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Abstract: In the complex progression of fibrosis in chronic pancreatitis, pancreatic stellate cells (PSCs)
emerge as central figures. These cells, initially in a dormant state characterized by the storage of
vitamin A lipid droplets within the chronic pancreatitis microenvironment, undergo a profound
transformation into an activated state, typified by the secretion of an abundant extracellular matrix,
including α-smooth muscle actin (α-SMA). This review delves into the myriad factors that trigger
PSC activation within the context of chronic pancreatitis. These factors encompass alcohol, cigarette
smoke, hyperglycemia, mechanical stress, acinar cell injury, and inflammatory cells, with a focus
on elucidating their underlying mechanisms. Additionally, we explore the regulatory factors that
play significant roles during PSC activation, such as TGF-β, CTGF, IL-10, PDGF, among others. The
investigation into these regulatory factors and pathways involved in PSC activation holds promise in
identifying potential therapeutic targets for ameliorating fibrosis in chronic pancreatitis. We provide
a summary of recent research findings pertaining to the modulation of PSC activation, covering
essential genes and innovative regulatory mediators designed to counteract PSC activation. We
anticipate that this research will stimulate further insights into PSC activation and the mechanisms of
pancreatic fibrosis, ultimately leading to the discovery of groundbreaking therapies targeting cellular
and molecular responses within these processes.

Keywords: chronic pancreatitis; pancreatic fibrosis; pancreatic stellate cells

1. Introduction

In the progression of fibrosis within the context of chronic pancreatitis (CP), a pivotal
function is ascribed to pancreatic stellate cells (PSCs). These specialized cells, akin to
fibroblasts, are positioned within the periacinar milieu of the pancreatic acini. Noteworthy
attributes of PSCs include a central cellular body and extensive cytoplasmic extensions that
intricately envelop the foundations of neighboring acinar cells [1].

In the context of a healthy pancreatic environment, PSCs exhibit a quiescent dispo-
sition, characterized by the presence of copious vitamin A-laden lipid droplets within
their cytoplasm. These cells engage in a discerning pattern of gene expression, specifically
highlighting desmin, glial fibrillar acidic protein (GFAP), vimentin, and nestin (interme-
diate filaments), alongside neuroectodermal markers like nerve growth factor (NGF) and
neural cell adhesion molecule (NCAM), serving as distinctive biomarkers. Beyond this,
PSCs demonstrate the capability to engage in the synthesis of diverse matrix metallopro-
teinases (MMP2, MMP9, and MMP13) as well as their regulatory counterparts TIMP1 and
TIMP2. This dynamic orchestration of molecular processes contributes concertedly to the
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precise modulation of extracellular matrix (ECM) protein synthesis and degradation, thus
upholding the integrity of the standard tissue architecture [1–4].

Nonetheless, within the distinctive microenvironment of CP, PSCs undergo a transfor-
mative process of activation, assuming a myofibroblast-like phenotype characterized by
pronounced escalation in both cellular proliferation and migratory capability. Furthermore,
this environment witnesses a dysregulation in the controlled release of metalloproteinases
and their corresponding inhibitory factors.

An expanding array of factors, operable through paracrine and autocrine pathways, is
being progressively elucidated with regards to their stimulatory or inhibitory impact on
PSC activation. Concomitantly, PSCs exhibit a proclivity for excreting an array of cytokines,
chemokines, and growth factors. A subset of these factors registers notably elevated levels
compared to their quiescent counterparts. Among this array are transforming growth factor-
β (TGF-β), connective tissue growth factor (CTGF), monocyte chemoattractant protein-1
(MCP-1), interleukin (IL)-1, IL-6, IL-8, IL-15, IL-1β, IL-15, IL-33, and RANTES (regulated
on activation normal T cell expressed and secreted) [5,6]. These inflammatory mediators
significantly contribute to the self-triggered activation cascade of PSCs.

In the ultimate stages of this cascade, activated PSCs manifest a prolific output of
α-smooth muscle actin (α-SMA). Additionally, these cells synthesize a substantial volume
of ECM, which is predominantly localized around these cells. This repertoire encompasses
key components such as type I collagen, type III collagen, fibronectin, and laminin [7].
Collectively, this orchestrated molecular machinery paves the way for the fibrotic process
intrinsic to CP [8].

