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Abstract: The ¢4 allele of apolipoprotein E (APOE4) and aging are the major risk factors for
Alzheimer’s disease (AD). SUMOylation is intimately linked to the development of AD and the aging
process. However, the SUMOylation status in APOE4 mice has not been uncovered. In this study,
we investigated SENP1 and SUMOylation changes in the brains of aged APOE3 and APOE4 mice,
aiming to understand their potential impact on mitochondrial metabolism and their contribution
to cellular senescence in APOE4 mice. Concurrently, SUMO1-conjugated protein levels decreased,
while SUMO2/3-conjugated protein levels increased relatively with the aging of APOE4 mice. This
suggests that the equilibrium between the SUMOylation and deSUMOylation processes may be
associated with senescence and longevity. Our findings highlight the significant roles of SENP1 and
SUMOylation changes in APOE4-driven pathology and the aging process.
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1. Introduction

Alzheimer’s disease (AD) is the most prevalent form of dementia, pathologically
characterized by abnormal protein aggregates, including misfolded amyloid 3 (Af) in
amyloid plaques and hyper-phosphorylated tau protein aggregations as neurofibrillary
tangles [1]. The ¢4 allele of the apolipoprotein E (APOE4) gene is the key genetic risk factor
for AD [2]. It has been well documented that APOE could interact with Ap and promote its
aggregation, influence tau neurofibrillary degeneration, and exert effects on inflammatory
processes, membrane trafficking, and mitochondrial energy dysfunction [3-6]. Neverthe-
less, the specific contributions of each of these mechanisms to APOE4-driven pathology in
AD remain unclear.

Small ubiquitin-like modifier modification (SUMOylation), a crucial post-translational
protein modification, involves the covalent conjugation of a member of the SUMO family
to the lysine residue of a substrate protein. This process influences the cellular localization
and biological activity of target proteins in various cellular processes [7]. SUMOylation
is dynamically regulated by the activity-dependent redistribution of SUMOylation ma-
chinery and is rapidly reversed by the isopeptidase activity of SUMO/sentrin-specific
proteases (SENPs), which strongly influence the conjugation/deconjugation balance of
SUMO-targeted proteins. Among six SENPs, most of the work on their roles in neurons
has been focused on SENP1, SENP2, SENP3, and SENP6 [8-10]. In AD, SUMO modifica-
tion affects pivotal proteins related to Af3 and tau metabolism, mitochondrial biogenesis
and metabolism, and synaptic functions [11-14]. However, there is a paucity of studies
exploring the SUMOylation status in APOE mice. To gain a deeper understanding of
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SUMOylation in AD and uncover potential regulatory mechanisms and pathways, we
investigated how SUMOylation changes in aged APOE4 mice. Our observations revealed
increased SENP1 expression and decreased SUMO1-ylation level in the brains of aged
APOE4 mice, potentially impacting mitochondrial metabolism. Additionally, across three
age stages (8, 16, and 24 months old), we noted a decline in SUMO1-conjugated protein
levels and a relative increase in SUMO2/3-conjugated protein levels with the aging of
APOE4 mice. These findings shed light on how the balance of SUMO/deSUMOylation may
offer new insights into understanding how APOE modulates the risk of AD and senescence.

2. Materials and Methods
2.1. Experimental Animals

APOE-targeted replacement mice were originally developed on a C57Bl/6 background
to express human APOE3 or APOE4 genes, in place of the mouse APOE gene, under the
control of the endogenous murine promoter [15,16]. In this manuscript, mice homozy-
gous for either the human APOE3 or human APOE4 genes are denoted as APOE3 and
APOE4 mice, respectively. The humanized APOE3 and APOE4 male mice were procured
from Taconic (Germantown, NY, USA) by the Model Animal Research Centre of Nanjing
University and subsequently bred for this study. The genotype was confirmed by the
polymerase chain reaction analysis of tail biopsies (Supplementary Materials). All animals
were housed in standard specific pathogen-free (SPF) conditions with ad libitum access to
sterilized water and food. Animal handling and experiment procedures were performed
in accordance with the guide for the care and use of laboratory animals by the Medical
Experimental Animal Administrative Committee of Fudan University. Every effort was
made to reduce animal stress and to minimize animal usage. The APOE3 and APOE4 mice
were sacrificed at the age of 8, 16, and 24 months old, respectively. Their body weight and
blood glucose were monitored.

