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Abstract: Background: Age at menarche (AAM) has been associated with type 2 diabetes mellitus
(T2DM). However, little is known about their shared heritability. Methods: Our data comes from
the Taiwan Biobank. Genome-wide association studies (GWASs) were conducted to identify single-
nucleotide polymorphisms (SNPs) related to AAM-, T2DM-, and T2DM-related phenotypes, such
as body fat percentage (BFP), fasting blood glucose (FBG), and hemoglobin A1C (HbA1C). Further,
the conditional false discovery rate (cFDR) method was applied to examine the shared genetic
signals. Results: Conditioning on AAM, Quantile-quantile plots showed an earlier departure from
the diagonal line among SNPs associated with BFP and FBG, indicating pleiotropic enrichments
among AAM and these traits. Further, the cFDR analysis found 39 independent pleiotropic loci that
may underlie the AAM-T2DM association. Among them, FN3KRP rs1046896 (cFDR = 6.84 × 10−49),
CDKAL1 rs2206734 (cFDR = 6.48 × 10−10), B3GNTL1 rs58431774 (cFDR = 2.95 × 10−10), G6PC2
rs1402837 (cFDR = 1.82 × 10−8), and KCNQ1 rs60808706 (cFDR = 9.49 × 10−8) were highlighted for
their significant genetic enrichment. The protein–protein interaction analysis revealed a significantly
enriched network among novel discovered genes that were mostly found to be involved in the insulin
and glucagon signaling pathways. Conclusions: Our study highlights potential pleiotropic effects
across AAM and T2DM. This may shed light on identifying the genetic causes of T2DM.

Keywords: age at menarche; type 2 diabetes mellitus; genome-wide association study; conditional
false discovery rate; Taiwan Biobank

1. Introduction

According to the International Diabetes Federation, the global number of adults
living with type 2 diabetes mellitus (T2DM) is predicted to rise to 643 million by 2030
and 783 million by 2045 [1]. Moreover, Taiwan has the highest prevalence of diabetes
among Asian countries, and the prevalence is still rapidly rising by 25,000 people per
year [2]. T2DM, with its occurrence mainly due to excessive body adiposity and insulin
resistance, can lead to severe chronic complications, including cardiovascular, central and
peripheral nervous, and immune disorders. Studies of twins have shown that genetics
plays an essential role in the development of T2DM [3]. According to prior studies, several
important genes have been indicated, including CAPN10 (calpain 10), PPARG (peroxisome
proliferator-activated receptor gamma), KCNJ11 (potassium inwardly rectifying channel
subfamily J member 11), TCF7L2 (transcription factor 7-like 2), KCNQ1 (potassium voltage-
gated channel subfamily Q member 1), and MTNRB1 (melatonin receptor B1) [4].
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Early age at menarche (AAM) is usually defined as menarche before the age of 12 years.
Over the past 30 years, AAM has decreased in Taiwanese children, with a rate of decline
of approximately 0.43 years per decade [5]. Early menarche has been associated with
physical and psychosocial problems, including anxiety/depression, substance use, suicidal
behaviors, early fusion of epiphyseal growth plates, cardiovascular diseases, and metabolic
syndromes [6]. AAM is a hereditary trait, but its known genetic determinants only explain
part of the variance [7].

Early AAM and T2DM are highly heritable traits with rising prevalence, and both
may adversely affect healthy life outcomes [8,9]. Studies have revealed an association
between AAM and the risk of T2DM [10], as women with early menarche have a higher
risk of T2DM in adulthood. Although excessive adiposity is assumed to be a common
driver, the two traits may share genetic loci, but their shared heritability remains unclear.
Therefore, a genome-wide association study (GWAS) is required to investigate whether
AAM and T2DM have common heritable origins and further determine the underlying
molecular pathways.

In this study, we aimed to identify shared genetic variants of AAM and T2DM and
investigate the connection between the two traits using a nationally representative database.
However, GWAS has underlying shortcomings, such as low genetic coverage, missing
phenotypes, and low allele frequency. Quality control (QC) of genotypic and phenotypic
data was conducted to reduce biases in GWAS. We hypothesize that genetic variants may
show differential associations with T2DM on the condition of their associations with AAM.

