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Abstract: The perception of circulating granulocytes as cells with a predetermined immune response
mainly triggered by pathogens is evolving, recognizing their functional heterogeneity and adaptabil-
ity, particularly within the neutrophil subset. The involvement of these cells in the pathophysiology
of autoimmune uveitis has become increasingly clear, yet their exact role remains elusive. We used
an equine model for autoimmune-mediated recurrent pan-uveitis to investigate early responses of
granulocytes in different inflammatory environments. For this purpose, we performed differential
proteomics on granulocytes from healthy and diseased horses stimulated with IL8, LPS, or PMA.
Compared to healthy horses, granulocytes from the recurrent uveitis model significantly changed
the cellular abundance of 384 proteins, with a considerable number of specific changes for each
stimulant. To gain more insight into the functional impact of these stimulant-specific proteome
changes in ERU pathogenesis, we used Ingenuity Pathway Analysis for pathway enrichment. This
resulted in specific reaction patterns for each stimulant, with IL8 predominantly promoting Class
I MHC-mediated antigen processing and presentation, LPS enhancing processes in phospholipid
biosynthesis, and PMA, clearly inducing neutrophil degranulation. These findings shed light on the
remarkably differentiated responses of neutrophils, offering valuable insights into their functional
heterogeneity in a T-cell-driven disease. Raw data are available via ProteomeXchange with identifier
PXD013648.

Keywords: ERU; PMN; granulocyte; innate immune cell activation; granulocyte heterogeneity;
differential proteomics; pathway analysis; IL8; PMA; LPS

1. Introduction

With little to no capacity for regeneration, the ocular microenvironment needs protec-
tion against excessive inflammation and is considered immune privileged [1–3]. However,
in autoimmune uveitis, detrimental immune reactions overcome said privilege, threat-
ening the vision of patients (reviewed in [4]). Besides a dysregulated T cell response,
the involvement of innate immune cells in the pathogenesis of autoimmune uveitis has
become evident [5–7]. Their exact role in the pathology of autoimmune uveitis, however,
remains elusive. The effector cells driving autoimmune uveitis from the periphery are
easily accessible through blood withdrawal, contrary to eye tissue, which can only be
obtained through invasive procedures risking vision loss. Therefore, these cells are useful
for investigations on the molecular mechanisms contributing to disease pathogenesis and
may serve as valuable targets for causal diagnostic therapeutic approaches.

Equine recurrent uveitis (ERU) is a leading cause of blindness among horses world-
wide [8,9]. It is characterized by recurring episodes of painful inflammation within inner
eye structures, which increase in severity over time [8–10]. Onset, progression, and patho-
genesis of ERU are similar to autoimmune uveitis in humans [11–16]. Further, the immune
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system per se shows a strong resemblance between said species [17]. These similarities to-
gether with the availability of equine ocular tissue and peripheral blood cells from animals
without systemic treatment for disease renders the horse a valuable model organism to
study autoimmune-mediated recurrent pan-uveitis.

Using this model, a pre-activated state of circulating granulocytes was previously
shown in ERU-afflicted horses, indicating an active role of these innate immune cells
instead of merely acting as passive bystanders in disease pathogenesis [18]. Similarly, a
more readily activated feature of equine innate immune cells was also observed in other
T-cell-driven disorders [19]. Further, we detected that granulocytes show a very specific
response to different stimuli in vitro, which points to functional heterogeneity and finely
tuned activation of downstream innate immune response depending on the inflammatory
environment [20,21].

Since early influx of granulocytes into ocular tissue has been shown in experimental
autoimmune uveitis in mice and rats [5–7,22–24], and also in horses with ERU [25], insights
into initial granulocyte activation mechanisms may help to specifically target and restrict
or at least interfere with granulocyte activity in early stages of disease. For this, it is im-
portant to know the diverse reaction patterns of granulocytes in different inflammatory
environments. These can be simulated in vitro by several stimulatory agents. For instance,
interleukin-8 (IL8) is a cytokine that acts as a potent chemoattractant that specifically pro-
motes recruitment and activation of human granulocytes through chemokine receptors
CXCR1 and CXCR2, thereby contributing to an inflammatory response [26]. As a compo-
nent of the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS) activates
granulocytes by binding to toll-like receptor 4, thereby increasing cell surface adhesion
molecules and vascular crawling [27]. Phorbol 12-myristate 13-acetate (PMA), on the other
hand, triggers exocytosis, release of reactive oxygen species, and formation of neutrophil
extracellular traps through direct activation of protein kinase C [28]. Since these stimuli
trigger granulocyte activation in different ways, which simulate different inflammatory
environments, we analyzed the early response of granulocytes from ERU-afflicted horses
to IL8, LPS, and PMA, with a prospect of potentially new approaches in diagnostics and
therapy of autoimmune-mediated recurrent pan-uveitis on a molecular level.

2. Materials and Methods
2.1. Sample Processing

Granulocytes were freshly obtained from heparinized (50 I.U./mL blood, Ratiopharm,
Ulm, Germany) venous whole blood of three healthy horses and three horses with ERU.
The healthy horses belong to the Equine Clinic at Ludwig-Maximilians-University Munich.
Horses with ERU were patients awaiting therapeutic procedure. ERU was diagnosed by
experienced clinicians from the Equine Clinic at Ludwig-Maximilians-University Munich
and was based on typical clinical signs of uveitis, along with a documented history of
multiple episodes of inflammation of the affected eye [29]. Blood withdrawal from ERU
horses was performed in the course of diagnostics and therapy, in quiescent stage of disease.
Blood withdrawal from healthy horses was performed by experienced clinicians from the
Equine Clinic at Ludwig-Maximilians-University Munich and was permitted by the local
authority (Regierung von Oberbayern, Permit number: ROB-55.2-2532.Vet_03-22-37).

