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Abstract: (1) Background: Head and neck cancer (HNC) ranks as the sixth most prevalent cancer in
the world. In addition to the traditional risk factors such as alcohol and tobacco consumption, the
implication of the human papillomavirus (HPV) is becoming increasingly significant, particularly in
oropharyngeal cancer (OPC). (2) Methods: This study is based on a review analysis of different articles
and repositories investigating the mutation profile of HPV-related OPC and its impact on patient
outcomes. (3) Results: By compiling data from 38 datasets involving 8311 patients from 12 countries,
we identified 330 genes that were further analyzed. These genes were enriched for regulation of the
inflammatory response (RB1, JAK2, FANCA, CYLD, SYK, ABCC1, SYK, BCL6, CEBPA, SRC, BAP1,
FOXP1, FGR, BCR, LRRK2, RICTOR, IGF1, and ATM), among other biological processes. Hierarchical
cluster analysis showed the most relevant biological processes were linked with the regulation of
mast cell cytokine production, neutrophil activation and degranulation, and leukocyte activation
(FDR < 0.001; p-value < 0.05), suggesting that neutrophils may be involved in the development and
progression of HPV-related OPC. (4) Conclusions: The neutrophil infiltration and HPV status emerge
as a potential prognostic factor for OPC. HPV-infected HNC cells could potentially lead to a decrease
in neutrophil infiltration. By gaining a better molecular understanding of HPV-mediated neutrophil
immunosuppression activity, it is possible to identify a meaningful target to boost antitumor immune
response in HNC and hence to improve the survival of patients with HNC.

Keywords: head and neck cancer; oropharyngeal squamous cell carcinomas; human papillomavirus;
mutational profile; prognosis

1. Introduction

Head and neck cancer (HNC) is the sixth most prevalent cancer worldwide repre-
senting more than 660,000 new cases and 325,000 deaths per year [1]. Risk factors driving
the HNC landscape include alcohol, tobacco consumption, and infection with the human
papillomavirus (HPV). HPV infection is emerging as a primary catalyst for a growing
proportion of cancers of the tonsillar region, the base of the tongue, the soft palate, and the
oropharynx, including oropharyngeal cancer (OPC) [2,3]. The diverse array of HPV types
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includes over 200 distinct serotypes, with HPV16 and HPV18 being the most prevalent
oncogenic viral subtypes linked to OPC [4,5]. After initial infection, HPV can persist within
host cell nuclei as an extrachromosomal episome, but can subsequently integrate into the
host genome [6–8]. However, reported rates of HPV integration into the genome vary
across studies. Data from The Cancer Genome Atlas (TCGA) indicate that HPV integrates
in approximately 71% of virus-positive HNC cases and 83% of cervical cancer cases [8].

Beyond persistence and integration, HPV can profoundly influence tumor cell behavior,
leading to distinct clinical outcomes in comparison to smoking-related counterparts [9,10].
This divergence is mirrored in the molecular mechanisms underpinning oncogenesis and
specific mutations found in HPV-positive versus HPV-negative tumors [11,12]. Remarkably,
HPV-related OPC as well as in anal and vulvar cancer represents a distinct molecular
entity compared to its HPV-negative counterpart, demonstrating more favorable treatment
responses and higher survival rates [13–15].

In 2017, the American Joint Committee on Cancer (AJCC) and the Union for Interna-
tional Cancer Control (UICC) restructured the clinical staging system for patients. This
effort involved the revision of the staging framework to incorporate genetic, histological,
and prognostic variants, enabling the differentiation of prognostic disparities observed
in HPV-related OPC [16–18]. It is observed that HPV-positive HNCs have fewer mutated
genes compared to HPV-negative tumors, which tend to accumulate a higher number of
mutations over time, leading to an increased mutational burden [12,19,20]. This article
aims to provide a comprehensive evaluation of studies delving into the genetic profile of
mutations in HPV-related OPC cases, alongside HPV-negative cases. Moreover, through
the application of enrichment analysis and multiple validations using independent public
datasets, the study aims to establish meaningful correlations between the identified genetic
alterations, disruptions in relevant pathways linked to tumorigenesis, and the identified ge-
netic alterations, pathways disruptions relevant to tumorigenesis, and the multidisciplinary
management of OPC in the context of the HPV status.