2. Methods
2.1. Participants

Genotypic and phenotypic data were available for 88,347 participants from the Taiwan
Biobank (TWB, https://www.twbiobank.org.tw, accessed on 27 April 2023). The TWB
is a government-supported, prospective cohort study with a wide range of phenotype
and genome data for the Taiwanese population [11]. TWB 2.0 axiom genome-wide array
plate was designed for whole-genome genotyping. There are approximately 750,000 single-
nucleotide polymorphisms (SNPs) in TWB 2.0 covering specific SNPs associated with
diseases, drug metabolism, and drug response in the Taiwanese population [12]. Phenotypic
data were obtained from questionnaires and measurements [13]. Participants were asked
to report their age, education level, age at enrollment, AAM, diagnosis of diabetes, types
of diabetes, and family history of diabetes in the questionnaire. Other T2DM-related
phenotypes of interest, including body fat percentage (BFP), fasting blood glucose (FBG),
and hemoglobin A1C (HbA1C), were obtained from measurements [14,15]. The present
study was approved by the Institutional Review Board of National Cheng Kung University.

2.2. Quality Control Procedures

QC procedures were implemented using PLINK (https://www.cog-genomics.org/
plink/, accessed on 10 May 2023) within R (4.3.0, Posit, PBC, Boston, MA, USA). The QC
procedures (see Supplementary Table S1 and Figure S1 for details) can be divided into
two parts: sample- and SNP-level filtering. Samples with a genotype missing rate ≥ 2%
and missing phenotypes were excluded from the analysis. In addition, SNPs with a
genotype missing rate ≥ 2%, minor allele frequency (MAF) < 0.01, and Hardy–Weinberg
equilibrium (HWE) exact test p-value < 10−6 were filtered out. Finally, 53,224 Taiwanese
female participants were included in the following analysis.

2.3. Statistical Analysis

As population genetic structures differ across ethnicities and the Taiwanese population
is less representative in international data sources, we randomly split our samples into
two datasets for the exploration of genetic association with AAM (trait 1; N = 26,612) and
T2DM and relevant phenotypes (trait 2; N = 26,612). This method is referred to as the
Mendelian randomization approach, which is used to minimize confounding effects. We
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tested between-group differences to ensure similarities in these two subsets regarding
waistline, overall health, body mass index (BMI), BFP, hypertension [16], and years of edu-
cation [17]. Principal components analysis (PCA) was performed to identify the structure
in the distribution of genetic variation across the genetics of all the participants.

Two separate GWASs were conducted for AAM and T2DM traits using two exclusive
subsets of data. GWAS for the AAM trait was adjusted for age at enrollment, BMI, and the
principal components; GWAS for T2DM traits was adjusted for education level, BMI, and
the principal components. Initially, we depicted conditional quantile-quantile (Q-Q) plots
to visualize SNP enrichment for T2DM and relevant phenotypes given the different levels
of association with AAM. A greater and earlier departure from the reference line (leftward
shift) with a higher association with AAM indicates a more significant genetic overlap
between AAM and T2DM traits. Further, we applied the conditional false discovery rate
(cFDR) method, an extension of the conventional FDR incorporating information from
the GWAS summary statistics of a conditional phenotype, to identify the shared genetic
variants between AAM and T2DM. In this study, the cFDR is defined as the probability
that an SNP is not associated with T2DM traits, given that the p-values for both AAM
and T2DM traits are below the significance threshold, and its value indicates the level
of pleiotropic enrichment. The cFDR analysis was implemented using an R package
(https://github.com/jamesliley/cFDR-common-controls, accessed on 4 August 2023) [18].
The shared loci between the AAM and T2DM traits based on the cFDR analysis were
visualized in a Manhattan plot. Since multiple significant association p-values in the
same region were observed, a linkage disequilibrium (LD)-based clumping procedure was
performed to estimate the number of independent loci, with sites less than 500 kb away
from an index variant and with r2 larger than 0.1 assigned to a single clump. To identify
the connectivity among the pleiotropic loci, we also used the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING, https://string-db.org/, accessed on 21 August
2023) to build protein–protein interaction (PPI) networks.