2.2. In Vivo RNAi of SENP1

The sequence used for RNAi targeting SENP1 was GACCTCAAGTGGATTATCAAA.
Both shRNA for SENP1 and Control were cloned into a vector containing synapsin (Syn)
promoter-driven enhanced green fluorescent protein (eGFP), subsequently packed into
adeno-associated virus (AAV). AAV-loading shRNA or Control shRNA (shCtrl) was injected
intracerebroventricularly as previously described [17]. Anesthetized with isoflurane, the
mice were fixed on the stereotaxic apparatus for the following experiment. The skull
was exposed by incising the scalp and a small burr hole was created bilaterally in the
hemisphere with a dental drill at the following stereotaxic coordinates: 1.0 mm left and
right of the Bregma, 0.2 mm back, and 2.5 mm deep. A volume of 5 uL virus was injected
into the lateral ventricle through a needle at a constant speed for more than 10 min. The
needle was held in place for 10 min and retracted slowly in case of leakage. Finally, the
scalp was sutured and mice were placed on a thermostated blanket for recovery from
anesthesia. Four weeks after the virus injection, the mice were sacrificed, and transcriptome
analysis of frontal cortex in APOE4 mice was performed (1 = 4).

2.3. Western Blot

The brain tissues were homogenized in cold NP40 lysis buffer (50 mM Tris-HCl pH
7.5,150 mM NaCl, and 1% NP-40) supplemented with 20 mM N-ethylmaleimide (NEM,
Sigma, Saint Louis, MO, USA), protease inhibitor cocktail, and phosphatase inhibitor cock-
tail (Thermo Scientific, Waltham, MA, USA). Protein concentrations were measured with
the Pierce BCA protein assay kit according to the manufacturer’s instruction (Thermo
Scientific, Waltham, MA, USA). For separation of proteins, 40 ug of protein was loaded in
each well for electrophoresis on 10-12% acrylamide gels. Polyvinylidene fluoride mem-
branes (Millipore, Burlington, MA, USA) were blocked in Tris-buffered saline with Tween
20 containing 5% nonfat dry milk for 1 h. The membrane was then probed with specific
primary antibodies including SENP1 (1:1000, Abcam, Cambridge, UK), SUMO1 (1:1000,
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Cell Signaling Technology, Danvers, MA, USA), SUMO2/3 (1:1000, Sigma, Saint Louis,
MO, USA), OXPHOS (1:1000, Abcam, Cambridge, UK), SIRT1 (1:1000, Santa Cruz, Santa
Cruz, CA, USA), SIRT2 (1:1000, Abcam, Cambridge, UK), SIRT3 (1:1000, Cell Signaling
Technology, Danvers, MA, USA), FOXO3A (1:1000, Cell Signaling Technology, Danvers,
MA, USA), SOD2 (1:1000, Cell Signaling Technology, Danvers, MA, USA), and (3-actin
(1:3000, Proteintech, Chicago, IL, USA) overnight at 4 °C and then incubated for 1 h
with a horseradish-peroxidase-conjugated anti-mouse IgG antibody or anti-rabbit IgG
(Supplementary Table S1).

2.4. Immunofluorescence Staining

Mice were transcardially perfused with ice-cold PBS and fixed for 24 h in 4% PFA /PBS
at 4 °C. The brains were then transferred to 30% sucrose for 2-3 days. Three randomly
chosen 25-pm-thick per mouse sections were blocked in 5% BSA in PBS with 0.5% triton-
X100. The sections were probed with the primary antibodies (anti-NeuN, 1:500, Abcam;
anti-SENP1, 1:200, Novus biologicals, Centeennial, CO, USA) at 4 °C overnight. After wash-
ing steps, the sections were incubated for 2 h with secondary antibodies, namely Alexa
594-conjugated Donkey anti-mouse-IgG and Alexa 488-conjugated Donkey anti-rabbit-IgG
(all 1:500, Invitrogen, Waltham, MA, USA), and then stained with DAPIL Immunofluores-
cence images were captured using Nikon A1R confocal microscope (Tokyo, Japan).

