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Abstract: The development of artificial intelligence (AI) has revolutionized medical care in recent
years and plays a vital role in a number of areas, such as diagnostics and forecasting. In this review,
we discuss the most promising areas of AI application to the field of bone tissue engineering and
prosthetics, which can drastically benefit from AI-assisted optimization and patient personaliza-
tion of implants and scaffolds in ways ranging from visualization and real-time monitoring to the
implantation cases prediction, thereby leveraging the compromise between specific architecture
decisions, material choice, and synthesis procedure. With the emphasized crucial role of accuracy
and robustness of developed AI algorithms, especially in bone tissue engineering, it was shown that
rigorous validation and testing, demanding large datasets and extensive clinical trials, are essential,
and we discuss how through developing multidisciplinary cooperation among biology, chemistry
with materials science, and AI, these challenges can be addressed.

Keywords: scaffolds; artificial intelligence; bone implants; machine learning; screening; biomedical
materials

1. Introduction

Ever-growing social development and the population aging pose a great demand for
advanced novel approaches for a patient’s treatment, including bone tissue restoration as
one of the primary clinical and socioeconomic needs; currently, bone defects and functional
disorders represent one of the global health problems [1]. Over the last 30 years, medicine
has been actively developing, thereby leveraging modern methods of treating bone injuries,
which are largely focused on replacing lost bone with allogeneic or autogenous bone grafts,
which are limited in many aspects [2].

Considering autogenic bone grafting, the amount of donor tissue and frequent compli-
cations at the donor site are the limiting factors. Regarding the case of allogeneic bone grafts,
cell-mediated immune reactions and possible pathogen transfer constitute a significant
problem [3].

The small volume of autogenic bone material, the long operating time, the risk of
high blood loss, the morbidity of donor sites, and the large invasiveness of the method
complicate the treatment of extensive bone defects with this approach [4]. On the other
hand, low osteogenicity, possible immunological reactions, and low mechanical strength
challenge the development of a synthetic material for these tasks. Nevertheless, tailoring
the porosity, biodegradation rate, bioactivity, osteoinductivity, osteoconductivity, and
mechanical properties of composites can address a range of problems in orthopedics.

The selection of the material for a bone implant can be approached in various ways.
Each material has a set of advantages and disadvantages, from which the optimal option
should be chosen for each specific task [5].
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Materials for bone tissue engineering can be divided into biotolerant, bioinert,
biodegradable, and bioactive according to their biocompatibility. Biotolerant materials
demonstrate acceptable biocompatibility with bone tissue but lack osteoconductive
properties. Although protein adhesion is observable on their surfaces, forming a secure
contact with bone tissue through osseointegration is not possible [6]. Such materials
are kept separated by the development of fibrous tissue induced by the release of ions
and chemical compounds from the implant. This category includes nearly all synthetic
polymers and most metals [7–10]. Bioinert materials are stable and do not interact with
body fluids. Similar to biotolerant materials, these implants are separated from the
tissues. However, under specific conditions, bioinert materials can establish a direct
functional or structural connection with bone tissue [11,12]. Biodegradable materials
dissolve in contact with body fluids. The decomposition products of their materials
are nontoxic and can be secreted through the kidneys. Bioactive materials can form
bonds with bone tissues directly, thereby creating an environment compatible with
osteogenesis [13–19]. These types of materials can be subdivided into osteoconductive
and osteoinductive. The former can stimulate the development a of new bone.

Materials for bone tissue engineering can be divided into inorganic, organic, and
composite materials according to their composition. Bioceramics based on aluminum
oxide and zirconium oxide are characterized by excellent biocompatibility, osteoconductive
properties, and corrosion resistance [5,17,19,20]. These materials have been successfully
used in orthopedics, especially for total hip and knee arthroplasty, due to their chemical
bioinertness, as well as high strength, hardness, and resistance to cracking and corrosion [5].
Bioactive glasses are another important class of bioceramics based on silicates. The 45S5
(bioglass) type contains 45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O, and 6.0 wt% P2O5.
The 45S5 type provides a higher bone regeneration rate compared to bioactive ceramics
based on Hap. After the implantation of bioactive glasses, they form a layer of amorphous
calcium phosphate or HAp on the implant surface [21]. This leads to an increased rate of
tissue binding. Moreover, the release of Si, Ca, P, and Na ions from silicate glasses upon dis-
solution stimulates osteogenesis, neovascularization/ angiogenesis, and enzymatic activity.
This has drawn significant attention, as they can be used to create functional materials.
For example, Sr-doped bioactive glass facilitates early in vivo angiogenesis by altering
the phenotype of inflammatory macrophages, while Ag-doped bioglass showed a clear
antimicrobial effect against both Gram-negative and Gram-positive bacteria [22]. Addition-
ally mesoporous bioactive glasses can be loaded with various drugs or biomolecules [23].
Natural biopolymers used as materials for the restoration of damaged bone tissues include
collagen, gelatin, chitosan, hyaluronic acid, silk fibers, and alginate [5,23,24]. All of them
are characterized by biocompatibility and biodegradability. These materials are typically
hydrophilic and form hydrogels with high water content. Natural biopolymers are subject
to preimplantation mineralization, which potentially makes them osteoinductive. However,
obtaining natural biopolymers involves using natural sources, thus raising concerns about
the variability of composition that affects their commercialization. Moreover, there are less
options to modify these materials to compensate for the low mechanical strength of natural
polymers [23].