3. Results

The average age of the entire study population was 50.9 years. Overall, the average
AAM was 13.3 years, and a total of 4.57% reported being diagnosed with T2DM. The two
randomly split datasets were similar in most baseline characteristics, age distribution, and
risk of T2DM based on the ages of participants (see Supplementary Table S2 and Figure S2
for details).

We depicted conditional Q-Q plots showing SNP enrichment for T2DM traits given
different levels of association with AAM (Figure 1). An earlier and greater departure from
the reference line was well noted in the plots of BFP and FBG, indicating stronger pleiotropic
enrichments being observed for these two traits conditioned on AAM. In contrast, the
plots of T2DM diagnosis and HbA1C levels given AAM showed low levels of pleiotropic
enrichment. Based on the cFDR analysis, the shared loci between AAM and T2DM and
relevant traits were visualized in a Manhattan plot (Figure 2). Using a cutoff of a cFDR less
than 0.05, a total of 39 independent shared genetic loci were identified for the four T2DM
traits after the clumping procedure (Table 1). The most significant one is FN3KRP rs1046896,
which has the highest significant level of enrichment (cFDR = 6.84 × 10−49). In addition,
CDKAL1 rs2206734 (cFDR = 6.48 × 10−10), B3GNTL1 rs58431774 (cFDR = 2.95 × 10−10),
G6PC2 rs1402837 (cFDR = 1.82 × 10−8), and KCNQ1 rs60808706 (cFDR = 9.49 × 10−8) were
highlighted for their significant genetic enrichment.

Further, to discover the connectivity among the pleiotropic loci, we built a PPI network
using the STRING database, and the network was significantly enriched by showing
that the nodes were not random and the observed number of edges was significant (see
Supplementary Figure S3 for details). The top 2 Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were the insulin signaling pathway and glucagon signaling pathway
(see Supplementary Table S3 for details).

https://github.com/jamesliley/cFDR-common-controls
https://string-db.org/
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Figure 1. Conditional quantile–quantile plotsfor diabetic traits conditioned on p-values of AAM. 

The diagonal line indicates a null hypothesis. (Note: AAM, age at menarche; T2DM, type 2 diabe-

tes mellitus; BFP, body fat percentage; FBG, fasting blood glucose; HbA1C, hemoglobin A1C.). 

 

Figure 2. Conditional false discovery rate (cFDR) Manhattan plot of −log10 values for T2DM traits. The 

dashed line indicates a statistical significance threshold of a cFDR of less than 0.05. (Note: BFP, body fat 

percentage; FBG, fasting blood glucose; HbA1C, hemoglobin A1C; T2DM, type 2 diabetes mellitus.). 
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Figure 1. Conditional quantile–quantile plotsfor diabetic traits conditioned on p-values of AAM.
The diagonal line indicates a null hypothesis. (Note: AAM, age at menarche; T2DM, type 2 diabetes
mellitus; BFP, body fat percentage; FBG, fasting blood glucose; HbA1C, hemoglobin A1C).
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Figure 2. Conditional false discovery rate (cFDR) Manhattan plot of −log10 values for T2DM traits.
The dashed line indicates a statistical significance threshold of a cFDR of less than 0.05. (Note:
BFP, body fat percentage; FBG, fasting blood glucose; HbA1C, hemoglobin A1C; T2DM, type 2
diabetes mellitus).
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Table 1. A total of 39 independent pleiotropic loci in AAM (trait 1) and T2DM (trait 2) with a
conditional false discovery rate (cFDR) of less than 0.05. (Note: T2DM, type 2 diabetes mellitus; AAM,
age at menarche; Chr, chromosome; hg38, Homo sapiens genome assembly GRCh38; BFP, body fat
percentage; FBG, fasting blood glucose; HbA1C, glycated hemoglobin A1C).