After rough sedimentation of erythrocytes, granulocytes were isolated from blood
plasma by density gradient centrifugation (room temperature, 350× g, 25 min, brake off)
with Ficoll-Paque PLUS separating solution (density 1.077 g/mL; Cytiva Life Sciences,
Freiburg, Germany). This procedure yielded separation into four layers: a top layer of
blood plasma, a second layer with mostly peripheral blood mononuclear cells, a third layer
of Ficoll-Paque PLUS separating solution, and a bottom layer containing mainly red blood
cells and granulocytes [30]. After removal of the three top layers, cells from the bottom
layer were carefully washed (4 ◦C, 400× g, 10 min) in cold PBS (DPBS devoid of CaCl2 and
MgCl2; Gibco/ThermoFisher Scientific, Schwerte, Germany), and residual erythrocytes
were removed by 30 s sodium chloride (0.2% NaCl) lysis. The isotonicity of samples was
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restored through the addition of equal parts 1.6% NaCl. The remaining granulocytes were
then washed (4 ◦C, 400× g, 10 min) and resuspended in PBS with 0.2% glucose.

From each granulocyte specimen, we prepared aliquot portions of 6 × 105 cells/
500 µL, which were separately stimulated with recombinant equine interleukin-8 (IL8; King-
fisher Biotech; 1 ng/mL), phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich/Merck,
Darmstadt, Germany; 5 µg/mL), and lipopolysaccharide (LPS; Sigma-Aldrich/Merck,
Darmstadt, Germany; 5 µg/mL) for 30 min in a CO2 incubator (37 ◦C, 5% CO2). After
stimulation, the volume of each aliquot was adjusted to 1 mL by adding PBS with 0.2%
glucose. Cells were then pelleted (4 ◦C, 2300× g, 10 min) and stored at −20 ◦C. Prior
to mass spectrometric analysis, granulocytes were thawed and lysed in urea buffer (8 M
urea in 0.1 M Tris/HCl pH 8.5), and protein concentration was determined with Bradford
protein assay [31].

2.2. Mass Spectrometric Analysis

From each sample, 10 µg of total protein was digested with LysC and trypsin by
filter-aided sample preparation (FASP), as previously described [32]. Acidified eluted
peptides were analyzed in a data-dependent mode on a QExactive HF mass spectrometer
(Thermo Fisher Scientific, Dreieich, Germany) online coupled to a UItimate 3000 RSLC
nano-HPLC (Dionex/ Thermo Fisher Scientific, Dreieich, Germany). Samples were au-
tomatically injected and loaded onto the C18 trap cartridge and after 5 min, they were
eluted and separated on the C18 analytical column (nanoEase MZ HSS T3, 100 Å, 1,8 µm,
75 µm × 250 mm; Waters, Eschborn, Germany) by a 95-min non-linear acetonitrile gradient
at a flow rate of 250 nL/min. MS spectra were recorded at a resolution of 60,000 with an
automatic gain control (AGC) target of 3e6 and a maximum injection time of 30 ms from
300 to 1500 m/z. From the MS scan, the 10 most abundant peptide ions were selected for
fragmentation via HCD with a normalized collision energy of 27, an isolation window of
1.6 m/z, and a dynamic exclusion of 30 s. MS/MS spectra were recorded at a resolution
of 15,000 with an AGC target of 1e5 and a maximum injection time of 50 ms. Unassigned
charges and charges of +1 and > +8 were excluded from precursor selection.

2.3. Data Processing and Label-Free Quantification

Proteome Discoverer 2.5 software (version 2.5.0.400; Thermo Fisher Scientific, Dreieich,
Germany) was used for peptide and protein identification via a database search (Sequest HT
search engine) against the Ensembl Horse protein database (version 3.0, http://ensembl.org
(accessed on 3 November 2023)). The database search was performed with full tryptic
peptide specificity, allowing for up to one missed tryptic cleavage site. The precursor mass
tolerance was 10 ppm, and the fragment mass tolerance was 0.02 Da. Carbamidomethyla-
tion of cysteine was set as static modification. Dynamic modifications included deamidation
of asparagine and glutamine, oxidation of methionine (M), and a combination of M loss
with acetylation on the protein N-terminus. Peptide spectrum matches and peptides were
validated with the Percolator algorithm [33]. Only the top-scoring hits for each spectrum
were accepted with a false discovery rate (FDR) < 1% (high confidence). The final list
of proteins satisfying the strict parsimony principle included only protein groups pass-
ing an additional protein confidence filter FDR < 5% filter (target/decoy concatenated
search validation).

Quantification of proteins was based on intensity values (at RT apex) for the top three
unique peptides per protein. Peptide abundance values were normalized on the total
peptide amount. Protein abundances were calculated as the average of the three most
abundant (Top 3 N) unique peptides. Missing values were replaced by low abundance
imputation from the lowest 5% of detected abundance values. These protein abundances
were used for the calculation of enrichment ratios of proteins per treatment comparison.
Significance of the ratios was tested using a background-based t-test with correction for
multiple testing according to Benjamini-Hochberg (adjusted p-value) [34,35].

http://ensembl.org


Biomedicines 2024, 12, 19 4 of 19

2.4. Data Analysis

Data were analyzed with the use of Ingenuity Pathway Analysis (IPA; Qiagen, Hilden,
Germany, https://digitalinsights.qiagen.com/ (accessed on 7 November 2023)) [36]. En-
sembl stable protein identifier and Entrez Gene identifier were used to map equine proteins
to protein identifiers compatible with the Ingenuity Knowledge Base, resulting in 2673
mapped and 638 unmapped proteins. Analysis was based on the abundance ratios, the
abundance ratio p-values, and the abundance ratio adjusted p-values. IPA Core Analysis
was performed with a significance threshold of –log10(p-value) > 1.3 (=p-value < 0.05) and
an expression fold change threshold of −2 for downregulated genes and 2 for upregulated
genes. Relaxed tissue filtering was set to granulocytes. Z-score describes prediction of
activation (+ values) or inhibition (−values) of enriched pathway. From data input, IPA
evaluates overrepresentation of proteins in canonical pathways, molecular patterns of
diseases, or other cellular functions, which are deposited in the Ingenuity Knowledge
Base, as previously described [36]. This allows insight into possible physiological effects of
upstream molecules on these proteins and allocation to downstream pathways.