2. Materials and Methods
2.1. Study Selection

The comprehensive search strategy was done using the following databases: Medline,
PubMed, Web of Science, and Scopus with the assistance of a librarian (up to 1 October
2023). The following Medical Subject Headings (MeSH) or “text words” were: HPV, human
papillomavirus, papillomavirus, head and neck cancer, head and neck squamous cell
carcinoma, oropharyngeal squamous cell carcinoma, pharyngeal cancer, survival, outcome,
prognosis, prognostic, prognostic biomarkers, mutation, gene mutation, DNA mutation,
DNA damage, and metastasis. Searches were performed in May 2023, with no restriction
on the year of publication (Supplementary Table S1).

2.2. Inclusion and Exclusion Criteria

Inclusion criteria comprised articles in English that performed genetic analyses and
comparisons between populations of HPV-related cases and HPV-negative OPC. Exclusion
criteria were studies unrelated to HNC, animal and preclinical (in vitro) models, unrelated
to risk factors such as alcohol, tobacco, HPV 16–18, epigenetics, clinical trials, pediatric
population, gene methylation, gene expression, copy number variation, another disease
(not in cancer), another cancer type (not HNC), full text not available, reviews of the
literature, case reports, conference abstracts, and letters to the editor.

2.3. Data Collection

Studies selected from the databases were imported into Rayyan software (https://
rayyan.ai/terms) [21] for the identification and removal of duplicates and reading of titles
and abstracts by three authors (MA, IM, and FF). The full text was retrieved for those studies
where decisions could not be made based on the abstract and for those who presented
the eligibility criteria. Data extraction from the studies included in this scoping review

https://rayyan.ai/terms
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was summarized in a Microsoft Excel table (Microsoft 365). The following information
was collected: authors, year of publication, impact factor, country, sample size, study type,
molecular technique used, HPV status, and genes mutated. To identify mutated genes,
genomic information was extracted directly from the reported data in each original article.

2.4. Technical Validation in Public Database

This research analyzed the mutation profile of OPC considering the HPV status. The
TCGA public database was used to technically confirm the genetic mutations and the
clinicopathological impact using the Head and Neck Squamous Cell Carcinoma database
(TCGA, Firehose Legacy). Detailed descriptions of all other cohorts have been provided
elsewhere [22–59] (Table 1). From the TCGA cohort, 115 samples were characterized
as positive for HPV16 status, 74 being negative and 41 being positive. The data from
this cohort were used to assess the influence of the genes on both overall survival and
disease-free survival. The enriched analysis was done using multiple software including
g:Profiler (https://biit.cs.ut.ee/gprofiler/, accessed on 1 August 2023), GSEA (http://
software.broadinstitute.org/gsea/, accessed on 1 August 2023), Cytoscape (http://www.
cytoscape.org/, accessed on 1 August 2023), and EnrichmentMap (http://www.baderlab.
org/Software/EnrichmentMap, accessed on 1 August 2023).

Table 1. Characteristics of the published studies included in the analysis.

Author, Year Journal Impact
Factor Country Sample Size Study Type Molecular Techniques *

Harbison et al., 2018 [23] 19.477 USA 84 Cross-sectional WGS, NGS
Chung et al., 2015 [24] 32.976 USA 252 Multicenter NGS, ISH, IHC

Doerstling et al., 2023 [25] 4.322 USA 79 Retrospective IHC, NGS
Dogan et al., 2019 [26] 7.316 USA 157 Retrospective Target sequencing
Dubot et al., 2018 [27] 10.002 FRANCE 122 Retrospective NGS

Gleber-Netto et al., 2018 [28] 6.921 USA 52 Retrospective NGS, PCR, IHC
Gronhoj et al., 2018 [29] 4.638 DENMARK 114 Retrospective NGS

Haft et al., 2019 [30] 6.921 USA 46 Retrospective NGS
Koncar et al., 2017 [31] 4.711 USA 743 Retrospective IHC, ISH, NG
Labarge et al., 2022 [8] 6.333 USA 12 Retrospective WGS, OGM

Lim et al., 2019 [32] 13.312 KOREA 93 Multicenter NGS
Qin et al., 2018 [33] 4.997 USA 36 Rettrospective NGS.