A promising alternative to natural polymers is biodegradable synthetic polymers [25].
They are characterized by very high strength and stiffness, which are necessary for the
regeneration of bone tissues. The key factors of their degradation rate are regulated by
molecular weight, chemical composition, and crystallinity. It is essential to select an optimal
composition to avoid a bulk erosion process, thereby leading to premature breakdown
of scaffolds and even the sudden release of acidic degradation products that can cause a
strong inflammatory reaction [5]. In comparison to natural polymers, synthetic polymers
offer more opportunities for chemical modifications and molecular changes. For example,
the properties of hydrophilicity and hydrophobicity in synthetic polymers can be regulated,
thereby influencing their interaction with the physiological environment. The absence of
conjugated motifs that can control cell behavior in hydrophobic synthetic polymers leads to
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the predominance of osteoconductive rather than osteoinductive characteristics. However,
hydrophobicity reduces their immunogenicity [23].

Another promising direction is the production of composite materials containing
both organic and inorganic components. Combining different components in a composite
allows for the creation of a material with mechanical and biological properties that have
significantly better properties than those of individual components [5]. In recent work, mag-
netic mesoporous bioglass was combined with organic polymer poly(3-hydroxybutyrate)-
chitosan [26]. The authors produced ultrathin nanofibers with enhanced mechanical prop-
erties. Another report showed that the incorporation of barium-doped baghdadite bio-
ceramics into the polymer scaffold (Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and
poly(ε-caprolactone)) resulted in increased bioactivity and higher cell proliferation [27].

The vertebrate bone matrix is an intercellular substance of bone tissue with a high
concentration of calcium salts. The main mineral component of the vertebrate bone matrix
is the mineral hydroxyapatite (Ca10(PO4)6(OH)2) [28,29]. Therefore, HAp-based ceramics
are biocompatible, bioactive, and biodegradable in the body of the patient. Implants based
on such ceramics are an excellent alternative to autografts and allografts [30].

It has been scientifically proven that HAp can promote the ingrowth of new bone
through the mechanism of osteoconduction without causing any local or systemic toxicity,
inflammation, or reaction to a foreign body [31–34].

HAp has been widely used in rapidly developing bone tissue engineering [35,36],
thereby being a prominent alternative in one of the most promising areas of targeted
drug delivery [37]. The synthesis and application of HAp specifically for biomedical
applications [38,39] requires scientists to solve many problems. The main problem is the
choice of parameters for the synthesis of materials.

From a drug delivery point of view, developing and improving ceramics for use in
bone implant applications have become prominent [40]. The main directions were the
increase in the surface area of the material, as well as the production of porous scaffolds.
Advanced techniques were used to enhance control over the material architecture. Among
them, 3D printing and electrospinning offer simple ways to construct customized implants
with complex structures [41,42].

Bone scaffolds can provide mechanical properties akin to natural bone. During treat-
ment, the frame material is replaced by the patient’s bone tissue without the loss of mechan-
ical properties. The use of growth factors in porous and bioresorbable scaffolds stimulates
cell attachment proliferation and differentiation, and it accelerates tissue regeneration [43].
Furthermore, the ability of the framework to deliver biologically active molecules has an
effect on improving tissue regeneration [44].

Various requirements and characteristics are imposed on the scaffold material; it must
have good bioactivity, biodegradability, biocompatibility, and a suitable porous structure
that ensures cell proliferation, vascular germination, suitable surface morphology, and
other physicochemical properties [45,46].

To obtain an ideal scaffold, researchers previously had to use the trial-and-error
method, as shown on Figure 1, thus spending a lot of time and reagents. Today, artificial
intelligence (AI), including machine learning (ML), can provide alternative routes for
materials development and optimization [47].