Volcano plots were created in R (version 4.3.1; R Core Team (2023), Vienna, Aus-
tria, https://www.R-project.org/ (accessed on 8 November 2023)) [37] with the packages
ggplot2 (version 3.4.2) [38] and ggrepel (version 0.9.3) [39]. Gene names for the data
point labels of the volcano plot were obtained from the protein description of the En-
sembl Horse database. Where possible, gene names of uncharacterized proteins were
translated into human gene names using the Ensembl Biomart database together with the
equine Ensembl stable protein identifiers (https://www.ensembl.org/info/data/biomart;
exported on 8 August 2023). Venn diagram was generated with the open-source tool:
http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on 8 November 2023).

3. Results
3.1. In an Inflammatory Uveitis Model, Granulocytes Show Distinct Protein Changes Dependent
on Treatment with IL8, LPS, or PMA

Granulocytes may play a more crucial role in the pathogenesis of ERU than initially
thought [18,20,25,40–43]. While pre-activation of granulocytes in ERU has been previously
implied [18], it remains unclear how this affects their behavior in the stimulatory environ-
ment of ERU eyes. Thus, we compared the effects of three different stimuli on granulocytes
from healthy horses and horses with ERU. This allowed us to elucidate the inherent pre-
activated status of ERU-derived granulocytes and to detect consequent changes in their
reaction in different inflammatory environments on a molecular level. We quantitatively
analyzed the proteome of granulocytes derived from healthy and ERU-afflicted horses
following stimulation with IL8, LPS, or PMA, respectively for 30 min. Using this method,
we quantified 2861 proteins in the lysates of equine granulocytes (Supplementary Table
S1). Of these, 384 proteins showed significant (adjusted p-value < 0.05) abundance differ-
ences in ERU (Figure 1). Specifically, IL8 stimulation yielded 109 differentially abundant
proteins, of which 60 were less abundant and 49 were more abundant in ERU samples. LPS
induced abundance differences of 216 proteins, which included 104 proteins with lower
expression levels and 112 with higher abundance. Stimulation with PMA rendered a total
of 203 proteins with changed abundance, among which 70 proteins were lower and 133
were more abundant in ERU (Supplementary Table S1, Figure 1).

The analysis of differentially expressed granulocyte-derived proteins per treatment
group revealed protein abundance changes for 34 proteins only from IL8 stimulation
(Figure 1, blue circle), 106 differentially expressed proteins specifically following treatment
with LPS (Figure 1, red circle), and 122 proteins that only showed differential abundance
after stimulation with PMA (Figure 1, green circle). Twenty-two differentially expressed
proteins were common to all three treatment groups, indicating proteins that were con-
sistently altered in response to stimulation in granulocytes derived from ERU-afflicted
horses, regardless of the specific stimulus (Figure 1, overlap area of all three circles). Of
all the differentially abundant proteins in our dataset, 8.9% were shared between IL8- and

https://digitalinsights.qiagen.com/
https://www.R-project.org/
https://www.ensembl.org/info/data/biomart
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PMA-stimulated samples, 16.4% were shared between samples stimulated with IL8 and
LPS, and 18% overlap was detected after treatment with LPS and PMA. This shows a
predominantly specific change in protein abundance for each stimulant rather than mostly
similar reaction patterns. In particular, with regard to LPS and PMA, which are both known
to induce similar processes in granulocytes of other species [27,28], the small amount of
shared differentially abundant proteins after stimulation of equine granulocytes underlines
functional heterogeneity and finely tuned response pattern of these innate immune cells in
diseased state.
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Figure 1. Distinct protein expression in granulocytes of ERU-afflicted horses following treatment
with various cytokines: Venn diagram of differentially expressed proteins (adjusted p-value < 0.05)
in granulocytes derived from ERU horses compared to healthy controls, treated as indicated. After
IL8 stimulation, a total of 109 proteins showed changed abundance (blue circle). Of these, 34
were uniquely changed in IL8-stimulated cells, whereas 75 were also changed in the other samples.
Stimulation with LPS yielded abundance changes of 216 proteins (red circle), of which 106 were
solely changed for this stimulant and 110 were shared. PMA stimulation resulted in 203 differentially
abundant proteins (green circle), of which 122 were not changed in the samples incubated with the
other two stimulants and 81 were changed in all three stimulants.

3.2. Granulocytes Show Distinct Functional Heterogeneity in Different Inflammatory Environments

To gain better insight into the functional impact of the differentially abundant proteins
from granulocytes in ERU pathogenesis and to compare possible differences between stim-
uli, we used IPA for pathway and biological function enrichment analysis (Supplementary
Table S2). We focused on significantly (p < 0.05) enriched canonical pathways and biological
functions with predicted activation (positive z-score > 1.5 for biological functions or >2 for
canonical pathways) (Figures 2 and 3, Tables 1 and 2).
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Table 1. Top enriched biological functions with predicted activation in granulocytes from horses with
ERU, after stimulation with IL8, LPS, or PMA in vitro.