Reder et al., 2019 [34] 5.972 GERMANY 24 Retrospective NGS.
Reder et al., 2021 [35] 4.711 GERMANY 139 Retrospective NGS.
Saba et al., 2020 [36] 3.240 USA 35 Retrospective NGS

Wahle et al., 2022 [37] 5.08 USA 47 Retrospective WGS, ISH, IHC
Stransky et al., 2011 [38] 63.832 USA 92 Retrospective WGS
Williams et al., 2021 [39] 8.209 USA 703 Retrospective NGS

Antonsson et al., 2016 [40] 2.532 AUSTRALIA 219 Case-control NGS
Barten et al., 1995 [41] 4.548 GERMANY 37 Retrospective PCR, IHC

Benzerdjeb et al., 2021 [42] 7.778 FRANCE 110 Cross-sectional PCR, NGS
Chen et al., 2021 [43] 13.312 USA 489 Retrospective ELISA

Chiosea et al., 2013 [44] 4.638 USA 75 Retrospective NGS
Ekalaksananan et al., 2020 [45] 2.874 THAILAND 106 Case-control PCR

Fallai et al., 2009 [46] 8.013 ITALY 78 Prospective NGS, PCR
Farnebo et al., 2015 [47] 4.354 SWEDAN 169 Case-control PCR–RFLP.

Hong et al., 2016 [48] 6.901 AUSTRALIA 202 Retrospective Pyrosequencing
Cortelazzi et al., 2015 [49] 3.539 ITALY 76 Cross-sectional PCR

De Carvalho et al., 2019 [50] 2.874 BRAZIL 25 Retrospective PCR, WGS
Friedland et al., 2012 [51] 2.025 AUSTRALIA 60 Retrospective PCR

Ghosh et al., 2013 [52] 2.435 INDIA 84 Prospective NGS
Gross et al., 2014 [53] 41.376 USA 376 Prospective PCR

Huang et al., 2019 [54] 11.205 USA 113 Retrospective ISH, IHC, WGS
Licitra et al., 2006 [55] 50.739 ITALY 100 Retrospective NGS, PCR, IHC

https://biit.cs.ut.ee/gprofiler/
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
http://www.cytoscape.org/
http://www.cytoscape.org/
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Table 1. Cont.

Author, Year Journal Impact
Factor Country Sample Size Study Type Molecular Techniques *

Mazurek et al., 2016 [56] 5.972 POLAND 200 Case-control PCR
Saba et al., 2015 [57] 2.031 USA 8 Proof of concept NGS

Sewell et al., 2014 [58] 13.801 USA 49 Prospective RPPA
Shaikh et al., 2021 [59] 6.575 USA 2905 Retrospective WGS, NGS, IHC

* WGS (whole-genome sequencing); NGS (next-generation sequencing); ISH (in situ hybridization); IHC (im-
munohistochemistry); RFLP (restriction fragment length polymorphism; PCR (polymerase chain reaction); OGM
(optical genome mapping); RPPA (reverse-phase protein array).

2.5. Experimental Validation in Patients’ Samples
Ethics and Patient Cohort

This study was approved by the Medical/Biomedical Research Ethics Committee
(REC) of CIUSSS West-Central Montreal Research Ethics Board (REB, Montreal, QC,
Canada) and informed consent was obtained from each patient.

Primary tumor samples were retrospectively collected from patients with OPC at
the Jewish General Hospital, McGill University, Montreal, Quebec, Canada between 2010
and 2013 (with at least 10 years of follow-up). Patient demographics and survival out-
comes were collected. HPV status was confirmed via p16 immunohistochemistry (IHC)
as well as polymerase chain reaction (PCR). Detailed clinical information is provided in
Supplementary Table S2. Disease-free survival was defined as the time from diagnosis
to recurrence at any site or death. Recurrence was defined as the presence of local, re-
gional, or distant disease after completion of treatment confirmed by microscopic exam.
Strengthening the reporting of observational studies (STROBE Statement) was used to
ensure appropriate methodological quality (http://www.strobe-statement.org/, accessed
on 7 November 2023).

2.6. Immunohistochemistry

IHC staining was conducted at the Department of Pathology & Molecular Pathology
Core Facility (Lady Davis Institute, Montreal, QC, Canada). Human Neutrophil Elas-
tase/ELA2 Monoclonal Antibody (R&D Systems, Minneapolis, MN, USA, MAB91671R100;
1:2000) was used to validate neutrophil infiltration. Tissues were examined using an Ape-
rio ScanScope® slide scanner (Leica Biosystems, Buffalo Grove, IL, USA) and staining
quantification was performed using QuPath (v0.2.3).