The integration of modern computational methods for modeling the optimal mor-
phological and bioactive properties of scaffolds using AI plays a significant role in the
development of this research topic. The roadmap of AI application in medical chem-
istry is shown on Figure 2. The most common and proven in-practice technologies are
numerical modeling, deep neural networks, knowledge-based recommendation sys-
tems, computer vision, machine learning algorithms, solving table-based regression, and
classification tasks.
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alloys [50]. Using numerical modeling methods, it is possible to investigate the effect of 
bone ingrowth on the mechanical properties of titanium alloy frames [49]. The mechanical 
properties of the scaffold material, considering its microarchitecture and matrix material 
properties, can be predicted using the finite element method [50]. 
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In the last decade, the volume of biomedical data has increased dramatically, and the
development of medical technologies has jumped into the opportunities provided by the
computer era [48]. To search for information qualitatively and effectively, it is necessary
to choose an appropriate approach to process biomedical data. Deep learning (DL) is a
well-proven, effective method that surpasses traditional machine learning (ML) models
in a number of areas such as computer vision [49]. Today, tools based on artificial neural
networks (ANNs) have shown a high potential to predict the behavior and properties of
alloys [50]. Using numerical modeling methods, it is possible to investigate the effect of
bone ingrowth on the mechanical properties of titanium alloy frames [49]. The mechanical
properties of the scaffold material, considering its microarchitecture and matrix material
properties, can be predicted using the finite element method [50].
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These approaches can significantly reduce resource and time costs, as well as increase
the efficiency and speed of the production of scaffolds with unique properties for the end
user. The use of artificial intelligence in the synthesis and production of skeletons makes
it possible to simplify screening and diagnostic procedures significantly [51], optimize
experimental parameters needed to obtain the desired structural and bioactive properties
of materials [52], develop reliable models of the regeneration of living tissues [53], and
study the survival of the implant after installation [54].

In this paper, we discuss the most promising areas of the application of artificial
intelligence. Because biomedical data are difficult to access and process, neural networks
can assist scientists in analyzing and processing large datasets. Artificial intelligence
contributes significantly to the healthcare sector by identifying diseases and determining
the best treatment methods for patients.

In this review, we address the following questions:

• At what stages of tissue engineering is artificial intelligence used?
• What AI tools do scientists and medical professionals use?
• How does artificial intelligence help reduce the material’s development time?
• Most importantly, how does AI improve a patient’s quality of life?

2. Prediction of Implantation Cases

Despite the improvement in implant manufacturing technologies and the introduction
of new diagnostic protocols, there is a need to develop new methods for the preliminary
assessment of the condition to predict the successful survival of a single implant. The
intensive development of artificial intelligence (AI) technologies and the increased amount
of digital information available for analysis make it relevant to develop systems based on
neural networks for auxiliary diagnostics and forecasting. These methods are currently
being actively used in various healthcare fields [55].

The method of thematic modeling is used to structure digital information. Several
methods for topic modeling have been proposed in recent years, such as latent Dirichlet
analysis [56] or Top2vec [57], which is based on Word2vec [58]. All of these methods use
BERT embeddings; BERT stands for bidirectional encoder representations from transform-
ers and is a machine learning framework that is based on transformers, which are a deep
learning architecture [59,60].

AI has revolutionized medical care in the last decade and plays a vital role in a
number of areas, such as diagnostics and forecasting. Several methods have been used
in recent years in medical practice to prevent fractures [61]. Previously, osteoporosis was
already determined surgically by the T score from a bone mineral density (BMD) test [62].
BMD measured using dual-energy X-ray absorptiometry (DXA) reliably predicts serious
fractures [63]. The prognosis improves if combined with additional clinical risk factors.
Several risk prediction tools such as the Fracture Risk Assessment Tool (FRAX) [64], the
Garvan Fracture Risk Calculator [65], and the QFracture score [66] have been developed.

Earlier AI models used in medicine were based on logic and symbolic methods [67].
They lacked the accuracy and predictive capabilities of modern algorithmic models related
to ML and DL. ML is a type of artificial intelligence that allows machines to learn from
data without explicit programming. Its algorithms, such as Bayesian networks, ensemble
methods, and gradient boosting algorithms, are actively being used to contribute to the
health sector by discovering diseases and determining the best treatments for patients, such
as, for example, for dental implant necessity prediction [68].

DL is a subset of ML that adds up more layers in artificial neural networks (ANNs),
thereby increasing the model capacity to capture patterns in the data and solve more
complex tasks. ANNs represent a class of computational models inspired by the human
brain’s neural architecture and comprising interconnected nodes or artificial neurons
organized into layers. Each neuron processes information by summing weighted inputs,
applying an activation function, and transmitting the result to subsequent neurons. The
network’s connections, governed by adjustable weights, allow it to adapt and learn patterns
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from data. ANNs have been applied in various fields due to their capacity to model complex
relationships and patterns in data. ANN models help implantologists pay attention to minor
factors that affect the quality of the installation, predict the future survival of the implant,
and reduce the percentage of complications in all stages of treatment [69]. Implementing a
neural network for predicting the survival rate of single implants with a test accuracy of
94.48% contained an ANN model trained on more than 1600 patients’ data using the ReLU
and the softmax activation functions for probabilistic distribution. The model used 55 one
hot-encoded statistical factors of patients’ data to predict the possibility for two recognition
classes of implants: “survival” and “rejection”.