Chr rs Position (hg38) Gene p of Trait 1 Trait 2 p of Trait 2 cFDR

1 rs148500298 1.02 × 108 RP11-202K23.1 0.658659 FBG 5.25 × 10−6 0.040840737
1 rs3138105 1.58 × 108 CD1B, CD1C 0.475425 HbA1c 9.86 × 10−6 0.045925272
1 rs17042165 2.15 × 108 LOC124904510 0.00217096 HbA1c 4.61 × 10−6 0.007599174
2 rs780093 27,519,736 GCKR 0.320034 FBG 4.80 × 10−7 0.007515765

2 rs895636 44,961,214 AC012354.6 0.807344 FBG 1.67 × 10−7 0.003508871

2 rs1402837 1.69 × 108 G6PC2 0.280055
HbA1c 1.44 × 10−8 0.00028397

FBG 1.32 × 10−13 1.82 × 10−8

2 rs116933981 1.69 × 108 LRP2 0.41804 FBG 8.63 × 10−7 0.012442801

3 rs3804766 51,393,226 RBM15B 0.208714 HbA1C 3.20 × 10−6 0.033487115

4 rs223461 1.03 × 108 LOC102723704,
LOC124900743 0.192597 HbA1C 5.45 × 10−6 0.048127897

4 rs79196252 1.47 × 108 SLC10A7 0.0439132 FBG 8.66 × 10−7 0.010702327

5 rs248062 1.27 × 108 CTB-1I21.1 0.0326756 BFP 4.10 × 10−7 0.007739594
5 rs75170429 1.33 × 108 FSTL4 0.419274 HbA1C 2.51 × 10−6 0.019516832

6 rs2206734 20,694,653 CDKAL1 0.712727
HbA1C 1.94 × 10−14 6.49 × 10−10

FBG 3.05 × 10−7 0.006010452
6 rs9376090 1.35 × 108 HBS1L 0.695327 HbA1C 7.17 × 10−6 0.041947507

7 rs10244051 15,024,208 GTF3AP5 0.776841 FBG 8.57 × 10−7 0.012993208

7 rs16881016 44,171,808 GCK, LOC105375257 0.480132
HbA1C 4.52 × 10−10 8.01 × 10−6

FBG 2.01 × 10−11 2.31 × 10−6

7 rs1799884 44,189,469 GCK 0.264629 FBG 3.12 × 10−6 0.029224933
7 rs6975024 44,192,287 GCK 0.601593 HbA1C 2.22 × 10−7 0.002111339

7 rs2233580 1.28 × 108 PAX4 0.403983
T2DM 5.07 × 10−10 9.90 × 10−5

HbA1C 6.18 × 10−10 1.51 × 10−5

FBG 2.70 × 10−7 0.005270602
7 rs6943771 1.4 × 108 PARP12 0.995326 FBG 4.37 × 10−6 0.038811336

8 rs3802177 1.17 × 108 SLC30A8, LOC105375716 0.889634
HbA1C 8.07 × 10−12 1.67 × 10−7

FBG 7.81 × 10−12 1.62 × 10−6

9 rs10965250 22,133,285 CDKN2B-AS1 0.236788
HbA1C 8.65 × 10−13 1.02 × 10−7

FBG 3.00 × 10−11 3.54 × 10−6

9 rs1050700 1.33 × 108 TSC1 0.487359 HbA1C 1.16 × 10−5 0.049462307

10 rs12221133 12,211,598 CDC123 0.45323 HbA1C 1.44 × 10−6 0.010460355
10 rs151268010 16,675,558 RSU1 0.0122221 BFP 3.57 × 10−6 0.027178562
10 rs75631171 92,449,649 IDE 0.190513 T2DM 2.55 × 10−7 0.024501519
10 rs1111875 92,703,125 Y_RNA 0.664192 T2DM 2.59 × 10−7 0.027071426
10 rs10786156 94,254,865 PLCE1 0.332509 BFP 1.02 × 10−8 0.00165048