Category 1 Diseases and
Biological Functions 2 z-Score 3 p-Value 4 Molecules 5

IL8

Cell-To-Cell Signaling and
Interaction Activation of cells 1.56 3.56

AIP AMFR APOE BPI BSG CCN2
CD300LF CD37 CD81 CD84 CXCR2
ENTPD1 EPX FCER1G GBA1 GP5
HSPH1 HVCN1 IKBKB ITGB3 JAK3
LTB4R MGST1 MYD88 NPC2 NUCB2
PLAT PLSCR1 PPIF RIGI SEMA4A
SLC11A1 SPTB SPTLC2 THBS1
TNFSF14 VWF

Cell-To-Cell Signaling and
Interaction, Hematological
System Development and
Function, Immune Cell
Trafficking, Inflammatory
Response

Activation of
leukocytes 2.17 2.86

AIP APOE BPI BSG CD300LF CD37
CD81 CD84 CXCR2 EPX FCER1G
GBA1 HSPH1 HVCN1 IKBKB JAK3
LTB4R MGST1 MYD88 PLAT PLSCR1
RIGI SEMA4A SLC11A1 SPTLC2
THBS1 TNFSF14

Inflammatory Response Inflammatory response 1.90 2.65

ALOX5AP APOE BPI BSG CD37 CD84
CXCR2 CYBA DDT EPX FCER1G
HSPB1 IKBKB IRF3 ITGB3 LTB4R
MSRA MYD88 NLRC4 PLAT SBDS
SLC11A1 TBXAS1 THBS1 TNFSF14
TUBA4A TUBB1 TUBB2A VWF

Cell Death and Survival Apoptosis 2.41 3.00

ACTC1 AIP ALDH3A1 AMFR APOE
ARHGAP18 ASS1 BPI BSG CCDC12
CCDC47 CCN2 CIAPIN1 CKAP5 CKB
COX6B1 CSTA CXCR2 CYBA DDX5
DENR EIF2B5 EIF4E ENTPD1 FBXO31
FCER1G FHL1 GBA1 GCLC GPX7
HK2 HNRNPH1 HSPB1 HSPH1
IKBKB ILKAP IRF3 ITGB3 ITM2B
JAK3 KDELR1 LIMS1 MBOAT7 MRC2
MYD88 NLRC4 OAS1 PARVB PLAT
PLSCR1 PPIF PPP1R2 PRDX4
PRKAR2B RABL6 RBM3 RIGI SAP18
SBDS SEMA4A SEPTIN2 SEPTIN9
SH3GLB1 SHROOM2 SNRPG SPTLC2
THBS1 TMBIM6 TNFSF14 TRAF7
TSPO TTC39C UBR2 UFL1 VPS41
VTI1A VWF

Cellular Movement Cellular infiltration by
myeloid cells 1.99 3.34

ALOX5AP AMFR APOE BSG CCN2
CD300LF CXCR2 FCER1G GBA1
HSPB1 IKBKB IRF3 ITGB3 JAK3
LTB4R MYD88 PLAT VWF

Cellular Movement,
Hematological System
Development and
Function, Immune Cell
Trafficking

Cellular infiltration by
leukocytes 2.09 2.43

ALOX5AP AMFR APOE BSG CCN2
CD300LF CXCR2 FCER1G GBA1
HSPB1 IKBKB IRF3 ITGB3 JAK3
LTB4R MYD88 PLAT SPTLC2 THBS1
VWF

Cellular infiltration by
phagocytes 1.74 3.34

ALOX5AP APOE BSG CCN2
CD300LF CXCR2 FCER1G GBA1
HSPB1 IKBKB IRF3 ITGB3 JAK3
LTB4R MYD88 PLAT VWF
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Table 1. Cont.

Category 1 Diseases and
Biological Functions 2 z-Score 3 p-Value 4 Molecules 5

Cellular Movement,
Hematological System
Development and
Function, Immune Cell
Trafficking

Cell movement of
leukocytes 1.70 2.74

ALOX5AP AMFR APOE ARHGAP18
BSG CCN2 CD300LF CD37 CD81
COMMD8 CXCR2 DDT DPYSL2
EIF4E FCER1G GBA1 HSPB1 IKBKB
IRF3 ITGB3 JAK3 LTB4R MYD88
NLRC4 PLAT RIGI SBDS SEMA4A
SPTLC2 THBS1 TNFSF14 VWF

Cellular infiltration by
granulocytes 1.57 3.94

ALOX5AP AMFR APOE CCN2
CD300LF CXCR2 FCER1G HSPB1
IKBKB IRF3 JAK3 LTB4R MYD88
PLAT VWF

LPS

Cell morphology Cell rounding 1.95 3.23 ITGAV ITGB8 NEDD9 PARVB
PIP5K1A RAF1 SOD2

PMA

Cell-To-Cell Signaling and
Interaction, Inflammatory
Response

Response of
phagocytes 1.96 1.60

C5AR1 CD44 CLEC5A FCER1G
G6PC3 ITGB3 MAP4K1 PLAUR
PRKAA1 RIGI TAPBP TYROBP

Immune response of
phagocytes 1.74 1.52

CD44 CLEC5A FCER1G G6PC3 ITGB3
MAP4K1 PLAUR PRKAA1 RIGI
TAPBP TYROBP

Cell-To-Cell Signaling and
Interaction Activation of cells 1.59 2.04

AMFR ANK3 APOE C1GALT1C1
C5AR1 CCN2 CD300LF CD44 CD81
CD84 CLCN7 CLEC5A CTSS DDOST
DGAT1 EPX FCER1G FERMT2 FGG
IKBKG ITGAV ITGB3 JAK3 KRT8
LSP1 MAGT1 MAP4K1 NAMPT
NPC2 NUCB2 PLAUR PRKAA1 RIGI
SLC11A1 SNAP23 SPTB TIMP2
TYROBP VWF

1 categories that the activated biological functions belonged to, 2 name of the activated biological function
identified with IPA, 3 activation z-score (only top activated biological functions with z-score > 2 are shown),
4 –(log10) p-value for predicted activation of respective biological function, 5 proteins identified from stimulated
granulocytes via mass spectrometric analysis, allocated to respective biological function after IPA analysis.

Table 2. Top enriched canonical pathways with predicted activation in granulocytes from horses with
ERU, after stimulation with IL8, LPS, or PMA in vitro.