3. Selection of Candidate’s Material

Choosing the material for implantation is a nontrivial task. Obtaining a candidate
drug often requires the simultaneous improvement of various properties of the compound.
The pharmacophore modeling concept is simple and gives precise results in many ways.
A pharmacophore captures the spatial locations of the features and rigidly models the
interaction between the ligand and its binding site in a specific binding situation. The
result is a three-dimensional (3D) spatial arrangement of chemical elements, which is
derived using algorithms that consider rules derived from knowledge of chemistry [59].
The technology to obtain three-dimensional pharmacophores is an essential method of
drug detection [70]. To preserve the good properties of the chemical series and remove the
bad ones, replacing the parts of the molecule responsible for the undesirable properties
is necessary. The terms rescaffolding and scaffold hopping are used to describe this
replacement of the central structure of the nucleus of a molecule with another chemical
motif [71–74]. Scaffolding can also be achieved using virtual screening. An abrupt change
in the structure with the help of virtual screening can lead to the production of compounds
with increased biological activity. Often, the structure replacement is accompanied by a
decrease in activity.

The choice of material is also influenced by the additional method of creating implants.
Currently, a method combining 3D printing and robotics has been used to provide the
mass personalization of orthopedic implants [75]. For example, bioprinting was applied to
produce patient-specific shaped heart valves [76]. Various titanium alloys are considered
to be among the leading materials for bone tissue engineering [77]. Another promising
class of materials are various polymers of natural or synthetic origin [44]. Polymers are
used to make porous frameworks with the function of releasing drugs. As a part of com-
posites, polymers can improve the mechanical properties of materials. Electrospinning
is another method used to develop regenerative skeletons for osteogenesis that mimic
the structures and components of natural bone tissue by selecting appropriate custom
synthetic or biomimetic natural materials, including metals and composites, ceramics, and
polymers. Electrospinning is a simple method that can produce cell-attached scaffolds with
large surface areas, a high distance between fibers for cell gas exchange, infiltration, and
nutrition, and adjustable support according to the needs. In this technique, the polymer
solution jet is accelerated and towed in the electric field [78]. As innovative technologies,
electrospinning and 3D bioprinting make it possible to obtain multiscale, multicellular
tissues and bionic structures with complex cellular structure, tissue heterogeneity, and
structural and functional diversity, all with in a very complex microenvironment. Signifi-
cantly, the orientation of the electrospinning fibers can provide guidance for attached cells
by regulating their differentiation status and affecting their morphology, thereby promoting
osteogenesis [79,80].

4. Shaping of Scaffold Construction

Natural materials can demonstrate exceptional mechanical characteristics and serve
as valuable models for the design of microarchitectural materials. The modeling of the pro-
cedures and phenomena of bone tissue engineering is an outstanding evaluation method at
the stages leading to the development of the architecture and validation of proposed in vitro
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experiments and in vivo models. Now that there is enough experimental data to construct
plausible mathematical models of many biological control schemes, explicit hypotheses
can be evaluated using computational approaches to facilitate process design. There is
a methodology for biomimetic processes in vitro aimed at designing bio-artificial tissues.
This methodology is based on empirical concepts of developmental biology that can be
translated directly into concepts and terms of technological development [81]. According
to this design methodology, the overall process consists of a series of several subprocesses,
each of which repeats one of the stages of tissue development in vivo [82]. These subpro-
cesses lead to the formation of intermediate forms of tissues, some of which exhibit modular
behavior—structural stability and reliability determined by internal factors—and, therefore,
can be used as the building blocks of more complex fabrics in other processes. The topolog-
ical properties of networks are used to determine the degree of correspondence necessary
between the in vitro processes and the corresponding in vivo processes [83]. Graph models
are used to study interesting properties of several biological networks, such as connectivity,
motives, modularity, or reliability [84,85]. Hybrid systems are used to control chemical
processes [86,87]. For example, a mathematical model is used to describe the inflamma-
tory and erosive processes in the affected joints of individuals suffering from rheumatoid
arthritis to select a high-quality implant [88]. The modeling of physical phenomena is
often based on the finite element method. Two complementary approaches are possible.
This includes a homogenized macroscale model in which a solid equivalent replaces the
bone structure and a high-resolution microscale model in which the minor microstructural
details are included [89]. To analyze the bone structure, a homogenization procedure based
on the method of an asymptotic or representative volume element is used [90]. At the
same time, averaging the structure at the microscale and replacing it with a solid-state
model with equivalent material properties leads to the loss of local structural information,
which is essential for accurate diagnosis and treatment [91]. Simplified numerical models
(finite element modeling) of the bone implant complex usually assume a perfectly bonded
state, which is unrealistic in principle since the implant is never fully bonded. Contact
analysis using various friction coefficients has also been used to model multiple degrees of
integration in the process of osteointegration [92–94]. It showed some correspondence with
ex vivo measurements. The construction of individual numerical models and the analysis of
contact with normal contact detection and separation behavior between implants and bone
allows us to make conclusions about the relationship between the coefficient of friction,
bone quality, and the roughness of the implant surface [95].