In the course of this complex process, a significant array of signal transduction path-
ways becomes intricately involved. Attempts to delve into the initiating signaling cascade
responsible for the activation of PSCs, coupled with a comprehensive exploration of the
ensuing cellular responses, stand as a pivotal stride toward the development of more
precise therapeutic agents designed to impede pancreatic fibrosis. This investigative effort
not only promises innovative approaches for addressing CP but also unveils promising
avenues for the management of the associated disease.

2. Activation and Contribution of PSCs to Fibrosis

Within the context of CP, PSCs respond to a multitude of stimulatory signals by
undergoing activation, thus adopting the aforementioned activated state. Morphologically,
these cells undergo a transformation akin to fibroblasts. At the molecular and cellular levels,
a substantial secretion of immune factors and fibrotic precursors takes place, resulting
in a significant contribution to pancreatic fibrosis. In this section, we delve into various
aspects regarding PSC activation, encompassing physicochemical and pathogenic stimuli,
the diverse array of cellular signals within the microenvironment of CP, as well as immune
factor signals (illustrated in Figure 1). Furthermore, we elucidate the specific manifestations
of PSCs following activation under distinct conditions, providing insights into their role in
the progression of fibrosis in the context of CP. (The molecular and cellular characteristics
of PSCs before and after activation is illustrated in Supplementary Figure S1).

2.1. Alcohol-Induced Activation of PSCs

Roughly 70% to 90% of CP instances can be attributed to elevated alcohol consump-
tion [9–14]. Alcohol-induced CP is recognized as a prominent risk factor, with a variety of
elements orchestrating PSC activation throughout the continuum of chronic alcohol expo-
sure. These elements include ethanol itself, along with its metabolite acetaldehyde [15,16],
as well as fatty acid ethyl esters (FAEEs) [17,18], oxidative stress, and cytokines [19,20].
The enzymatic processing of alcohol by pancreatic acinar cells engenders oxidative stress,
thereby furnishing a catalyst for PSC activation.
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Figure 1. This figure illustrates the molecular and cellular characteristics of pancreatic stellate cells 
before and after activation. Activated pancreatic stellate cells exhibit functions including migration, 
proliferation, and significant secretion of autocrine activating factors. Some of the activation triggers 
for pancreatic stellate cells are also summarized and categorized. Red and blue coarse and fine hel-
ical shape: extracellular matrix components; yellow circular shape: vitamin A lipid droplets; ellipti-
cal shape: pancreatic cell-state marker; rounded square shape: autocrine activating factors. 
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of the cytokine latency-associated peptide (LAP), the precursor of TGF-β, is diminished, 
while platelet-derived growth factor (PDGF)-B is notably absent [21]. 

Simultaneously, a substantial amount of evidence lends credence to the co-localiza-
tion of 4-hydroxynonenal (4-HNE), the byproduct of lipid peroxidation, with activated 
PSCs. This phenomenon accentuates the intrinsic enzymatic capacity of PSCs to metabo-
lize ethanol into acetaldehyde through their inherent ethanol dehydrogenase [19], thus 
instigating a cascade of oxidative stress and engendering their autonomous activation and 
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Figure 1. This figure illustrates the molecular and cellular characteristics of pancreatic stellate cells
before and after activation. Activated pancreatic stellate cells exhibit functions including migration,
proliferation, and significant secretion of autocrine activating factors. Some of the activation triggers
for pancreatic stellate cells are also summarized and categorized. Red and blue coarse and fine helical
shape: extracellular matrix components; yellow circular shape: vitamin A lipid droplets; elliptical
shape: pancreatic cell-state marker; rounded square shape: autocrine activating factors.

In the initial phases of alcoholic CP, there exists mild interstitial fibrosis within discrete
acinar units, frequently accompanied by the emergence of PSCs around regions marked
by tissue necrosis. As the condition advances into a state of multi-lobular fibrosis, the
presence of PSCs is evident within the inter-lobular connective tissue. Throughout this
evolving process, varying degrees of positive immunoreactivity are discernible for markers
such as α-SMA, desmin, transforming growth factor-β receptor II (TGF-β-RII), and the
platelet-derived growth factor receptor α isoform (PDGF-Rα). Conversely, the expression
of the cytokine latency-associated peptide (LAP), the precursor of TGF-β, is diminished,
while platelet-derived growth factor (PDGF)-B is notably absent [21].