Canonical Pathways 1 z-Score 2 p-Value 3 Molecules 4

IL8

SRP-dependent
cotranslational protein
targeting to membrane

2.24 1.57 RPL18 RPL19 SEC11A SEC61B SPCS2

Class I MHC-mediated
antigen processing and
presentation

2.14 3.07 ANAPC2 CYBA FBXO31 IKBKB MRC2 MYD88 PIK3R4
TAP2 TAPBP TRAF7 UBE2L6 UBR2 UFL1 VAMP3

TEC Kinase Signaling 2.00 1.66 ACTC1 FCER1G GNG10 ITGB3 ITGB8 JAK3 PIK3R4

LPS

SRP-dependent
cotranslational protein
targeting to membrane

2.31 5.58 RPL13 RPL15 RPL26 RPL27A RPL35 RPL7A RPLP1
RPS13 RPS26 SEC11A SEC61A1 SPCS2
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Table 2. Cont.

Canonical Pathways 1 z-Score 2 p-Value 3 Molecules 4

CDP-diacylglycerol
Biosynthesis I 2.00 2.76 AGPAT2 CDS1 CDS2 MBOAT7

Phosphatidylglycerol
Biosynthesis II (Non-plastidic) 2.00 2.63 AGPAT2 CDS1 CDS2 MBOAT7

PMA

Neutrophil degranulation 3.53 7.61

ALDH3B1 C5AR1 CD44 CHIT1 CLEC5A CSNK2B CTSS
DDOST DGAT1 DYNLL1 EPX FCER1G ITGAV MAGT1
MMP25 NHLRC3 NIT2 NPC2 OLR1 PLAUR QSOX1
RAB44 RAB4B RAP1A SLC11A1 SNAP23 TIMP2
TMBIM1 TYROBP

SRP-dependent
cotranslational protein
targeting to membrane

2.12 2.80 DDOST RPL19 RPL22 RPL9 RPLP0 RPS10 RPS9 SEC11A

1 name of the activated canonical pathway identified with IPA, 2 activation z-score (only top activated canonical
pathways with z-score > 2 are shown), 3 –(log10) p-value for predicted activation of the respective canonical
pathway, 4 proteins identified from stimulated granulocytes via mass spectrometric analysis, allocated to respective
canonical pathway after IPA analysis.
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Figure 2. Top biological functions enriched in ERU-afflicted granulocytes following short-term
treatment with various stressors. Granulocytes from ERU horses and healthy controls were treated as
indicated for 30 min. Biological functions enriched in ERU-derived granulocytes compared to the
corresponding healthy controls were identified by IPA. Heatmaps of top biological functions with
z-score > 2 and p-value < 0.05 for at least one of the stimulants are shown in alphabetical order. Orange
squares indicate a positive activation z-score, whereas blue squares indicate a negative z-score. White
squares indicate no activation prediction for the corresponding pathway. Shades of purple indicate
the –(log10) p-value with darker squares being more significant. Dots indicate p-values > 0.05.
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Figure 3. Top canonical pathways enriched in ERU-afflicted granulocytes following short-term
treatment with various stressors. Granulocytes from ERU horses and healthy controls were treated
as indicated for 30 min. Canonical pathways enriched in ERU-derived granulocytes compared to
the corresponding healthy controls were identified by IPA. Heatmaps of top canonical pathways
with z-score > 2 and p-value < 0.05 for at least one of the stimulants are shown in alphabetical order.
Orange squares indicate a positive activation z-score, whereas blue squares indicate a negative z-score.
For white squares, no z-score could be calculated. Shades of purple indicate the –(log10) p-value,
with darker squares being more significant. Dots indicate p-values > 0.05.

3.2.1. Biological Functions in Granulocytes with Predicted Activation

Biological function enrichment analysis of all stimulants (Supplementary Table S2)
revealed “Activation of cells” as significantly enriched in both the IL8- and PMA-stimulated
samples, but not in the samples stimulated with LPS (Figure 2, Table 1). Analysis of gran-
ulocyte proteome changes after IL8 stimulation resulted in a total of nine significantly
enriched biological functions, of which “Apoptosis” showed the highest z-score for acti-
vation. Further, IPA allocated differentially abundant proteins from the IL8 dataset to the
functions “Activation of leukocytes” and “Inflammatory response”, as well as the category
“cellular movement and immune cell trafficking”, in which five of the enriched biological
functions were clustered. The biological function “Cell rounding” was allocated to differen-
tially abundant proteins from LPS-stimulated granulocytes, whereas PMA-induced protein
abundance changes were associated to “Response of phagocytes” and “Immune response
of phagocytes” (Figure 2, Table 1).