Similarly, such modeling does not consider the complex nature of bone and its hierar-
chical structure. Adaptive manufacturing is used to consider the complex shape, porosity,
and functionality of the implant. In the additive manufacturing of implants, elementary
cells determine the basis for porous structures [96,97]. If we talk about craniofacial defects,
they have complex anatomical shapes that are difficult to achieve intraoperatively by cut-
ting out the bone collected from the donor site. It is necessary to apply design modeling,
and the performance characteristics of reconstructed implants/prostheses can be predicted
with high accuracy. The recent introduction of direct digital manufacturing technologies,
which allow for the manufacture of porous implants with lattice and solid-state structures
at a time based on the data of a particular patient, has opened new horizons for cranio-
facial surgery. The method of secondary processing in the form of molding is used to
manufacture the implant itself. However, the method is complex; the process involves
producing a rapid prototyping (RP) model, which requires additional costs and time [98,99].
It is possible to obtain structures with controlled and complex internal architectures and
corresponding mechanical properties using RP manufacturing technologies [100]. The 3D
modeling methods allow one to choose a suitable range of porous materials with respect to
the density of human bones [101]. When the 3D model is ready and calculated, one can
start to manufacture the product using 3D printing, thereby considering the complexity of
the design and the individual characteristics of the patient [102]. Another essential charac-
teristic of the implant is its mechanical properties. The accurate analysis of the mechanical
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properties could be applied to materials with uniform pore morphology, thereby providing
a uniform mechanical strength.

In order to meet these specified conditions, additive manufacturing (AM) technologies
are employed. AM methods make it possible to produce complex lightweight parts such
as homogeneous and gradient lattice structures with variable density and porosity, which
leads to different characteristics of the mechanical behavior of the layer-by-layer, compared
to nongradient, lattice structures and, therefore, provides freedom of design regarding
the structures [103–106]. The flexibility of AM allows for the creation of highly complex
geometric structures used in biomedical implants [107–111]. Different structural types
lead to different mechanical properties; for example, an orthogonal structure has a higher
strength [112,113]. The mechanical strength of the bone structure is higher in the outer
region and lower in the inner region. Therefore, a gradient porosity structure should be
applied to a bionic implant. However, studies of the mechanical properties of gradient
structures are still limited [114–116]. Gibson–Ashby models can only display the mechanical
behavior of “non-gradient” cellular materials; thus, understanding and knowledge of
various gradient cellular structures require further investigations [117,118].

5. Visualization

Today, surgeons are increasingly turning to imaging techniques. Computer-aided
design (CAD) and computer-aided manufacturing (CAM) systems are being actively devel-
oped to adapt to the needs of surgeons. Such systems are specifically focused on advanced
visualization tools, 3D modeling, or, better to say, virtual reality. They provide an opportu-
nity for precise preoperative planning, thereby performing virtual osteotomy resections
and designing implants for a specific patient before surgery. These virtual models can
be imported into the intraoperative navigation system for the precise placement of bone
segment implants [119]. Significant advances in computer vision promise faster diagnosis
and treatment. With various imaging methods, for example, the results of computed tomog-
raphy (CT) and magnetic resonance imaging (MRI) are recorded, and medical models of the
vertebral surface are compiled to predict deformations of the material. To provide the mass
personalization of orthopedic implants, a combination of several technologies is required.
Computed tomography is used to create an ideal detail that is as close as possible to the
original anatomy of the patient, thereby providing maximum contact with the patient’s
tissue. A CT scan allows you to obtain a 3D image of the original bone structure for further
3D printing, which makes implants less painful and less likely to fail [120]. For several
years, computer vision has been actively used to automatically analyze 3D medical im-
ages [121]. Real-time image scanning is used to visualize the parameters of the synthesis of
medical materials. The software coverage varies depending on the experiment [122]. X-ray
tomography is a widely used method for visualizing the three-dimensional architecture
of bone regenerated within a porous skeletal biomaterial. This method provides quantita-
tive volumetric analysis of the X-ray attenuating materials and tissues. At the same time,
synchrotron X-ray microtomography alloys for better visualization of the structures of min-
eralized tissues and biomaterials with high spatial resolution. X-ray microtomography in
phase contrast mode (XRPCT) makes it possible to examine soft connective tissues that are
invisible to absorption contrast, while they are easily observed with phase contrast [123]. In
particular, the microdiffraction method of synchrotron X-ray scanning makes it possible to
obtain the structural features of bone tissue at various length scales (from atomic to nanome-
ter) at small submicrometric sites, thereby combining the transmission of a wide pulse of
scattering signals and the use of submicrometric focused beams. Thus, the possibility of
the simultaneous collection of X-ray small-angle scattering (SAXS) and X-ray wide-angle
scattering (WAXS) images in micrometric areas has opened up new scenarios for the X-ray
examination of heterogeneous complex systems such as bone tissue and for the recognition
of various components coexisting in such small areas [124]. A combination of Talbot inter-
ferometry (TI) X-ray spectroscopy and X-ray scanning microdiffraction on a single sample
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for the study and 3D visualization of soft tissues that contain a precursor to mineralized
bone can provide important information on the first steps of biomineralization [125].