11 rs60808706 2,836,003 KCNQ1 0.589924
HbA1C 3.38 × 10−12 9.49 × 10−8

FBG 6.33 × 10−9 0.000221717
11 rs10466351 92,964,815 LOC124902733 0.44799 FBG 1.25 × 10−10 6.76 × 10−6

11 rs10830963 92,975,544 MTNR1B 0.526219 HbA1C 6.32 × 10−7 0.005298336

17 rs761772 78,125,997 TMC6 0.429945 HbA1C 4.79 × 10−12 1.42 × 10−7

17 rs73357173 82,670,096 RAB40B/MIR4525 0.0342794 HbA1C 2.89 × 10−6 0.019044672
17 rs2250754 82,703,440 LOC124904093 0.0102342 HbA1C 1.73 × 10−6 0.01124699
17 rs1046896 82,727,657 FN3KRP 0.382707 HbA1C 3.68 × 10−54 6.84 × 10−49

17 rs3785519 82,937,832 TBCD 0.177841 HbA1C 2.08 × 10−8 0.000467929
17 rs58431774 83,000,587 B3GNTL1 0.742557 HbA1C 7.61 × 10−15 2.95 × 10−10

21 rs7510550 36,629,993 AP000696.2 0.515658 FBG 7.92 × 10−7 0.01085386

22 rs146847831 48,773,800 FAM19A5 0.106661 FBG 1.42 × 10−6 0.019983018

4. Discussion

In this study, a genome-wide statistical approach was used to identify 39 shared loci
between AAM and T2DM traits, with some reported in association with T2DM [19–23].
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The conditional Q-Q plots showed pleiotropic enrichments for BFR and FBG conditioned
on AAM, but the enrichment effect was less prominent for T2DM diagnosis and HbA1C
levels. This discrepancy may result from data sources and availability. The diagnosis was
self-reported, and the medication history was unavailable in TWB. There was a possibility
that T2DM was undiagnosed or diabetic types were misclassified by participants. Moreover,
HbA1C might reflect glycemic control corresponding to patients’ medication adherence
rather than disease severity among patients with T2DM. Obtaining collateral reports from
treating physicians or linked medication records may ameliorate data quality and accuracy.

Using the cFDR analysis, our study confirmed some novel enrichment loci in shared
genetics between AAM and T2DM traits, such as rs1046896 (FN3KRP), rs2206734 (CDKAL1),
rs58431774 (B3GNTL1), rs1402837 (G6PC2), and rs60808706 (KCNQ1). The SNP rs1046896
(FN3KRP) has the highest genetic enrichment level. FN3KRP (fructosamine-3-kinase-
related protein) is involved in the deglycation of proteins modified via non-enzymatic
glycation [24]. A high glucose concentration can result in the non-enzymatic oxidation of
proteins via the reaction of glucose-6-phosphate and lysine residues. Proteins modified in
this way become less active or functional. This reaction is referred to as the non-enzymatic
glycation of proteins or the Maillard reaction. Hyperglycemia is a primary factor that
promotes glycation, and the glycation end product forms on DNA, lipids, and proteins,
where they represent pathophysiological modifications that precipitate dysfunction at
a cellular and molecular level [25]. This further leads to several complications, such as
blindness, heart disease, nerve damage, and kidney failure [26]. FN3KRP may result in the
deglycation of proteins to restore their function.

CDKAL1 (cyclin-dependent kinase 5 regulatory subunit associated protein 1 like 1)
has been reported as a major pathogenesis-related protein for T2DM [27]. The function
of CDKAL1 has not been entirely determined. Research has shown that CDKAL1 may
be involved in beta cell dysfunction in the pancreas and the regulation of mitochondrial
function in adipose tissue [28,29].

B3GNTL1 (beta1,3-N-Acetylglucosaminyltransferase-Like Protein 1) protein is pre-
dicted to enable glycosyltransferase activity [30]. According to a recent study, analysis of
the PPI network of the genes containing B3GNTL1 reveals that, at the molecular level, there
seemed to be interconnected factors that affect the progression of renal impairment among
diabetic patients [31].

G6PC2 (glucose-6-phosphatase catalytic subunit 2) catalyzes the hydrolysis of glucose-
6-phosphate to produce glucose and inorganic phosphate. The gene is explicitly expressed
in pancreatic islet beta cells. The mutation in G6PC2 was found to have a lead role in the
modulation of FBG levels, and, thus, it might increase the risk of T2DM [32]. In addition,
previous GWAS showed linked polymorphisms in G6PC2, with variations in FBG and
BFP [33].