Simultaneously, a substantial amount of evidence lends credence to the co-localization
of 4-hydroxynonenal (4-HNE), the byproduct of lipid peroxidation, with activated PSCs.
This phenomenon accentuates the intrinsic enzymatic capacity of PSCs to metabolize
ethanol into acetaldehyde through their inherent ethanol dehydrogenase [19], thus insti-
gating a cascade of oxidative stress and engendering their autonomous activation and
lipid peroxidation [17]. This indicates that ethanol can activate PSCs from their quiescent
state, rather than exclusively acting within the domain of activated PSCs [22]. This disclo-
sure posits that during the early stages of chronic alcohol consumption, PSC activation
is initiated and persists throughout the entire cycle of pancreatitis onset, including its
pre-onset phase, continuously promoting pancreatic fibrosis. It is noteworthy that the
antioxidant potential of vitamin E holds the capacity to forestall the activation of PSCs
prompted by ethanol and acetaldehyde. Recent investigations also advance the notion that
alcohol-induced injury to the pancreas could yield an amplified activation of the very low
density lipoprotein receptor (VLDLR), consequentially inciting intracellular lipid accumu-
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lation and the ensuing development of dyslipidemia within PSCs. This intricate cascade,
in turn, emerges as a pivotal driving force in the fibrotic progression associated with CP,
concomitantly augmenting the expression and release of IL-33 within PSCs [23].

Alcohol and its metabolites induce the expression of α1(I)collagen, α-SMA, PDGF-Rβ,
and TGF-β1 [17,24–26]. In addition to enhancing the formation of ECM, the above-mentioned
products also elevate PDGF-induced NADPH oxidase activity, substantiating the theory of
reactive oxygen species (ROS) playing a role in the activation of PSCs [22,27–29]. Due to
activated PSCs being able to generate acetaldehyde and oxidative stress, activated PSCs
also exhibit the expression of CCN2/CTGF, imparting them with the abilities of adhesion,
migration, and collagen synthesis [27,29]. Evidence suggests that CCN2, conveyed through
exosomes, can mediate paracrine collagen synthesis signaling to the surrounding PSCs [30].

The intracellular signaling mechanisms governing the activation of PSCs induced by
ethanol have been meticulously elucidated. These mechanisms encompass pivotal path-
ways, including the mitogen-activated protein kinase (MAPK) pathway, phosphoinositide
3-kinase (PI3K), protein kinase C (PKC), and the transcription factor activator protein-1
(AP-1) [19,24,31]. Notably, ethanol acts in synergy to heighten the secretion of CX3CL1
from PSCs, a phenomenon attributed to the orchestrated activation of ERK and ADAM17.
This chemokine, once self-secreted, effectively binds to the CX3CR1 receptor located on
PSCs, thereby instigating their activation process [32,33].

Activated PSCs present a noteworthy mechanism involving cytoplasmic calcium
ion overload. Ethanol, along with its non-oxidative metabolites, fatty acids, and FAEEs,
influence quiescent PSCs by triggering the release of intracellular stored calcium ions.
Consequently, Ca2+ from the extracellular fluid enters the cytoplasm, mostly through the
CRAC/Orai1 channel, leading to intracellular calcium overload [20,34,35]. This process
disrupts mitochondrial potential and triggers cell death [36]. To counteract excessive
calcium overload, activated PSCs downregulate the transient receptor potential ankyrin 1
channel (TRPA1), conferring significant resistance to alcohol-induced cellular injury [37].
This explains the sustained fibrosis induction in the pancreas upon alcohol stimulation.
Ethanol also augments lipopolysaccharide (LPS) endotoxin’s inhibitory effect on PSC
apoptosis and promotes cell survival [38]. This, to some extent, maintains the population
of activated PSCs, further propelling pancreatic fibrosis. In the early stages of CP, complete
abstinence from alcohol can lead to the full reversal of pancreatic fibrosis. This effect
likely arises from the removal of alcohol’s suppressive impact on PSC apoptosis, thereby
halting the apoptosis of activated PSCs. This process encompasses fibrosis progression,
encompassing ECM remodeling and immune dysregulation [21].