6. Modeling of Biodegradation

In addition to modeling implant design, an essential area in tissue engineering is mod-
eling implant biodegradation. The design of biodegradable orthopedic implants made of
biodegradable metal materials is a complex area of biomechanics [126]. Several years of ex-
perimental approaches have led to a mechanistic understanding of the degradation process.
Combining this knowledge with in silico modeling approaches allows researchers to study
the properties of biodegradation and implant behavior in a virtual environment before
conducting any in vitro or in vivo tests. With complete validation, computer modeling can
(partially) replace certain stages of expensive and long-term experiments that test implant
expected destruction behavior [127]. Computational modeling of the degradation process
includes various approaches, from fundamental phenomenological realizations to complex
mechanistic models considering multiple aspects of the degradation and resorption process.
One of the mathematical models used to estimate the sample degradation rate for a given
implant geometry is based on the continuous damage (CD) theory [128]. CD theory, used
in the finite element method (FE) framework, allows one to model sample degradations
of various origins that are represented by different mechanisms [129]. The mechanics of
continuous damage allow you to simulate the loss of mechanical strength of a material due
to the presence of geometric discontinuities by defining a scalar field that quantifies the
distribution of damage. Damage models are usually implemented within the framework of
the FE, usually for modeling the plastic damage of metal. They can even be applied to med-
ical devices of complex geometry. Moreover, the method proved to be an effective approach
for modeling various types of corrosion [130]. The CD approach translates the presence
of geometrical discontinuities into the reduction to macroscopic mechanical properties of
the material (e.g., stiffness, yield stress, etc.) through the definition of a damage field by
means of the continuous functions of coordinates and time [128]. An important factor is
the effect of the implant on the surrounding tissues. The initial disadvantages, such as
corrosion and insufficient strength of the implants, were excluded from the next versions.
Additional research is needed to develop implants that accelerate fracture healing without
disrupting bone physiology. For example, the introduction of denser alloys led to cortical
porosis, delayed bridge formation, and refractive fractures after removal of the plate. Their
unreasonable effects were caused by bone–plate contact that interfered with cerebral cortex
perfusion. Consequently, further modifications of the plates were aimed at reducing this
contact area to minimize necrosis and subsequent porosity. That is why it is important
to understand mechanobiology to develop an orthopedic implant that improves fracture
healing without interfering with bone physiology [131]. The use of biodegradable implants
that do not harm the surrounding tissues can solve this problem. They are installed to
support a broken bone and prevent it from shifting after the healing process. For a certain
period, they perform a supporting function until the main bone is restored. Then, they
are gradually dissolved or absorbed (in the form of nutrients), thereby contributing to the
healing process [126,132].

7. Screening

There are two main categories of medical imaging: diagnostic imaging and preventive
screening. The FDA defines medical imaging as any of “several different technologies
that are used to view the human body for the purpose of diagnosing, monitoring, or
treating diseases”. Diagnostic imaging is a group of medical imaging techniques that use
noninvasive techniques to diagnose and monitor diseases. It often helps to identify the
root cause of a particular symptom that is used to study a specific problem. Preventive
screenings identify health problems before the symptoms of the disease develop into more
serious problems. Screening is a clinical procedure that includes detection, diagnosis, and
monitoring using images.
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Types of screening imaging include the following:

• CT scans—Also called CAT scans, computed tomography (CT) scans use special
X-ray equipment to take images from different angles, which are then processed by a
computer to show a cross-section of body tissues and organs.

• Fluoroscopy—A type of imaging that shows real-time, moving X-rays of the internal
body structures.

• Mammogram—This involves several X-ray images of the breast.
• MRI—Magnetic resonance imaging (MRI) uses radio waves, a strong magnetic field,

and a computer to generate detailed, cross-sectional images of the patient’s internal
body part.

• Nuclear imaging—A diagnostic tool used to accurately visualize the flow and function
of different organs of the body.

• Ultrasound imaging (or sonography)—A method of seeing inside the human body
using high-frequency sound waves.

• X-rays—This type of imaging uses a minimal dose of ionizing radiation to produce
pictures of the body’s internal structures.

Artificial intelligence, however, can provide smart tools to screen massive amounts of
medical data [133]. This significant increase highly influences the trend toward the study
of DL models for medical image recognition due to the availability of medical image data.
In recent years, considerable progress has been made in screening with the usage of AI in
general and DL models mainly powered by convolutional neural networks (CNNs).

CNNs are DL models that are optimized for analyzing image data; they are inspired
by the human visual system and employ layers with distinct roles. Convolutional layers
extract intricate patterns by applying filters to the input data. The pooling layers then
reduce the dimensions of the data, thereby retaining essential features. Fully connected
layers integrate these features for predictions. The CNN’s hierarchical architecture and
automated feature extraction makes it a perfect instrument for computer vision tasks,
including image recognition and object detection.