2.5. RNA Sequencing Data Analysis

We reanalyzed GSE95587 RN A-seq dataset from the developing human brain, uti-
lizing the publicly available BrainSpan resource (www.brainspan.org (accessed on 7
April 2021). The dataset included fusiform gyrus tissue samples from 117 subjects,
comprising 84 AD patients and 33 neurologically normal age-matched controls. The
GSE95587 data had already been processed using “nRPKM” normalization for sizeFactor
adjustment [18]. Additionally, RNA sequencing data of aged humanized APOE mice
(GSE140205) were downloaded from the GEO database. The RNA sequencing data from
the hippocampus tissue of 16-month-old APOE3 or APOE4 mice were extracted and
reanalyzed (n = 8). Gene differential expression analysis was performed by DESeq2
software (version 1.20.0) between two different groups. DESeq2 p value < 0.05 |log2 Fold
Change| > 0.0 was used to calculate the difference in gene expression. To infer the cellu-
lar and metabolic functions associated with the observed changes in transcript levels, the
differentially expressed genes (DEGs) were categorized according to predicted protein
function using Gene Ontology (GO) enrichment analysis. All DEGs were mapped to GO
terms in the Gene Ontology database (http://www.geneontology.org/ (accessed on 8
November 2021). Furthermore, Gene Set Enrichment Analysis (GSEA) was performed
with gene score enrichment analysis (http:/ /www.broadinstitute.org/gsea/index.jsp
(accessed on 11 November 2021).

2.6. Statistical Analysis

Results are presented as mean =+ standard errors of the mean (SEM). Statistical analysis
was performed by GraphPad Prism?7. “n” refers to the number of animals. Comparisons
between two groups were performed using two-tailed unpaired f test. One-way analysis
of variance (ANOVA) with Tukey’s post hoc test was used to compare three or more
independent groups. p values less than 0.05 were considered statistically significant.

3. Results
3.1. The mRNA Level of SENP1 Was Upregulated in the Brains of AD Patients and Aged
APOE4 Mice

To investigate the changes in SENPs in AD, we examined the expression levels of
SENPs in the fusiform gyrus of both AD and control subjects. Our analysis revealed an
upregulation in SENP1 mRINA levels, while other SENPs, including SENP2, SENP3, SENP5,
and SENP6, exhibited no significant changes (Figure 1). Next, we reanalyzed the RNAseq
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data from hippocampus tissue of 16-month-old APOE3 and APOE4 mice. Our findings
identified 522 differentially expressed genes (DEGs), consisting of 342 upregulated genes
and 180 downregulated genes in APOE4 mice compared to age-matched APOE3 mice
(Figure 2A). Among these DEGs, SENP1 mRNA levels were also found to be elevated
in the hippocampus of aged APOE4 mice compared to age-matched APOE3 mice, while
the mRNA levels of SENP2, SENP3, and SENP6 remained unchanged (Figure 2B). These
results indicate that SENP1 might play an important and unique role in the SUMOylation
processes associated with APOE4-driven pathologies.

4 y - -
_ Padj=0.01 % - _ 40
= - = -
x . Y 20< & - E ns
o, 3— o, o o 30 .
x s x £ x >
< .: ._.;:.‘3 < 15 ... . R, < o~ For
Z 2| esples = sizil o Z 20 .25 -
o ety o < x 3 . o 0 B
e ':;35 € 10 ::.- " € ot o
E 1 ) H . E ° 2 10% - :
= Z 5 =z o
[T, i i
7] 7)) 7

0 | 0 T 0- T

>
o
Q.
3
>
o
Q|
-
>
=)

Ctrl

15 s _

= =
i~ . K E 20

& 10 i > <
S 22e2s% _
S - g

E .so.. m
£ £ 10

£ = g
= |
o T

w (/2]
(1} 0

T T T T
Ctrl AD Ctrl AD

Figure 1. The mRNA levels of SENPs in the fusiform gyrus tissue of AD and normal age-matched
controls. SENP1 mRNA levels were upregulated compared to age-matched controls, while the mRNA
levels of other SENPs, including SENP2, SENP3, SENP5, and SENP6, remained unchanged in AD
patients. Data represent mean + SEM (normal control = 33, AD patients = 84). ns, no significance.
Abbreviations: AD, Alzheimer’s disease; SENPs, SUMO/ sentrin-specific proteases.
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Figure 2. The mRNA levels of SENPs in aged APOE4 mice compared with age-matched APOE3 mice.
(A) Volcano plot of DEGs in the hippocampus tissue of 16-month-old APOE4 mice compared with
age-matched APOE3 mice, with a histogram showing 342 upregulated DEGs and 180 downregulated
DEGs. (B) SENP1 mRNA levels were upregulated, while the mRNA levels of SENP2, SENP3, and
SENP6 remained unchanged in 16-month-old APOE4 mice compared with age-matched APOE3 mice.
Data represent mean + SEM (n = 8). * p < 0.05. Student’s ¢ test was used to determine the statistical
significance of the differences. ns, no significance. Abbreviations: DEGs, differentially expressed genes.