3.2.2. Canonical Pathways in Granulocytes with Predicted Activation

Stimulation of granulocytes with IL8 yielded 99 significantly enriched canonical path-
ways (Supplementary Table S2), of which three pathways were predicted to be activated
with a z-score larger than 2 (Figure 3, Table 2). From these, we selected the pathway with the
most significant p-value and the highest z-score for further analysis. Although the pathway
“SRP-dependent cotranslational protein targeting to membrane” was enriched with a higher
z-score, we chose the pathway “Class I MHC-mediated antigen processing and presenta-
tion” for further analysis of IL8-stimulated cells due to a better p-value and because antigen
cross-presentation is a highly interesting process in ERU since it might enhance inflamma-
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tion of a diseased retina (Figures 3 and 4A, Table 2). Differentially abundant granulocyte
proteins resulting from treatment with LPS were allocated to 145 significantly enriched
pathways (Supplementary Table S2), including three pathways with a z-score larger than
2 (Figure 3, Table 2). Amongst these were two pathways associated with phospholipid
biosynthesis: “CDP-diacylglycerol Biosynthesis I” and “Phosphatidylglycerol Biosynthesis
II (Non-plastidic)” (Figure 3, Table 2). Phosphatidylinositols are involved in the regula-
tion of granulocyte apoptosis [44] and neutrophil directional movement [45]. Since the
synthesis of phosphatidylinositols is part of this pathway, we chose to further investigate
the activation of the “CDP-diacylglycerol Biosynthesis I” pathway in ERU granulocytes
(Figures 3 and 4B and Table 2). Finally, proteome changes after PMA stimulation of granu-
locytes clustered to 108 significantly enriched pathways (Supplementary Table S2). Two
pathways were predicted to be activated with a z-score larger than two (Figure 3, Table 2).
One of these two pathways was the “neutrophil degranulation pathway”, which we chose
for further analysis (Figures 3 and 4C, Table 2). The majority of the molecules involved in
the selected pathways allocated to the three different stimulants were upregulated (Figure 4,
orange dots), confirming the significant activation as calculated by IPA. Furthermore, no
overlap in proteins associated with the three top enriched canonical pathways was de-
tected (Table 2), indicating the specific effect of the different stimulants on granulocytes of
ERU horses.
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Figure 4. Volcano plot of all identified proteins from ERU-afflicted granulocytes following short-term
incubation with different stressors. Granulocytes derived from ERU horses and healthy controls
were treated as indicated for 30 min. Proteins with significant changes in their abundance ratio
(±log2(1) fold expression, adjusted p-value ≤ 0.05) are colored, with upregulated proteins depicted
as orange dots, while down-regulated proteins are colored blue. Grey dots show proteins with no
significant abundance changes. One significantly enriched pathway per treatment identified by IPA
was chosen, and the associated proteins were labeled with their gene symbol. Class I MHC-mediated
antigen processing and presentation pathway was enriched in IL8-treated ERU granulocytes (A).
CDP-diacylglycerol Biosynthesis I pathway was enriched in LPS-treated ERU granulocytes (B).
Neutrophil degranulation pathway was enriched in PMA-treated ERU granulocytes (C).
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To gain deeper insights into protein-protein interactions of the differentially abundant
proteins allocated to each selected canonical pathway, we subsequently constructed an
interaction network using the String Database (version 12.0; available free of charge at:
https://string-db.org/ (accessed on 9 November 2023)) with these proteins (Figure 5).
One additional level of predicted functional partners was allowed during network gener-
ation, and kmeans clustering was performed to sort each interaction network into three
distinct clusters.
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Figure 5. Protein interaction network of enriched canonical pathways in granulocytes from ERU
horses following treatment with various stressors. Granulocytes derived from ERU horses and healthy
controls were treated with IL8, LPS, or PMA, respectively for 30 min. Subsequently, the proteome
was analyzed, and pathway enrichment analysis was performed using IPA. Per treatment, the most
significantly (p-value < 0.05) enriched pathway with a z-score threshold > 2 was chosen. Protein
interaction networks were generated using the String database for proteins associated with the “Class
I MHC-mediated antigen processing and presentation” pathway for IL8-treated granulocytes (A),
“CDP-diacylglycerol Biosynthesis I” pathway for LPS-treated granulocytes (B), and “Neutrophil
degranulation” pathway for PMA-treated granulocytes (C). Kmeans clustering was performed to
sort each network into three distinct clusters, which were colored blue, green or red.. Edges between
the proteins show interaction, with line thickness indicating confidence of interaction. Dashed lines
show interactions between proteins from different clusters.

https://string-db.org/
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Proteins Antigen peptide transporter 2 (TAP2), Tapasin (TAPBP), and Calreticulin
(CALR) in the blue cluster from the Class I MHC-mediated antigen processing and presenta-
tion pathway are associated with the MHC class I peptide loading complex [46] (Figure 5A).
The green cluster contained proteins linked to protein degradation via the ubiquitin-
proteasome system, which generates peptides suitable for MHC class I antigen presentation.
Protein degradation is predominantly promoted by ubiquitin-conjugating enzymes such
as Ubiquitin/ISG15-conjugating enzyme E2 L6 (UBE2L6) and by ubiquitin ligases like
Anaphase-promoting complex subunit 2 (ANAPC2) and subunit 11 (ANAPC11), which
constitute the catalytic component of the anaphase-promoting complex [47] (Figure 5A).
Immune regulatory proteins like Toll-like receptor 4 (TLR4), Myeloid differentiation pri-
mary response protein MyD88 (MYD88), and IkappaB kinase (IKBKB) [48] were part of the
red cluster (Figure 5A).

The network of proteins allocated to the CDP-diacylglycerol Biosynthesis I pathway
was highly interconnected with strong edges, indicating high confidence (Figure 5B). The
proteins in this network are involved in the synthesis of glycerol lipids and metabolism of
phosphatidylinositol (reviewed in [49]) (Figure 5B).

In the neutrophil degranulation pathway (Figure 5C), CD44 was the most intercon-
nected node with six edges. CD44, a receptor for hyaluronic acid [50], was allocated to the
blue cluster that also contained proteins involved in the remodeling of the extracellular
matrix, such as Matrix Metalloproteinase-25 (MMP25) and its inhibitor Metalloproteinase
inhibitor 2 (TIMP2) [51]. The green cluster contained receptor proteins like C-type lectin
domain family 5, member A (CLEC5A), TYRO protein tyrosine kinase binding protein
(TYROBP), and High affinity immunoglobulin epsilon receptor subunit gamma (FCER1G)
but also the protease Cathepsin S (CTSS). These proteins are associated with leukocyte
migration and persistent inflammation [52,53]. Proteins in the red cluster of the neutrophil
degranulation network, such as Synaptosomal-associated protein 23 (SNAP23) which is in-
volved in exocytosis [54], showed little interaction with a low number of edges (Figure 5C).