Using plain radiographs, CNN model application can be found in automated deep
learning tools for predicting bone density and fracture risk. An example of CNN appli-
cation is shown on Figure 3. Such application helped to identify hip fractures, vertebral
compression fractures, and morphological abnormalities while estimating the probability
of a fracture occurring within the next decade. Its performance is on par with traditional
methods and can potentially enhance osteoporosis screening, particularly in regions with
limited access to specialized equipment. A CNN was used to extract region-of-interest
(ROI) information from plain radiographs of the pelvis and lumbar spine, which was used
by classification algorithms to identify specific conditions [134].

Where deep learning or other AI models with explainability issues are deemed neces-
sary, under this governance model, interpretable frameworks are expected to enhance the
decision-making process. Several medical studies have showcased how this is possible with
the use of explainable tools, ranging from visual to direct measurement tools [135–137].

Explainable artificial intelligence (XAI) is a field that focuses on designing intelligent
systems that can explain their recommendations to a human being. There are two main ap-
proaches: (a) interpretable models, which rely on non-black-box systems such as rule-based
ones, and (b) prediction interpretation and justification, which aim at generating explana-
tions for a black box algorithm. Some works mention the third one—visualization [138].

Statistical analysis shows that the software’s performance for estimating bone ages
and each probability according to the attention map from an XAI model is as good in terms
of the mean absolute error (MAE) and root mean squared error (RMSE) metrics as the
estimation from three radiologists. Researchers verified the potential of the software based
on the XAI model in clinical settings [139].
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8. Future Directions

In order to train a neural network, large amounts of data are needed. In medical re-
search, this is difficult for many reasons. Privacy regulations obstruct accessing and sharing
medical data for research purposes. A lot of medical images are annotated and labeled
manually. That is why their it is a time-consuming process to use them. The distribution of
medical diseases is imbalanced, and rare conditions could be poorly represented. However,
some solutions could be applied to overcome these issues. Some apparent suggestions
include close collaborations with research organizations and medical institutions, conduct-
ing long-term studies to comprehend bone processes after medical treatment, and creating
clear ethical regulations. In the medical field, ensuring the quality of datasets is essential
for accurate and reliable outcomes. Dataset quality assurance involves thorough validation
processes, including the examination of data integrity, completeness, and adherence to
regulatory standards, thereby ultimately safeguarding the integrity of medical research,
diagnostics, and decision-making processes.

Some new achievements could be used to obtain large datasets from small amounts
of tissues.

One of the current medical achievements are the so-called organs-on-a-chip (AOAC)
systems [140–142]. These microscale devices combine tissue engineering features with
microfluidic performance. Researchers put living cells into the microfluidic device and
mimic the environmental parameters affecting such cells in a body. This allows for complex
simulations of tissue responses, thereby enabling implant or drug testing and studying
physiological and pathological processes in the human body. While this concept was
widely applied to such organs as lungs, intestines, liver, kidneys, and others [143–145],
applying it to bone tissues is still challenging. This is due to the fact that a complex
model of bone tissues includes different types of cells, such as osteocytes embedded in the
mineralized organic matrix and osteoblasts located on the bone surface [146]. Moreover,
the direct growth of human primary bone cells is difficult to achieve, and animal-derived
cells are applied instead in some experiments. One of the recent examples is the successful
growth of bone-like tissues with the shape and dimensions of human trabeculae [147].
The authors used human mesenchymal stromal cells differentiated into the osteoblastic
lineage. Advances in the so-called “bone-on-a-chip” approach are summarized in recent
reviews [147,148]. Despite the exciting prospects, there are not many cases in which the
“bone-on-a-chip” approach was supported by artificial intelligence. To the best of our
knowledge, only one article reported such a combination. Paek et al. succeeded in the
growth of an osteon bone unit in a microfluidic device [146]. This bone-on-a-chip platform
was further applied to test anti-SOST antibody drugs using an AI-based image analysis
system. β-catenin, nucleus, and merged fluorescent images were collected from the drug-
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treated group and the nondrug group. The AI system exhibited an accuracy of 99.5%,
thereby indicating great performance for osteoporosis drug testing.

9. Conclusions

The development of medical materials represents one of the most exciting new syn-
thetic approaches to bone implant design. The introduction of artificial intelligence tech-
nologies, depicted on Figure 4, opens many opportunities for the development of a multi-
functional material that meets the various needs of tissue engineering (namely, favorable
chemical composition, density, adhesive surface, biological activity, etc.). To see the full
picture, we suggest readers to take a look at the Table 1, which summarizes the artificial
intelligence models used in bone tissue engineering (Figure 5).
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Table 1. Overview of AI models used in bone tissue engineering.