3.2. The SUMOylation Changes in the Brains of Aged APOE4 Mice

Given the upregulation of SENP1 mRNA expression in the brains of aged APOE4
mice, we further investigated the SENP1 protein expression and SUMOylation state in
the brains of aged APOE4 mice. There was no change in the body weight and blood
glucose between aged APOE3 and APOE4 mice (Supplementary Figure S1A). As illustrated
in Figure 3A,B, SENP1 expression in the cortex of 8-month-old APOE4 mice showed no
significant difference compared to age-matched APOE3 mice. However, SENP1 expression
was upregulated in 16-month-old APOE4 mice, with a more pronounced increase observed
in 24-month-old APOE4 mice compared to controls. Correspondingly, the levels of SUMO1-
conjugated proteins, indicative of the degree of SUMO1 modification, were decreased in
the cortex of aged APOE4 mice compared to age-matched APOE3 mice (Figure 3A). The
levels of SUMO?2/3-conjugated proteins were unchanged in the cortex of aged APOE4
mice compared to age-matched APOE3 mice (Figure 3C). Immunofluorescence staining in
the cortex of 24-month-old APOE3 and APOE4 mice revealed that SENP1 was expressed
abundantly in neuron (Figure 3D) and rarely in astrocytes or microglia [19].
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Figure 3. SENP1 and SUMOylation alterations in the cortical tissue between aged APOE3 and
APOE4 mice. (A) Levels of SENP1 and SUMO1-conjugated proteins in the cortical tissue of 8-, 16-,
and 24-month-old APOE3 and APOE4 mice. (B) Relative expression levels of SENP1 qualified and
analyzed using Image] bundled with Java 8 (n = 3). (C) SUMO?2/3-conjugated protein levels in the
cortical tissue of 16-month-old and 24-month-old APOE3 and APOE4 mice. (D) The cortical sections
of 24-month-old APOE3 and APOE4 mice stained for SENP1 (green staining) and NeuN as the neuron
marker (red staining). Nuclei were stained with DAPI. Bar: 100 pum. The data are presented as the
mean values + SEMs, and significance was calculated with Student’s ¢ test. * p < 0.05 versus the

control group. ns, no significance.

Next, we examined the SUMO-conjugated protein alterations in the hippocampus, tha-
lamus, and cerebellum of aged APOE3 and APOE4 mice. SENP1 protein expression was el-
evated in those encephalic regions, most prominently in the hippocampus of 24-month-old
APOE4 mice compared to age-matched APOE3 mice. The amounts of SUMO1-conjugated
proteins in those encephalic areas decreased, while the levels of SUMO2/3-conjugated
proteins were unchanged between aged APOE3 and APOE4 mice (Figure 4). Given that
SENP1 is primarily involved in the regulation of deSUMO1 modification, these results
revealed that the alterations in SUMO1 modification, primarily driven by SENP1, may
significantly contribute to the disordered proteins in A3, tau, or energy metabolisms, which
leads to the development of AD.
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Figure 4. SENP1 and SUMOylation levels in the brains of aged APOE3 and APOE4 mice. SENP1
and SUMOI1-conjugated protein levels in the hippocampus (A), thalamus (B), and cerebellum
(C) of 24-month-old APOE3 and APOE4 mice (1 = 3-4). (D) Relative ratio of SENP1 to the protein
level of B-actin in related encephalic regions, respectively. The data are presented as the mean
values = SEMs, and significance was calculated with Student’s ¢ test. * p < 0.05 versus the control

group. ns, no significance.