2.7. Statistical Analysis

All data were presented as mean ± SEM using the software GraphPad Prism 7.0
(GraphPad Software Inc., San Diego, CA, USA). For statistical analysis, samples were
categorized into two groups: (1) negative/weak and (2) moderate/strong positive cases.
For frequency analysis in contingency tables, statistical analyses of associations between
variables were performed by Fisher’s exact test, and for continuous variables, the non-
parametric Mann–Whitney U test. A p-value < 0.05 was considered significant.

3. Results
3.1. Overview of the Included Studies

Following the search protocol and screening strategy, 1556 manuscripts were identified.
A total of 872 studies were published in English and 32 in different languages (including
German, Chinese, Spanish, Hungarian, Russian, French, English, Japanese, and Czech).
After the exclusion of 651 duplicate studies, the two reviewers also excluded 863 ineligible
articles based on the title and abstract and an additional 41 articles based on the full-text
assessment. Thus, 38 articles were included in the qualitative synthesis. The PRISMA
flow diagram illustrates the search strategy and the number of studies found and retrieved
(Figure 1).

http://www.strobe-statement.org/
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Figure 1. PRISMA flowchart highlighting the search strategy used to retrieve studies from the
databases (Medline, PubMed, Web of Science, and Scopus). It identified 1556 articles and following
the inclusion criteria, 38 articles were selected and included in this study. * Considered the number
of records identified from each database or register searched. ** Number of records excluded by a
human and automation tools [22].

The 38 studies included in this research were published between 1995 and 2023 and
they involved 8311 HNC patients from 12 countries [23–59] (Table 1). Most studies were
based on the retrospective cohort (n = 24). The most common country to lead the studies in
mutational profile in HNC was the USA (n = 20/38). Two out of thirty-eight articles have
included the list of gene mutations in both HPV-positive and negative cases. This study
mainly focuses on retrieving data from HPV-positive patients to understand the alterations
in cell pathways. Next-generation sequencing (NGS) (n = 10), PCR (n = 9), and p16 IHC
staining (n = 8) were the most commonly used techniques, followed by other sequencing
techniques such as whole-genome sequencing (WGS) (n = 5) and in situ hybridization
(n = 3). In total, 330 genes were identified (Supplementary Table S1) and submitted to
enriched analysis. As expected, TP53 (n = 22) and PIK3CA (n = 20) genes were the most
commonly mutated genes in HPV-related OPC cases.
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3.2. Technical Validation—Common Gene Mutations in HPV-Positive HNC

In HPV-positive HNC, several genes were identified (Supplementary Table S1) and
also confirmed as commonly mutated in the technical validation using the Head and Neck
Squamous Cell Carcinoma database (TCGA, Firehose Legacy) (Figure 2). The data from
this cohort were also used to assess the influence of the genes on both overall survival
and disease-free survival (Figure 2B). The specific mutation landscape may vary to some
extent depending on the tumor location and the HPV viral subtype (typically HPV16).
However, the 10 most common mutated genes were TP53 (n = 22), PIK3CA (n = 20), PTEN
(n = 16), NOTCH1 (n = 14), RB1 (n = 13), FAT1 (n = 13), FBXW7 (n = 12), HRAS (n = 10),
KRAS (n = 10), and CDKN2A (n = 10) (Figure 2A). Supplementary Figure S1 shows the
identified genes in the 38 articles screened; different color codes were used to represent
which genes were described from which article. It is important to consider that the most
frequently mutated genes, such as TP53, PIK3CA, CDKN2A, FAT1, CASP8, and HRAS,
can impact several pathways and biological processes, such as cell cycle, DNA damage
response, PI3K/AKT/mTOR signaling pathway, Notch signaling pathway, and RAS/MAPK
signaling pathway.
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Figure 2. Comparison of mutation frequencies and gene expression profiles in HPV-positive and
HPV-negative OPC. (A) In an analysis of all the investigated studies, HPV-positive OPC exhibited
fewer mutations compared to HPV-negative tumors. The top bar graph illustrates the most prevalent
mutated genes in HPV-related OPC, including PIK3CA, TP53, PTEN, NOTCH1, FAT1, RB1, FBXW7,
HRAS, KRAS, and CDKN2A. Using public data from the TCGA database, mRNA expression levels of
TP53 and CDKN2A exhibited significant differences between the two groups, highlighting their dis-
tinct gene expression profiles in HPV-positive versus HPV-negative cases. (B) Significant differences
were observed between HPV-positive and HPV-negative tumors in terms of overall survival and
disease-free survival considering both genes using the Head and Neck Squamous Cell Carcinoma
database (TCGA, Firehose Legacy). Among the 115 samples examined, 74 were identified as negative
for HPV status, while 41 were confirmed as positive. Notably, HPV-positive cases exhibited enhanced
overall survival rates compared with HPV-negative tumors.