2.2. Cigarette Smoke-Induced Activation of PSCs

Smoking constitutes an independent risk factor to CP, and it can also act in conjunc-
tion with alcohol to expedite the fibrotic progression of this condition [39–43]. Clinically,
this phenomenon is characterized by an escalation in both pancreatic calcification and
fibrosis [44–46]. Tobacco use commonly triggers the inaugural episode of acute pancre-
atitis. Subsequent continuous exposure to smoking-induced injury can lead to recurrent
pancreatitis [47,48]. Within this pathological course, activated PSCs initiate the process
of pancreatic fibrogenesis, ultimately culminating in the establishment of CP in affected
individuals [49].

Nicotine and its nicotine-derived nitrosamine, nicotine-derived nitrosamine ketone
(NNK, formed during the tobacco drying process and also produced through nicotine
metabolism in the body), induce the expression of the α7 subtype of the nicotinic acetyl-
choline receptor (α7nAChR) in cells. This phenomenon is not confined to pancreatic
immune cells but has also been evidenced in PSCs. Ligands of the aryl hydrocarbon recep-
tor found in cigarette smoke can upregulate the secretion of IL-22 from T cells within the
microenvironment of CP in mice [50]. Consequently, IL-22 triggers the expression of ECM
genes, including fibronectin 1 and collagen type I α1 chain, in PSCs [47].
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Metabolites of NNK activate nuclear factor kappa-B (NF-κB), resulting in the release
of tumor necrosis factor (TNF)-α from macrophages while inhibiting the synthesis of IL-10,
thereby leading to the sustained activation of PSCs [51]. Meanwhile, exposure to nicotine
significantly elevates intracellular and mitochondrial ROS levels in PSCs, thus promot-
ing PSC activation by upregulating dynamin-related protein 1 (DRP1) and subsequently
initiating mitochondrial fission [52].

Alcohol and cigarette smoke are capable of increasing the production of ROS within
PSCs [18,53]. Components found in cigarette smoke, such as cigarette smoke extract (CSE)
and the NNK, when combined with ethanol (EtOH) at clinically relevant concentrations,
collectively activate PSCs. Notably, irrespective of the presence of an alcoholic milieu,
both NNK and CSE significantly induce PSC activation through nAChRs. Apart from the
consistent outcome of heightened PSC migratory capabilities, NNK exhibits an additional
propensity to stimulate PSC proliferation and foster the secretion of type I collagen, an
essential component of the ECM, whereas the projected effects of CSE and nicotine on type
I collagen expression remain inconclusive [47]. Research suggests that the α7 isoform of
nAChR also functions as a calcium channel. Upon nicotine stimulation, it could potentially
lead to elevated intracellular calcium levels, either by permitting calcium influx from
the extracellular environment into the cell [54] or by activating the α7 nAChR signaling
pathway via G protein (Gαq) transduction, thereby activating the inositol trisphosphate
receptor (IP3R) and subsequently releasing stored calcium from the local endoplasmic
reticulum [55].

The intricate disruption of calcium ion equilibrium in PSC activation has been com-
prehensively discussed earlier. Meanwhile, nicotine also engages in PSC activation by
triggering the α7nAChR-mediated JAK2/STAT3 signaling pathway. This, in turn, con-
tributes to the increased synthesis of α-SMA and collagen, while concurrently suppressing
the synthesis of TIMP1 and TIMP2, pivotal regulators of ECM remodeling [56].