3.3. The Dynamic Changes in SENP1 and SUMOylation Levels with the Aging of APOE4 Mice

Aging and the APOE4 allele are major risk factors for AD [20]. Considering the
association between SUMOylation and cellular senescence and aging [21], we investigated
the dynamic changes in SENP1 and SUMOylation levels in APOE4 mice across different age
groups. In the cortex and hippocampus of APOE4 mice, we observed that SENP1 expression
and SUMO1-conjugated proteins decreased with the aging of APOE4 mice. Simultaneously,
the SUMO2/3-conjugated protein levels were increased relatively in 24-month-old APOE4
mice but remained unchanged between 8- and 16-month-old APOE4 mice (Figure 5). These
findings suggest that dynamic SUMOylation changes exist and possibly participate in the
aging processes of APOE4 mice.
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Figure 5. Dynamic changes in SENP1 and SUMOylation with the aging of APOE4 mice. The levels
of SENP1, SUMO1-conjugated proteins, and SUMO2/3-conjugated proteins in the cortical (A) and
hippocampal (B) tissue of 8-, 16- and 24-month-old APOE4 mice. The relative expression levels of
SENP1 were qualified and analyzed using Image] bundled with Java 8 (n = 3—4). Data represent
mean £ SEM. * p < 0.05, ** p < 0.01, ** p < 0.001. ns, no significance. One-way ANOVA was used to
determine the statistical significance of the differences.

3.4. Mitochondrial Function Was Influenced in the Brains of Aged APOE4 Mice

Deficits in mitochondrial function are well-known hallmarks of brain aging, promi-
nently accentuated in neurodegenerative disorders [22]. GSEA showed that the genes
enriched in oxidative respiratory chain (Figure 6A), oxidative phosphorylation (OXPHOS)
(Figure 6B), mitochondrial translation, and morphogenesis (Figure 6C) were downregulated
in aged APOE4 mice compared with age-matched APOE3 mice. The protein expressions of
the OXPHOS system, consisting of five multi-subunit complexes (CI-CV), were decreased
in the cortex of aged APOE4 mice compared with age-matched APOE3 mice (Figure 6D,E).
The oxidative damage caused by mitochondria-derived reactive oxygen species is believed
to be a major cause of degenerative diseases associated with aging [23]. Therefore, we fur-
ther detected the oxidative stress protein superoxide dismutase 2 (SOD2) and forkhead-box
protein O3a (FOXO3A) in the cortex of aged APOE4 mice. As shown in Figure 6F, FOXO3A
was considerably repressed with the aging of APOE4 mice, and the SOD2 protein showed
a declining trend in 24-month-old APOE4 mice.
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Figure 6. Mitochondrial function was influenced in aged APOE4 mice. GSEA enrichment plots of
representative gene sets related to oxidative respiratory chain (A), oxidative phosphorylation (B), and
mitochondrial translation and morphogenesis (C), which were downregulated in the hippocampus
of 16-month-old APOE4 mice compared with age-matched APOE3 mice. (D) The protein levels of
OXPHOS complex subunits, including CI-NDUFBS, CII-SDHB, CIII-UQCRC2, CIV-MTCO1, and
CV-ATP5A, in the cortex of 24-month-old APOE3 and APOE4 mice. (E) Statistical results showing
the normalized protein levels. The data are presented as mean values + SEMs, and significance was
calculated with Student’s ¢ test (1 = 3). (F) The protein expressions of FOXO3A and SOD2 in the
cortex of 8-, 16-, and 24-month-old APOE4 mice. Statistical results showing the normalized protein
levels. The data are presented as the mean values + SEMs, and significance was calculated with
one-way ANOVA (n =3-7). * p < 0.05, ** p < 0.01, *** p < 0.001. ns, no significance. Abbreviations:
GSEA, gene set enrichment analysis; OXPHOS, oxidative phosphorylation.
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3.5. SENP1 Was Involved in Mitochondrial Energy Metabolism in the Brains of Aged
APOE4 Mice