3.3. Enriched Analysis of Mutated Genes

The list of all mutated genes was submitted to an enriched analysis. Gene ontology
(GO) revealed 18 genes involved in the regulation of the inflammatory response (RB1,
JAK2, FANCA, CYLD, SYK, ABCC1, SYK, BCL6, CEBPA, SRC, BAP1, FOXP1, FGR, BCR,
LRRK2, RICTOR, IGF1, and ATM) (Figure 3). Hierarchical analysis revealed the biological
processes most relevant were linked with the regulation of leukocyte migration, mast cell
cytokine production, neutrophil degranulation, and leukocyte activation (FDR < 0.001;
p-value < 0.05) (Figure 3C).

In order to provide experimental validation for the results from the enriched analysis
that showed alteration in neutrophil activation and degranulation (Figure 3C), we selected
a cohort of HNC patients to confirm the status of neutrophil expression (Supplementary
Table S2). For the independent sample set, 52 paraffin-embedded HNC tissue specimens
from 12 patients who had lung metastasis (metastatic cases) and 40 patients who had
negative lymph node status without recurrence or metastatic disease (good outcomes;
non-metastatic cases) and were followed for at least 157 months were evaluated using
IHC assays in a TMA. Most of the patients were male (59.6%), and the majority were aged
over 50 years (84.6%) (Supplementary Table S2). First, before the antibody selection, we
performed an additional analysis using the UMAP (Uniform Manifold Approximation
and Projection) plot to provide an illustrative representation of gene clusters formed
through the application of Louvain clustering on gene expression profiles across different
immune cell types (Figure 4A). The table below the UMAP provides annotations and
gene counts that connect to the core function of a neutrophil elastase (ELA2), also known
as polymorphonuclear leukocyte elastase, which is a serine protease belonging to the
chymotrypsin family. This shows us the specificity of ELA2 for the neutrophil activity.
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Immunohistochemistry staining was done in our patients’ cohort (treated in a single
institution) and it revealed elevated nuclear overexpression of ELA2 protein in metastatic
HPV-related OPC. In contrast, weak to moderate expression was observed in non-metastatic
tumors, and negative expression was detected in morphologically normal epithelial cells
(Figure 4B). However, no statistically significant p-values were observed in the associations
involving age (p = 0.599), sex (p = 0.500), tobacco consumption (p = 0.087), alcohol abuse
(p = 0.985), lymph node stage (p = 0.158), locoregional recurrence (p = 0.275), and vital status
(p = 0.500), but were for clinically advanced T stage (p = 0.023) (Supplementary Table S1).
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Figure 3. (A) Gene sets with low p-values and high enrichment scores identified a significant
biological context in the regulation of neutrophil activation. (B) Protein–protein interaction (PPI)
data are represented as nodes (proteins) and edges (interactions) to construct a network based on
computational algorithms that integrate various sources of biological data. (C) Enrichment analysis
showed functional categories and pathways overrepresented in the network related to the regulation
of cell–cell adhesion, especially related to integrin signaling.
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Figure 4. (A) The UMAP (Uniform Manifold Approximation and Projection) plot illustrates cell
clusters created through Louvain clustering of ELA2 gene expression in various immune cell types.
The table provides cellular annotations associated with the primary function of ELA2 identified
and validated in our study. (B) Immunohistochemistry images for ELA2 protein in oral cancer
and morphologically normal epithelial. A weak staining was observed in morphologically normal
epithelial cells while a strong intensity of nuclear immunostaining was detected in oral cancer
samples, especially in the recurrent tumors. Graphs represent the ELA2 immunohistochemistry level
(intensity) in normal, tumor, and metastatic lymph nodes. Original magnification: 50× (top) and
200× (bottom).