2.3. Hyperglycemia-Induced Activation of PSCs

Research findings have consistently demonstrated that both hyperglycemia and hy-
perinsulinemia contribute cumulatively to the activation and proliferation of PSCs [57].
A study conducted by Ko et al. [58] highlighted the potential of high glucose to activate
PSCs through the renin–angiotensin system. In this context, angiotensin II triggers DNA
synthesis in PSCs via the transactivation of the EGF receptor and the activation of the
ERK pathway [59]. Nomiyama et al.’s results indicated that high glucose might stimulate
PSC activation through the PKC-p38 MAPK pathway [60]. Recent investigations have
further shown that elevated glucose levels heighten oxidative stress, thereby facilitating
PSC activation [61]. An analogue of glucagon-like peptide-1 (GLP-1) known as Exendin-4
(Ex-4) has been found to attenuate high-glucose-induced fibrosis by reducing angiotensin
II and TGF-β1 production through the inhibition of ROS generation [62].

These studies collectively affirm the stimulating role of hyperglycemia in PSC ac-
tivation and offer insights into the underlying mechanisms. Beyond its impact on PSC
activation, hyperglycemia also induces the trans-differentiation of PSCs, fostering enhanced
communication with cancer cells. This communication, in turn, activates MAPK signaling,
subsequently promoting cancer cell proliferation [63].

Furthermore, it has been shown that glutathione can effectively curb oxidative-stress-
induced PSC activation triggered by high blood glucose levels, both in vivo and in vitro.
This intervention works by blocking the ROS/TGF-β/SMAD signaling pathway, thereby
mitigating pancreatic fibrosis caused by oxidative-stress-induced PSC activation [64].

2.4. Pressure-Induced Activation of PSCs

Pancreatic fibrosis frequently accompanies prolonged obstruction of the pancreatic
duct. Consequently, in CP, the tissue pressure within the pancreas exceeds that of a
healthy pancreas. External pressure applied to the pancreas facilitates the activation and
proliferation of PSCs, thereby boosting the production of MAPK proteins, α-SMA, and
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ECM components [65]. A study conducted by Asaumi et al. [66] indicated that pressure-
induced activation could be attributed to the generation of intracellular ROS. More recent
investigations have shifted their focus towards calcium ion channels, which respond to
localized pressure and subsequently initiate downstream signaling events. In pressure-
induced PSC activation, there is an observed increase in calcium influx mediated by the
canonical transient receptor potential 1 (TRPC1) channel. TRPC1 has been identified as a
regulator that sustains PSC activation via the ERK1/2 and SMAD2 pathways [67]. Another
mechanosensitive calcium channel, Piezo1, is activated under high-pressure conditions and
subsequently triggers the opening of transient receptor potential vanilloid-type 4 (TRPV4),
thereby leading to PSC activation [68].

The sodium–calcium exchanger (NCX) plays a pivotal role in maintaining cellular Na+

and Ca2+ homeostasis. Studies have substantiated that NCX1 significantly contributes to
the migratory behaviors of PSCs, with its impact intricately shaped by the specific cellular
context in which it operates [69].

2.5. Acinar-Cell-Induced Activation of PSCs

Pancreatic fibrosis arises from the excessive accumulation of ECM components, such
as collagen and fibronectin, within the pancreatic tissue. This phenomenon commonly
emerges as a consequence of recurrent injuries experienced by individuals afflicted with
chronic pancreatic ailments. The underlying pathophysiology is notably intricate, en-
compassing both the impairment of acinar cells and their subsequent stress responses. A
thorough comprehension of the intricate role that acinar cells play in the context of pan-
creatic fibrosis holds paramount importance in the formulation of efficacious intervention
strategies [70].

Within the microenvironment characterized by CP, compromised acinar cells exhibit
considerable plasticity and heterogeneity [71]. These cells possess the capacity to directly
activate PSCs, thereby acting as a cellular source driving fibrosis. Alternatively, they
might indirectly contribute to the fibrotic process by liberating an array of substances or
orchestrating the recruitment of immune cells, thereby fostering sustained activation of
PSCs [72,73]. Furthermore, when acinar cells are co-cultivated with PSCs, a remarkable
enhancement in migratory ability and the expression of ECM components in PSCs is
observed [74].