AI Model Application Model Key Parameters Advantages Disadvantages

Machine Learning Models

Logistic Regression
Material

biocompatibility, bone
health assessment [149]

Weights, bias, regularization,
solver

Efficiently models
relationships, controls

overfitting, and ensures
convergence, thereby aiding

in the identification of
key factors

Assumes linearity,
requires tuning for

optimal regularization,
features solver sensitivity,
has potential suboptimal

convergence

Support Vector
Machines (SVMs)

Material identification
and classification

[150,151]

Kernel functions,
regularization parameters

Usable for real-time
assessment of scaffolding
structures, particularly in
high-dimensional spaces

Limited scalability to large
datasets, sensitivity to the

choice of kernel and
hyperparameters

Decision Trees
Cell classification, Bone

health sssessment
[151]

Hierarchical decision structure Easy to interpret, handles
nonlinear relationships

Prone to overfitting,
sensitive to small changes

in data

Random Forests
Comprehensive

parameter evaluation
[68,149,151]

Decision trees, number of
estimators, max depth

Simultaneous evaluation of
multiple scaffold

parameters, robust against
overfitting

Prone to overfitting with
noisy or imbalanced

datasets, potential issues
with interpretability

Gradient Boosting
Predicting biomaterial

properties
[151]

Learning rate, number of trees,
depth of trees, loss function

Improves model accuracy by
combining weak learners,

captures intricate
relationships, provides

feature importance insights

Sensitive to noisy data,
potential overfitting with

limited data,
computationally intensive,

requires careful
hyperparameter tuning
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Table 1. Cont.

AI Model Application Model Key Parameters Advantages Disadvantages

Deep Learning Models

Artificial neural
networks (ANNs)

Prediction of material
properties,

biocompatibility
assessment of implants

[69,151,152]

Nonlinear modeling, intricate
parameter interactions such as

cell proliferation,
differentiation, material

properties

Adaptability, data-driven
learning, accurate prediction
of complex patterns in bone

tissue engineering

Large dataset
requirements, potential

overfitting, complex
neural network structures,
challenging interpretation

Convolutional Neural
Networks (CNNs)

Image analysis for
screening, bone mineral
density prediction, and
fracture risk assessment

[134,153,154]

Convolutional layers, filter
sizes, pooling operations

Robust feature extraction,
object detection, semantic
and instance segmentation

Computational intensity,
reliance on large datasets,

potential overfitting in
certain scenarios

3D Deep
Convolutional Neural
Networks (DCNNs)

3D image analysis for
scaffold design,

screening
[155,156]

Architecture, filters, voxel size

Captures intricate spatial
features in 3D medical

images; enhances screening
accuracy

Computationally intensive
for large datasets, requires
substantial computational

resources, potential
overfitting with limited

data

Generative
Adversarial Networks

(GANs)

Scaffold design and
optimization
[155,157,158]

Latent space representation,
generator and discriminator

architectures

Enables the synthesis of
realistic scaffold structures,

thereby facilitating
optimization processes

Susceptible to mode
collapse; potential

challenges in generating
clinically viable structures

Reinforcement
Learning (RL)

Scaffold fabrication
process optimization

[159,160]

State space, action space,
reward functions

Optimizes scaffold
production processes

through iterative learning

Limited applicability in
highly dynamic or

complex environments;
challenges in defining

reward functions

Explainable AI
(XAI)

Interpretable models for
bone tissue screening

[135–139]

Local and global explanations,
interpretable models, feature
importance, model-specific

parameters, and
human-understandable

representations

Provides insights into model
decisions; enhances trust in

screening outcomes

Trade-off between
accuracy and

interpretability; potential
complexity in explaining

deep learning models
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Nevertheless, artificial intelligence has several concerns to be constantly addressed.
Data bias is a primary concern, as it relies on data that may be skewed, thereby leading to
inaccuracies, especially for underrepresented groups, different populations, or materials.
Regulatory compliance, such as adhering to healthcare regulations and ethical issues related
to patient data privacy, can slow down AI development and deployment. Federative
learning and novel ethical regulations can be an approach to address this. Rigorous
validation and testing, thereby demanding large datasets and extensive clinical trials, are
essential for ensuring the accuracy of AI algorithms in bone tissue engineering.

Today, artificial intelligence accompanies all stages of the implantation process, thereby
helping to minimize treatment and recovery time. The predominance of scaffolds that have
been developed and those that are currently under development allow for a wide range of
materials to be produced using this approach. Scaffolds can be constructed at the material
level using functional concepts of polymer science but can be easily functionalized using
bioactive groups at the genetic design stage. The high level of control and functionality
makes porous scaffolds a compelling material platform in medicine. Methods using
artificial intelligence are becoming more and more accessible to scientists. Consequently,
the growing interaction between the fields of biology, chemistry, materials science, and AI
inspires the invention and study of increasingly new biomaterials.

Author Contributions: Conceptualization, E.K. and M.B.; methodology, V.B. and E.K.; software, A.P.
and M.B.; validation, A.S., V.B. and M.B.; investigation, E.K.; resources, E.K. and A.P.; data curation,
E.K., A.P. and V.B.; writing—original draft preparation, E.K.; writing—review and editing, E.K. and
V.B.; visualization, E.K. and A.P.; supervision, A.S. and M.B.; funding acquisition, M.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation (agreement#23-21-00331).

Conflicts of Interest: The authors declare no conflicts of interest.
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