KCNQ1 was previously identified for its correlation with T2DM [34]. KCNQ1 encodes
a voltage-gated potassium channel required for the repolarization phase of the action
potential of cardiac muscles [35], and the gene is also expressed in other tissues, including
the brain, adipose tissue, and pancreas, as well as in the insulin-secreting cell line [36]. In
addition to its well-studied association with T2DM, research has revealed a significant
association with menopausal age [37].

The PPI analysis revealed that the whole network was significantly enriched. The
proteins at the center of the PPI network were insulin (encoded by INS) and AKT ser-
ine/threonine kinase 1 (encoded by AKT1). Both are involved in glucose homeostasis and
metabolism [38]. Moreover, the top two KEGG pathways were the insulin and glucagon
signaling pathways. Insulin plays a critical role in multiple physiological processes, such
as promoting glucose uptake, glycogen synthesis, lipogenesis, and protein synthesis. Re-
duced production of insulin and insulin resistance are the main causes of diabetes. Insulin
is an anabolic peptide hormone secreted by pancreatic β cells acting through a receptor
located in the membrane of target cells. The receptor activates a complex intracellular
signaling network. The two main pathways of insulin signaling emanating from the
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insulin receptor-IRS node are the PI3K (phosphatidylinositol 3-kinase)/AKT (AKT ser-
ine/threonine kinase 1) pathway and the Raf/Ras/MEK (mitogen-activated protein kinase
kinase)/MAPK (mitogen-activated protein kinase) pathway [39]. Glucagon is also an
important regulator of glucose homeostasis, and it is secreted by pancreatic α cells. Once
glucagon binds to a transmembrane receptor on target cells, it leads to adenylate cyclase
activation and cAMP formation. The increase in intracellular cAMP levels activates PKA
(protein kinase A), which phosphorylates CREB (cAMP response element binding protein),
PFK-2 (phospho-fructokinase 2)/FBPase2 (fructose 2,6-bisphosphatase), pyruvate kinase,
phosphorylase kinase, and glycogen synthase. Overall, glucagon increases gluconeogenesis
and glycogenolysis and decreases glycolysis [40]. Most of the novel-discovered genes were
also found to be involved in these pathways. For example, CREB encodes the protein that
regulates the gene expression of the enzymes of gluconeogenesis, and it has recently been
regarded as a targeting factor in diabetic treatment [41].

Our findings may have implications for clinical practices and directions for future
research. Firstly, genetic screening for the shared loci between AAM and T2DM may inform
lifestyle modification and glycemic monitoring among early-maturing women. In this sense,
further exploration of the gene–lifestyle interaction effects on T2DM may help to identify
high-risk groups targeted for advanced pharmacotherapy. Moreover, enriched pathways
involving shared genetics may shed light on experimental research into T2DM mechanisms
associated with early AAM, a critical step toward personalized diabetic prevention and
medication strategies.

Despite its population size and representativeness strength, this study has several
limitations. Firstly, the genetic association analysis was derived from and, thus, may be
limited to the Taiwanese population. Cross-ethnic validation may be needed, as genetic
associations with AAM differ between Asian and European women [42]. Secondly, AAM
and diagnosis of T2DM in TWB were based on self-reported questionnaires. Recall bias
may exist. Thirdly, the use of hypoglycemic medications was not available in TWB. An
augmented dataset linking the TWB and insurance claims of the National Health Insurance
Research Database may help to clarify these issues. Fourthly, the GWAS results could
be affected by selection bias, as individuals who volunteer to participate may not be
representative of the underlying sampling population.

5. Conclusions

This study highlighted potential pleiotropic effects across AAM and T2DM that may
explain the association between the two phenotypes. The result may suggest genetic
screening for the enriched loci that may help to inform risks for T2DM in women with early
AAM. The shared genetic variants discovered are targets for the future exploration of early
AAM and T2DM mechanisms.
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enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
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