4. Discussion

The exponential increase of HPV-related OPC over the last two decades has gained
attention. This subset of OPC is characterized by a distinct genomic mutational burden
compared to its HPV-negative counterparts [2,60] (Figure 5). In this context, an in-depth
exploration was conducted to delineate the mutation profile of HPV-related OPC patients,
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drawing from a comprehensive literature review spanning from 1995 to 2023 [23–59]. The
genetic landscape showcased six prominent genes (TP53, NOTCH1, CDKN2A, PIK3CA,
HRAS, and PTEN) exhibiting frequent mutations. These genes encode pivotal signaling
molecules that underlie the pathogenesis of HNC [61]. Notably, TP53 and PIK3CA emerged
as pivotal players, with TP53 being the most recurrently mutated gene in locally advanced
HNC [61,62], and PIK3CA ranked as the most frequently mutated oncogene across human
cancers [63].
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Figure 5. Squamous cell carcinoma comprises over 95% of head and neck cancers. Major risk
factors include tobacco and alcohol. HPV is involved in 71% of oropharyngeal cancers. Specific
key genetic mutations were associated with HPV-positive oropharyngeal cancer (PIK3CA, RB1,
FBXW7, PTEN, NOTCH1, HRAS, KRAS, TP53, CDKN2A, FAT1). The intricate interplay between
human papillomavirus (HPV) and mutations within the tumor microenvironment (TME) is complex.
HPV infection can initiate a particular immune response but tumors can also evolve and develop
mechanisms to modify and escape the immune detection. A comprehensive understanding of these
interactions is crucial for developing effective therapeutic strategies for HPV-associated tumors,
including head and neck cancers. Figure created using BioRender.

The TP53 gene encodes the tumor protein p53, functioning as a critical tumor suppres-
sor that regulates cell division and reduces uncontrolled proliferation [64,65]. Intriguingly,
TP53 mutations in HPV-positive HNC have been linked to treatment resistance and poorer
clinical outcomes. Meanwhile, mutations in the PIK3CA gene, responsible for encoding the
PI3K catalytic subunit alpha (p110α), activate the PI3K/AKT/mTOR signaling pathway.
This subset of PIK3CA mutations observed in HPV-positive HNC plays a pivotal role
in tumorigenesis, potentially contributing to increased cell proliferation, tumor growth,
and survival [66–68]. The dysregulation of these pathways collectively orchestrates the
development and progression of HPV-positive HNC. In patients with HPV-negative HNC
samples, it is commonly noted that there is a higher mutation load in comparison with
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HPV-positive tumors. Our working hypothesis is that the absence of the virus particles
requires the acquisition of a larger set of mutated genes to facilitate cellular transformation.
In contrast, within HPV-positive samples, the presence of the viral genome regulates the
expression of specific genes that modify the cells toward malignancy. These genes are likely
associated with cell-cycle regulation. However, a more comprehensive understanding of
the functional repercussions of these mutations and their implications for targeted therapies
and patient outcomes remains imperative.

Gene-enriched pathway analysis unveiled the predominant involvement of the in-
flammatory response in HPV-related OPC. Notably, 18 genes (RB1, JAK2, FANCA, CYLD,
SYK, ABCC1, SYK, BCL6, CEBPA, SRC, BAP1, FOXP1, FGR, BCR, LRRK2, RICTOR, IGF1,
and ATM) were intricately linked to the activation of neutrophils. The intricate inter-
play between the tumor microenvironment and immune cell subsets has emerged as the
focal point of investigation in HNC research [69]. The presence of HPV infection often
triggers a robust immune response, fostering chronic inflammation within the tumor mi-
croenvironment [70]. Remarkably, HPV-positive tumors display heightened immune cell
infiltration compared to HPV-negative HNC. These infiltrating immune cells include var-
ious subsets of T cells (e.g., CD8+ cytotoxic T cells, CD4+ helper T cells), natural killer
(NK) cells, macrophages, and dendritic cells [71]. The neutrophils, which represent a
pivotal component of the immune response, are intricately recruited to the tumor site
through a complex interplay between tumor-derived chemokines and adhesion molecules,
such as CXCL8/IL-8 and E-selectin [72–74]. Once they are established within the tumor
microenvironment, neutrophils can polarize and assume distinct functional phenotypes,
oscillating between a pro-inflammatory N1 phenotype and an immunosuppressive N2
phenotype [75,76]. This versatile plasticity is modulated by an interplay of chemokines, cy-
tokines, and damage-associated molecular patterns (DAMPs) emanating from both tumor
cells and the surrounding inflammatory milieu [72]. The interactions between neutrophils
and other immune cell subsets, including T cells, dendritic cells, and myeloid-derived
suppressor cells (MDSCs), sculpt the intricate landscape of the local immune response [77].