4. Discussion

The stigma of circulating granulocytes as terminally differentiated cells with a fixed
immune response to stimuli mainly induced by pathogens is shifting to the acknowledge-
ment of functional heterogeneity and plasticity, especially in the neutrophil population
(reviewed in [55]). In this context, their active involvement in diseases driven by cells of
the adaptive immune system, such as autoimmune uveitis, is especially interesting. While
granulocytes have been previously shown to participate in the pathogenesis of recurrent
autoimmune-mediated uveitis as disease mediators, their mode of action remains elu-
sive [5,6,24,25,56]. To gain deeper insights into the early mechanisms behind heterogenic
granulocyte activation and to further support the assertion of a pre-activated state in ERU,
we used an equine model to investigate the reaction pattern of granulocytes to different
stimuli on a molecular level.

ERU is an important disease among horses since it causes severe pain in the afflicted
animals and substantially contributes to blindness among the horse population. When
affecting both eyes, ERU will result in the death of the horse through euthanasia, since blind
horses pose a great risk to themselves and their surroundings. Although various factors
linked to the onset of ERU are still under discussion, an exact cause is yet to be determined.
As with any animal model used for studies on diseases in humans, the transferability
of obtained insights needs careful assessment. But despite the given differences [57,58],
substantial similarities in both immune system function and composition [17,42,59–61]
render the horse a highly promising model for autoimmune-mediated recurrent uveitis.
This is further substantiated by several studies, which already demonstrated that adaptive
as well as innate immune cells from horses can be valuable tools for studying pathological
disorders in humans [15,17,62,63]. Nonetheless, the exact value of the horse as a model for
diseases in humans needs to be substantiated by further investigations.
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In this study, we reanalyzed previous examination of granulocytes derived from
ERU-afflicted horses treated with IL8 [20], but expanded our analysis by two additional
stimulatory agents, namely LPS and PMA, to obtain information on the reaction patterns
of granulocytes in different inflammatory environments produced by the different stim-
uli. Additionally, we applied more stringent settings for pathway-enrichment analysis,
by including a filter for cell type-associated proteins, as well as stricter significance- and
expression-value thresholds. IL8 acts on leukocytes as a chemotactic agent and has been
found to induce a type of activation that allows granulocytes to cross the retina-blood
barrier [20]. Therefore, the activation of the biological function “cellular infiltration by
granulocytes” in IL8-stimulated granulocytes was plausible, given the chemotactic proper-
ties of IL8 as a stimulant. While pathways associated with cellular movement induced by
treatment with IL8 have been reproduced with our more stringent filtering settings, other
cellular functions and pathways have not been described previously [20].

Granulocytes derived from healthy horses have been shown to regulate specific path-
ways in response to stimulation by IL8 and PMA [21]. Stimulation of granulocytes with
LPS, on the other hand, did not lead to significant enrichment of any pathways in said
study [21]. In contrast, we were able to detect that granulocytes derived from ERU horses
showed significant and diverse pathway enrichment for all three stimulants. For LPS in
particular, this might originate from the fact that granulocytes from ERU horses are more
sensitive to stimulation as they are in a pre-activated state, allowing rapid reaction to
stimuli [18,20].

IL8, PMA, as well as LPS, induced the activation of the pathway “SRP-dependent
cotranslational protein targeting to membrane” in granulocytes from ERU horses. This
pathway is important for proper protein localization and function [64]. It ensures the correct
delivery of newly synthesized proteins with signal sequences to cellular membranes, such as
the plasma membrane, granule membranes, or other granulocyte organelles [65]. Therefore,
it is not surprising that this pathway was shown to be activated in ERU granulocytes,
regardless of the stimulant used.

The predicted activation of the pathway “Class I MHC-mediated antigen processing
and presentation” in granulocytes stimulated with IL8 is consistent with previous findings,
describing this pathway as activated in ERU [18]. Although said pathway emerged in
both IL8-stimulated and untreated granulocytes, allocated proteins differed: After IL8
stimulation of ERU granulocytes, differentially abundant proteins were those part of
the MHC I peptide loading complex whereas previous analysis of untreated ERU cells
showed proteins involved in lysosome acidification and phagosome-lysosome fusion to
be more abundant [18]. This indicates a specific shift of focus from one part of the said
pathway, which is generally activated in ERU, to a different part, which seems to be
specifically activated after IL8 treatment of cells. Interestingly, certain subtypes of the
human MHC class I allotype HLA-B27 are strongly associated with the development of
anterior autoimmune uveitis [66]. However, the exact mechanism is part of an ongoing
scientific discussion (for a summary see [67]). Under certain conditions, granulocytes may
express or upregulate MHC class I molecules for cross-presentation [68,69]. This process
describes the presentation of fragments derived from incorporated exogenous proteins.
Granulocytes are phagocytic cells [70]. Consequently, uptake of exogenous antigens by
phagocytosis and simultaneous induction of MHC class I might promote cross-presentation
and thus, enhance the risk for molecular mimicry (reviewed in [71]). Molecular mimicry
describes autoimmunity as a result of antigen presentation of an exogenous antigen that is
similar to an endogenous self-antigen [72]. One such epitope might be a peptide derived
from the nitrogenase protein of Klebsiella that shares six consecutive amino acids with HLA-
B27 [73]. Additionally, the expression of HLA-B27 might interfere with the composition
of the microbiome, affecting immune responses and the development of autoimmune
diseases [74–76]. Although the underlying mechanisms are poorly understood, it has been
proposed that a divergent microbiome affects the permeability of the gut wall, promoting a
systemic immune response [77]. While granulocytes derived from ERU-afflicted horses are
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pre-activated, this is most likely not due to a microbiome-dependent inflammation, since
no significant alterations in the microbiome have been previously identified in the feces of
ERU horses [78].