APOE4 significantly impacts mitochondrial function and mitophagy, leading to alter-
ations in oxidative stress, synapses, and cognitive function [6,24]. Furthermore, SENP1
and target deSUMOylated proteins exert their effects on mitochondrial metabolism and
functions [11,25]. Thus, we speculated that SENP1 might play a role in mitochondrial
metabolism and function in aged APOE4 mice. To investigate the possible role of SENP1 in
aged APOE4 mice, we selectively eliminated SENP1 in the brains of aged APOE4 mice us-
ing AAV, confirming the precise deletion in neurons through immunofluorescence staining
and Western blotting (Figure 7A,B). Low-molecular-weight SUMOI1 conjugation showed
an increasing trend by SENP1 knock-down in aged APOE4 mice. Transcriptome analy-
sis of the cortex in aged APOE4 mice revealed 902 upregulated and 200 downregulated
DEGs in APOE4 mice infected with shSENP1 compared to the control group (Figure 8A).
Intriguingly, the GO enrichment analysis indicated that enriched biological processes (BPs)
of downregulated DEGs were mainly centered on mitochondrial energy metabolism (Fig-
ure 8B), and BPs of upregulated DEGs were mainly centered on immune response and
inflammatory process.
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Figure 7. SENP1 knock-down in the brains of aged APOE4 mice. (A) Representative immunofluo-
rescence images of SENP1 expression in APOE4 mouse cortical neurons (EGFP) infected by AAV
loading SENP1 shRNA or Control shRNA (scale bar = 50 um). (B) Efficiency of SENP1 silence by
AAV and changes in SUMO1-conjugated protein levels were analyzed by WB (n = 5). Statistical
results showing the normalized protein levels. The data are presented as the mean values &+ SEMs,
and significance was calculated with Student’s t test. ** p < 0.01.

FOXO3A plays a role in the oxidative stress response and regulation of energy
metabolism. Sirtuin 3 (SIRT3) has been shown to efficiently deacetylate FOXO3A and
mediate FOXO3A to increase respiration, sustaining energy metabolism [26]. Because
SENP1 is a specific SIRT3 deSUMOYylation protease, we tested whether SIRT3/FOXO3A
was involved in SENP1-mediated mitochondrial dysfunction in aged APOE4 mice. As
depicted in Figure 8C,D, the protein levels of SIRT3 and FOXO3A were decreased in the



Biomedicines 2024, 12, 16

110f15

C

SENP1 knock-down group compared with control group, while the levels of SIRT1 and
SIRT2 remained unchanged between the two groups.
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Figure 8. SENP1-mediated mitochondrial metabolism changes in the brains of aged APOE4 mice.
(A) Volcano plot of DEGs in the cortex tissue between 24-month-old APOE4 mice infected with
shSENP1 or shCtrl, showing that there were 902 upregulated DEGs and 200 downregulated DEGs.
(B) The enriched pathways of downregulated DEGs by GO analysis. Rich factor is the ratio of
the number of DEGs to the total number of genes in a certain pathway. The color and size of the
dots represent the range of p value and the number of DEGs mapped to the indicated pathways,
respectively. (C) The protein expressions of SENP1, SIRT1, SIRT2, SIRT3, and FOXO3A in the cortex
of 24- month-old APOE4 mice infected with shSENP1 or shCtrl. (D) Statistical results showing the
normalized protein levels. The data are presented as the mean values &+ SEMs, and significance was
calculated with Student’s t test (n = 3-8). * p < 0.05, ** p < 0.01. Abbreviations: DEGs: Differentially
expressed genes; GO: Gene Ontology. ns, no significance.

4. Discussion

The focus on SUMOylation, a post-translational modification (PTM), has intensified
due to its implications in AD, rendering it a promising therapeutic target [8,27]. SUMO1
could directly modify {3 site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)
and Tau, leading to increased A} and tau aggregations [12]. We identified that in SENP1, a
member of the SUMO-specific protease family, the mRNA level increased in the fusiform
gyrus of AD patients. Nevertheless, the precise impact of SENP1 on SUMOylation sta-
tus and its involvement in AD pathology remains partially understood. The mRNA or
protein levels of SUMO1 were increased in several AD transgenic animal models, and
SUMO-mediated alterations in specific intracellular signaling pathways contributed to AD
pathologies [9,10,28]. However, in APOE4 mice, an important animal model in illustrating
the pathogenesis of AD, SUMOylation status has not been delineated. In this study, we
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uncovered that the mRNA and protein levels of SENP1 were upregulated, and the SUMO1-
conjugated protein levels decreased in the brains of aged APOE4 mice compared with
age-matched APOE3 mice. These noticeable changes might participate in APOE4-triggered
pathologies via influencing mitochondrial metabolism.