In the context of previously mentioned alcoholic pancreatitis, the severe impairment of
pancreatic exocrine acinar cells can trigger the activation of PSCs, leading to the initiation
of intralobular fibrosis. This marks the initial phase of fibrotic development in CP [21]. The
metabolic processing of ethanol by acinar cells generates ROS, a phenomenon that has been
well documented. These ROS molecules have the potential to initiate the activation of the
NF-κB and JAK/STAT signaling pathways within PSCs during the progression of acute
pancreatitis, thereby fostering autocrine amplification [75]. Furthermore, injury to acinar
cells due to exposure to both ethanol- and fatty-acid-conditioned medium stimulates the
heightened expression of collagen and fibronectin in cultured [74] activated PSCs. Ethanol,
in conjunction with the inhibitory effects arising from fatty acids produced through ethanol
metabolism, can induce injury in acinar cells. This injury prompts the release of stored
calcium ions within acinar cells, followed by the influx of activated extracellular Ca2+

into the cells. This cascade subsequently leads to an intracellular surplus of calcium
ions [20,34,35], disrupting mitochondrial membrane potential and ATP generation [37],
ultimately triggering cellular demise. Consequently, this sequence results in the generation
of activated calcium signaling in PSCs, akin to the direct impact of alcohol on PSCs.

The mechanism of store-operated calcium entry (SOCE) mediated by Orai1 is a widely
prevalent signaling pathway that, under pathological conditions, can become excessively
activated, leading to an overload of intracellular calcium. A number of selective inhibitors of
Orai1, such as CM5480 and CM4620, restore the expression of regulatory factors associated
with SOCE in acinar cells, effectively mitigating uncontrolled calcium elevation [20]. This
safeguarding mechanism not only preserves the functionality of acinar and ductal cells but
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also curtails immune cell infiltration and curbs the activation, proliferation, and migratory
capabilities of PSCs [76].

When PSCs are treated with PIWI (P-element-induced wimpy testis) protein 1 (PI-
WIL1), facilitated by the PIWIL1-element, the consequential outcome is a substantial
reduction in the expression levels of collagen I, collagen III, and α-SMA. Consequently,
the invasive and migratory propensities of these cells are significantly curtailed. The
PI3K/AKT/mTOR signaling pathway emerges as a plausible mechanism underlying the
PIWIL1-mediated activation of PSCs. In light of this, PIWIL1 presents itself as a promising
therapeutic target for addressing pancreatic fibrosis [77].

Acinar cells possess the capacity to produce CTGF at sites of injury [78,79]. CTGF as-
sumes a significant role in activating PSCs by augmenting PSC proliferation and facilitating
the secretion of chronic pro-inflammatory cytokines, including IL-1β [78,79]. Addition-
ally, CTGF enhances the binding affinity of TGF-β1 to its receptor (both type I and II)
by forming a complex with TGF-β1 [79,80]. This intricate interplay ultimately results in
the direct or indirect induction of PSC collagen synthesis by CTGF [81]. Furthermore, a
self-stimulatory feedback loop involving CTGF and TGF-β1 secretion is triggered within
PSCs [80,82]. Research findings reveal that acinar cells’ Hippo pathway can impede the
action of CTGF targeted by yes-associated protein 1 (YAP1) and transcriptional co-activator
with PDZ-binding motif (TAZ). This inhibition effectively mitigates the aforementioned
fibroinflammatory response without interfering with cell-autonomous proliferation [73,83].
Notably, acinar cells are capable of releasing cytokines such as TNF-α and TGF-β, thereby
promoting their own fibrotic changes as well as those in PSCs [84,85]. Experimental evi-
dence lends support to the notion that acinar cells express parathyroid hormone-related
protein (PTHrP) during pancreatitis. Acting through paracrine pathways, PTHrP interacts
with its receptor (PTH1R) on PSCs, eventually leading to the synthesis of ECM by PSCs
and the secretion of pro-inflammatory factors. This dynamic process drives the fibrotic
progression in CP [86,87]. The Wnt/β-catenin signaling pathway emerges as a pivotal
participant in the course of pancreatic fibrosis and remodeling processes [88]. The Wnt
signal is activated in damaged acinar cells, orchestrating acinar cell regeneration and
proliferation, while beta-catenin activation of this pathway within both acinar cells and
PSCs drives the fibrotic process [89,90]. Necrotic acinar cells release molecules associ-
ated with damage-associated molecular patterns (DAMPs), promoting the activation of
PSCs. However, these observations are presently confined to experiments focused on acute
pancreatitis [91]. Serving as carriers of endogenous microRNAs, exosomes assume a role
in the pathological processes of diverse ailments. Exosome-borne miR-130a-3p sourced
from acinar cells serves to activate PSCs and foster collagen formation by targeting perox-
isome proliferator-activated receptor-gamma (PPAR-γ) within PSCs. Consequently, the
suppression of miR-130a-3p offers a potential avenue for therapeutic intervention in the
management of chronic pancreatic fibrosis [92].

