly higher in ACS than in platelet-rich
plasma (PRP), suggesting better clinical efficacy [143]. Other authors compared the efficacy
of intra-articular administration of ACS, PRP, hyaluronic acid and GCs and found that
both blood-derived products performed better in terms of pain relief and functional im-
provement without a statistically significant difference between them [144]. Other studies,
however, showed higher pain reduction and functional improvement with ACS compared
to PRP, likely due to the higher IL-1Ra levels, decrease in IL-1β and improved synovial
fluid viscosity [145,146]. Furthermore, it has been found that 67% of subjects with painful
knee OA who had failed previous standard therapy, including physiotherapy and PRP,
had a reduction of pain assessed on VAS one month after administration of ACS and this
result persisted at 6 and 12 months of follow-up [147]. A notable finding from this study
was that responders had significantly higher levels of IL-1Ra in their ACS compared to
non-responders, underscoring the potential benefits of intra-articular IL-1β blockade in
knee OA [147]. These reports suggest that anti-cytokine therapy could have potential
benefits in obesity-related knee OA considering their role in maintaining the low-grade
inflammatory state characteristic of obesity, however they are yet to be studied in such
conditions. Finally, anti-obesity drugs have been proposed in patients with BMI > 30
and associated metabolic disorders, but their role in the therapy of concomitant knee OA
requires further investigation [47].

6. Conclusions

Obesity-related knee OA is a separate entity that is not simply related to increased
mechanical load but represents a disorder with complex pathogenesis driven by the chronic
micro-inflammatory state, altered adipokine profile and sarcopenia seen in obese indi-
viduals. It is associated with higher pain score, decreased joint functionality and poorer
quality of life. While recent years have seen a spike in research in that field, much remains
to be elucidated. Future studies should focus on possible correlations between serum
and synovial levels of adipokines such as leptin, resistin and adiponectin and mediators
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such as NGF and CGRP in order to address the molecular basis of already established
clinical associations between their expression and pain severity. These could be essential in
developing better pain management strategies. While current treatment guidelines do not
feature specific recommendations for obesity-related knee OA, there is sufficient evidence
to support exercise and weight loss. Viscosupplementation, glucosamine, chondroitin
and natural antioxidants may also have potential benefits, whereas oral NSAIDs and GC
injections should be avoided due to increased cardiovascular risk. Novel therapeutic ap-
proaches including intra-articular administration of inhibitors of key pain mediators such
as NGF and TRPV-1 have yielded promising early results but are yet to be studied in the
context of obesity.
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