Two gene families, the Sirtuin and forkhead box O (FOXO) families, have been shown
to play a role in the genetic regulation of longevity. The Sirtuin protein family is a class
of NAD+-dependent protein deacetylases or ADP ribosyltransferases. Among Sirtuins,
SIRT3 is the main mitochondrial deacetylase and plays an important role in the mainte-
nance of mitochondrial homeostasis as a stress response protein. SIRT3 increases FOXO3A
DNA-binding activity as well as FOXO3A-dependent gene expression [29], which leads
to increased respiration to sustain energy metabolism, transactivates SOD and other an-
tioxidant enzymes [30], and activates the transcription of mitophagy genes [24,31,32]. Our
results revealed a significant decline of FOXO3A protein expression with the aging of
APOE4 mice, implying an influence on mitochondrial oxidative stress in these mice. Fur-
thermore, SENP1 and SUMO1-ylation levels decreased, while SUMO2/3 modification
increased gradually with the aging of the APOE4 mice. The dynamic SUMOylation process
in the organism underscores the importance of tight control over SUMO levels for cellular
homeostasis. Nevertheless, a comprehensive understanding of the detailed effects and
regulatory patterns of SENP1 and SUMOylation changes in the aging of APOE4 mice
requires further exploration.

Perturbed cerebral glucose metabolism and the dysregulation of lipid metabolism are
also invariant pathophysiological features of AD [33]. APOE4 is associated with decreased
cerebral glucose metabolism, which occurs decades before apparent cognitive impairment
in AD patients and age-matched nondemented subjects [34]. To our knowledge, APOE4
downregulates peroxisome proliferator-activated receptor-gamma coactivator-1o (PGC-
1)- SIRT3 expression and influences mitochondrial biogenesis [6,35]. Furthermore, APOE4
fragments cause mitochondrial dysfunction and neurotoxicity [36]. Our data consistently
revealed downregulated mitochondrial energy metabolism in the brains of aged APOE4
mice. To ascertain whether SENP1 influences the mitochondrial function of APOE4 mice,
we lowered the SENP1 protein level through AAV loading shSENP1 injection in aged
APOE4 mice. Transcriptomic analysis demonstrated that downregulated DEGs were
mainly enriched in pathways of mitochondrial energy metabolism following SENP1 knock-
down in the brains of aged APOE4 mice. Research has shown that SENP1 deSUMOylates
not only SIRT3 but also other mitochondrial proteins [25,37], promoting mitochondrial
metabolism in response to metabolic stress. Additionally, a previous study reported that
FOXOB3A is repressed in APOE4 carriers, contributing to the dysfunction of mitophagy and
mitochondrial oxidative stress. Of note, SIRT3 and FOXO3A expressions were attenuated
by SENP1 deletion in aged APOE4 mice. These results suggest that SENP1 influences SIRT3-
associated mitochondrial function directly or indirectly, possibly through SIRT3-FOXO3A
signaling pathways in aged APOE4 mice.

A delicate balance of protein SUMOylation and deSUMOylation is an essential pre-
requisite for the maintenance of protein physiological functions. SUMO1 modifications
participate in various biological processes including controlling the neurodevelopmental
function of the transcription factor [38], participating in mitochondrial fission [39], and
influencing synaptic transmission [40,41]. Conversely, the imbalance state between SUMOy-
lation and deSUMOylation impairs synaptic function [13], promotes the inflammasome
activation [42], and increases autophagic activation [43], ultimately leading to AD progres-
sion and accelerated aging [44,45]. In our study, we observed elevated SENP1 expression
and decreased SUMO1-conjugated protein levels in aged APOE4 mice. However, SENP1
knock-down further downregulated mitochondrial energy metabolism pathways in aged
APOE4 mice. These results imply that SENP1 elevation possibly serves as a compensatory
response and protective factor in the brain of aged APOE4 mice.
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5. Conclusions

In summary, our study elucidates the potential involvement of SENP1 in the pathologies
of AD and aging driven by APOE4, with a specific impact on mitochondrial metabolism.
There exist intricate mechanisms which involve the SUMOylation, dysregulation of lipid
metabolism, and energy metabolism in the brains of APOE4 mice, and SENP1 could be
an essential molecular target to influence the energy metabolism under the condition that
lipid metabolism is disrupted. The dynamic SUMOylation changes with the aging of
APOE4 mice indicate that the SUMO/deSUMOYylation equilibrium relates to senescence
and longevity. Our study provides hints for further exploration and unveils the possible
role of SUMOylation in the brains of aged APOE4 mice.
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