As mentioned beforehand, stimulation of granulocytes derived from ERU horses
with LPS yielded the significant enrichment of several pathways and functions, amongst
others “cell rounding”. Cell rounding in neutrophils may specifically refer to changes
in their morphology during the process of diapedesis through barriers in order to reach
the site of infection or tissue damage. Neutrophils undergo a series of shape changes
during diapedesis, and rounding is one of the characteristic morphological alterations
observed [79]. As indicated for stimulation with IL8, processes associated with directed
cell movement seem to continuously be more readily activated in granulocytes from ERU
horses compared to controls. Besides the significant activation of the biological process
“cell rounding”, the two canonical pathways “CDP-diacylglycerol Biosynthesis I” and
“Phosphatidylglycerol Biosynthesis II (Non-plastidic)” were also activated after LPS stimu-
lation. Both pathways fall into the category of phospholipid biosynthesis and metabolism,
a process that is influenced by inflammatory signals and cytokines released during an
immune response, to meet the cell’s changing needs. When granulocytes are activated,
there is an increased demand for membrane components, including phospholipids, to sup-
port processes like phagocytosis, exocytosis, and the formation of neutrophil extracellular
traps [80]. In phospholipid-dependent signaling, phospholipid hydrolysis is mediated
by many different phospholipases, and their synchronized activity plays a crucial role in
initiating cell activation (reviewed in [81]). In mouse granulocytes, the phospholipase Cγ

subtypes, which are activated by tyrosine kinase–linked receptors, play a pivotal role in
supporting neutrophil respiratory burst, phagocytosis, adhesion, and cell migration [82].
Interestingly, we detected a very prominent association of LPS-induced protein changes to
several pathways associated with phospholipid biosynthesis in granulocytes from ERU
horses. In granulocytes from healthy horses, on the other hand, this connection was not
made, despite these processes being required for activation [21]. The reason behind this
may lay in the fact that we used a very short stimulation time and compared to granulocytes
from healthy horses, ERU-derived cells show a more rapid reaction to stimulants due to
their pre-activated phenotype.

Among the granulocyte subpopulations, neutrophils, in particular, release inflamma-
tory mediators and proteolytic enzymes as part of their degranulation process, contributing
to wanted antimicrobial effects on the one hand and unwanted tissue damage and inflam-
mation in a variety of diseases on the other hand. Neutrophil granules comprise four
principal types: primary, secondary, and tertiary granules, as well as secretory vesicles [83].
Among these, primary granules contain the highest concentrations of pro-inflammatory
and antimicrobial proteins, and their release needs the strongest stimulus [83]. In con-
trast, the content of secretory and tertiary granules and secretory vesicles are more readily
released [84]. An excessive or dysregulated release of inflammatory mediators from neu-
trophil granules may exacerbate the inflammatory response associated with uveitis, not
only via tissue damage but also through stimulation of the adaptive immune system. The
latter was shown for the short helical antimicrobial host defense peptide cathelicidin, which
is released from secondary granules after neutrophil degranulation and has the ability to
trigger Th17 cell differentiation and also to promote the survival of these cells in mice [85].
Th17 has been widely described as a driver of inflammatory processes in rodent models
for autoimmune uveitis [86], and although Th17 cells have not directly been described in
horses, matching cytokine patterns in equine iris and choroidea point to a role of Th17
cells in ERU [87]. Since the canonical pathway “neutrophil degranulation” was highly
activated in ERU granulocytes after stimulation with PMA, the concept of effector cell
subset differentiation and survival being triggered through neutrophil degranulation may
also apply to the horse model used in our study.

One of the molecules allocated to the neutrophil degranulation pathway after PMA
stimulation was CD44, a cell surface glycoprotein with elevated levels in PMA-stimulated
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granulocytes from ERU horses. This intracellular increase has also been observed in other
models describing CD44/ERM-mediated binding of F-actin to the plasma membrane as
a fundamental process for the maintenance of neutrophil morphology, migration, and
nuclear degranulation [88]. Although said study described CD44 to be involved in nuclear
degranulation in mice, the allocation of this molecule to the neutrophil degranulation
pathway in horses might point to a similar role. CD44 was previously described to promote
neutrophil adhesion as a potential ligand for Galectin-9, which is expressed in a variety of
cells, including endothelial cells in blood vessels [89]. An increase of CD44 levels in PMA-
stimulated granulocytes from ERU horses may therefore point to a facilitated infiltration
of granulocytes into the eye, compared to CD44+ CD4+ T cells [90,91]. These T cells have
been shown to be key mediators in chronic autoimmune uveitis with the ability to traverse
the retina-blood barrier, releasing IL-17 and IFNγ, resulting in structural and functional
damage in the process [90,91]. This was supported by the observation that disease severity
in mice was reduced via administration of anti-CD44 mAb (IM7) at the early leukocyte-
infiltration stage [92]. Further studies showed that CD44 levels in the iris, ciliary body,
choroid, and retina are higher in patients suffering from sympathetic ophthalmia [93]. This
hints towards an important role for CD44 for the transition of T cells into the diseased
retina that might also apply to granulocytes.

While interpreting pathway analysis results in the hypothesis generating approach
presented here, we need to keep in mind that the activation of cellular pathways is dynamic
and context-dependent, and the current study represents a snapshot in early granulocyte
activation in vitro. Additional kinetic studies over longer time periods could reveal the
dynamic changes in pathway activity and more experiments are needed to confirm the
functional relevance of the identified pathways in this study.

From the results of this study, we conclude that granulocytes from an equine model for
autoimmune-mediated recurrent pan-uveitis react to different stressors in a very specific
way. With a presumably pre-activated phenotype in disease, stimulation of granulocytes
with IL8 predominantly promotes Class I MHC-mediated antigen processing and presen-
tation whereas PMA promotes neutrophil degranulation. Both of these processes have
previously been shown to be more readily activated in diseased state [18] and treatment
with IL8 or PMA seems to preferably push the cell’s reaction towards one of these pathways.
LPS on the other hand promoted processes in phospholipid biosynthesis, which was not
yet described to be on standby mode in diseased state. Overall, our study underlines the
potential for remarkably differentiated responses of granulocytes, offering valuable insights
into their functional heterogeneity. This may support the implementation of novel concepts
for diagnostics and therapy on a molecular level by targeting pathways that are activated
in early stages of granulocyte activation in a T-cell-driven, sight-threatening disease.
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