2.6. Inflammatory-Cell-Induced Activation of PSCs

The development of pancreatic fibrosis is accompanied by the infiltration of in-
flammatory cells including lymphocytes, neutrophils, and macrophages [93]. Among
them, macrophages have attracted the most attention. Macrophages are cells differen-
tiated from monocytes, and commonly exist in two subsets, viz., classically activated
or M1 macrophages, which are pro-inflammatory, and alternatively activated or M2
macrophages, which are anti-inflammatory [94,95]. There are shreds of evidence show-
ing that macrophages are increased in CP tissues, among which M2 macrophages are
dominant [96]. Macrophages in CP models and those from PSC cocultures express high
levels of TGF-β and PDGF-β, suggesting that macrophages might participate in PSC
activation directly through the paracrine release of cytokines and chemokines [96–98].
Moreover, macrophages in CP samples have a high expression of TIMP2 and MMP9, by
which macrophages regulate ECM turnover [96]. A study shows that IL-6 produced by
macrophages induces TGF-β1 production in PSCs, leading to PSC activation and collagen
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1 synthesis [99]. On the other hand, PSCs isolated from mice and human patients with
CP are found to express high levels of pro-inflammatory cytokines, IL-4 and IL-13, which
promote alternative macrophage activation [100]. In response to activation of SARS-CoV-2
receptors, PSCs secrete IL-18, which acts on macrophages to generate calcium signals [101].
Therefore, not only do macrophages influence PSCs, PSCs can also activate macrophages.
Ultimately, a positive feedback loop forms, which leads to pancreatic fibrosis and damage.

Other than macrophages, an increased number of lymphocytes have also been discov-
ered in CP samples. CD8+ T cell- or NK cell-mediated cytotoxicity might play a role in the
pathogenesis of CP [102]. In addition, mast cells, dendritic cells, monocytes, eosinophils,
and B cells are also believed to be involved in the development of CP [93].

There is a potential connection between PSCs and IgG4-related diseases such as
autoimmune pancreatitis. It is proposed that an unusual interaction occurs between
immune regulators and PSCs, generating TGF-β, IL-10, and vitamin D, which stimulates
the development of IgG4-producing plasma cells but suppresses other immune reactions.
Furthermore, PSCs create a “tolerogenic” environment, which is characterized by cytokines
like IL-10 and IL-21, as well as vitamins A and/or D. Regulatory immune cells, such as Tregs
and Bregs, are attracted and entrapped, resulting in the differentiation of IgG4-switched B
cells to plasma cells. The ongoing mutual activation between immune regulators and PSCs
is suggested to contribute to the pathology of IgG4-related diseases [103].

2.7. Typical Regulatory Factors of PSC Activation

TGF-β emerges as a preeminent regulatory cytokine in orchestrating fibrotic responses.
Heightened expression of TGF-β has been discerned in damaged acinar cells and platelets
situated proximate to fibrotic areas [104,105]. Prevailing consensus supports the notion
that TGF-β1 is a principal instigator of pancreatic fibrosis, acting through the activation
of PSCs. In the early phases of CP, TGF-β1 stimulates PSCs, prompting an upsurge in the
synthesis of α-SMA, the deposition of collagen types I and III, fibronectin, and laminin,
thereby mediating the progression of pancreatic fibrosis [97,105–107]. Recent investigations
unveil that TGF-β1-activated members of the MAPK family, JNK1 and ERK1, are markedly
elevated within PSCs, triggering the heightened expression of α-SMA and fibronectin [108].
Activation of TGF-β receptors triggers the C-terminal phosphorylation of Smad2 and
Smad3, which subsequently bind to cytoplasmic Smad4. The oligomeric Smad2-Smad4 and
Smad3-Smad4 complexes are then translocated to the nucleus, stimulating the transcription
of TGF-β target genes, and hence, promoting the activation of PSCs [109].