The relevance of neutrophils extends further, with a high-circulating neutrophil-to-
lymphocyte ratio (NLR) emerging as a common feature in numerous cancer types, including
HNC [78–80]. Interestingly, elevated neutrophils have been associated with chemother-
apy and immunotherapy resistance in HPV-positive cancers. Neutrophil-derived factors,
encompassing reactive oxygen species (ROS), cytokines, and extracellular traps (NETs),
can exert a dual influence, promoting tumor growth, angiogenesis, and metastasis, while
also suppressing adaptive immune responses. Moreover, neutrophils can influence the
infiltration and functionality of tumor-infiltrating lymphocytes (TILs), thereby intricately
modulating the overall antitumor immune response.

In HPV-positive cancers, the presence of NETs within the tumor microenvironment has
gained attention, owing to their potential to foster tumor progression by inducing angio-
genesis and evading the immune response [81,82]. The dynamic role of neutrophils, driven
by their phenotype heterogeneity and functional plasticity [81,83,84], positions them as
critical regulators of both pro-inflammatory and anti-immune responses [81]. Their context-
dependent antitumor or pro-tumor activity depends on the molecular stimulus within
the tumor microenvironment [81,83], where a delicate balance controls the equilibrium
between these phenotypes [69].

In the specific context of HPV-related OPC, a high NLR has been associated with ad-
vanced clinical stages and poorer survival rates [81,83,85–87]. Paradoxically, HPV infection
could potentially suppress the recruitment of tumor-associated neutrophils (TANs) to HPV-
related OPC [88]. The influence of TANs in promoting cancer progression stems from their
ability to induce angiogenesis, release ROS, and generate reactive nitrogen species (RNS),
thereby inducing genotoxic effects upon tumor cells [83,87,89]. Furthermore, TANs secrete
cytokines (IL-1β, TNF-α, IL-6, and IL-12) that foster a chronic inflammatory milieu, along-
side arginase 1, which inhibits CD8 T cell function, contributing to an immunosuppressive
environment [90]. Unraveling the intricate interactions between tumor cells, neutrophils,
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and the surrounding milieu represents an imperative avenue for research, promising the
development of innovative strategies to impede cancer progression and metastasis.

Conversely, it is known that the most effective antitumor mechanism involving neu-
trophils is through antibody-dependent cell-mediated cytotoxicity (ADCC) [83]. Pro-
inflammatory neutrophils can be activated to display a stronger antitumor phenotype
through the molecular interaction with the granulocyte colony-stimulating factor (G-CSF),
transforming growth factor-α (TNF-α), and/or by blocking transforming growth factor-β
(TGF-β) [83]. These interactions culminate in the activation of a cytotoxic immune response
directed against tumor cells [83]. However, the underlying mechanism by which tumor-
derived signals reprogram neutrophils to undergo this functional transformation is poorly
understood and warrants further investigation. Ultimately, a deeper understanding of
the intricate interactions between neutrophils and HPV-related HNC will likely provide
novel insights into their role within metastatic pathways, potentially identifying targetable
mechanisms that modulate neutrophil phenotype.

5. Conclusions

In summary, the intricate involvement of neutrophils in the development and progres-
sion of HPV-related OPC has become increasingly apparent. The infiltration of neutrophils
and the underlying HPV status hold significant promise as prognostic parameters for OPC.
Notably, the presence of HPV infection within HNC cells may induce a decreasing effect
on neutrophil infiltration. The outcomes from this study have paved the way for novel
avenues of investigation, focusing on unraveling the intricate cross-talk between cancer
cells and the immune infiltrate microenvironment. These dynamic interactions orchestrate
changes in the neutrophil population, presenting opportunities to conceive innovative
therapeutic strategies. The prospect of personalized immunomodulation emerges as a
promising frontier to treat patients with HPV-related HNC. As future research will involve
deep investigations of the complexities of these interactions, we are primed to uncover
transformative interventions that hold the potential to enhance the prognosis and overall
quality of life for individuals battling HPV-related HNC.
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