Meanwhile, TGF-α orchestrates an elevation in MMP-1 and MMP-2 levels within
PSCs, thereby enhancing their migratory capacity through the degradation of collagen
within the cellular basement membrane [110]. Furthermore, TGF-β exerts a safeguarding
influence on the recently identified membrane-anchored MMP inhibitor, RECK, curbing
its degradation. This mechanism effectively dampens MMP activity while concurrently
fostering the deposition of ECM [111]. It is notable that PSCs themselves synthesize TGF-β1,
indicating the existence of an autocrine loop that perpetuates PSC activation subsequent
to the initiation of external signaling [98]. Both TGF-β1 and IL-1β, subjects to be explored
subsequently, operate within a Smad3- and ERK-dependent autocrine loop [5]. In addition,
TGF-β1 triggers the activation of the NF-κB pathway within PSCs by modulating the
phosphorylation of TGF-β1-activated kinase 1 (TAK1). This mechanism propels NF-κB to
foster the advancement of CP [112].

The receptor protein osteogenic protein-1 (OP-1) is a constituent of the TGF-β super-
family. It possesses the capacity to impede autocrine activin A activation and decrease
TGF-β expression and secretion within PSCs, thereby repressing PSC activation and the
release of collagen [113]. Treatment involving all-trans retinoic acid (ATRA) can obstruct
the mechanical release of active TGF-β by PSCs, attenuate TGF-β’s bioactivity, and conse-
quently impede the myofibroblast phenotype in active PSCs [107]. Bone morphogenetic
proteins (BMPs), which are also members of the TGF-β superfamily, possess the capabil-
ity to counteract TGF-β’s fibrotic function in PSCs via the Smad1/5 signaling pathway.
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Pre-treatment with BMP2 inhibits TGF-β-induced expression of α-SMA, fibronectin, and
collagen Ia, indicating its ability to mitigate TGF-β’s fibrogenic impact on PSCs [114]. Hy-
drogen peroxide-inducible clone-5 (Hic-5) acts as an activator of hepatic stellate cells (HSCs),
and during the transition of PSCs from the quiescent to myofibroblast-like phenotype, it
governs TGF-β’s pro-promoting influence on PSCs by stimulating Smad2 phosphorylation.
A deficiency in Hic-5 may present a potential therapeutic target for fibrosis in cases of
CP [115].

Both activin A and TGF-β are autocrine activating factors for PSCs. Activin (A)
receptors I (ActRI, also termed ALK4) and activin receptor type IIa (ActRIIa) are present on
PSCs, and their reciprocal enhancement of expression has been demonstrated. Furthermore,
activin A, in a dose-dependent manner, collaborates with TGF-β1 to amplify PSC activation
and collagen secretion [113]. Angiotensin II (Ang II) facilitates the proliferation of activated
PSCs by activating epidermal growth factor receptors. This phenomenon involves inducing
the expression of Smad7 through a PKC-dependent pathway, consequently inhibiting
autocrine TGF-β1-mediated suppression of PSC growth and augmenting the proliferation
of activated PSCs [116]. Fibroblast growth factors FGF-1 and FGF-2 were observed to
be upregulated during the later phases of the experimental model for CP, stimulating
the expression of fibronectin and type I collagen mRNA within PSCs [106]. Additionally,
basic fibroblast growth factor (bFGF) possesses the capacity to induce PSC proliferation
in vitro [117].

CTGF is a member of the CCN family of proteins. Upon binding to the α5β1 integrin,
CTGF enhances the activation of PSCs [79]. It can regulate CP fibrosis through acinar cell
secretion or PSC autocrine mechanisms [78]. Its expression in PSCs can be augmented by
TGF-β1, activin A, and TNF-α [1,81,117]. Within PSCs, CTGF targets genes involved in
ECM protein synthesis, as well as the genes of pro-inflammatory cytokines IL-1β and IL-6.
Moreover, CTGF promotes PSC proliferation, thereby collectively accelerating the progres-
sion of chronic inflammation through the NF-κB pathway. Similar to activin A, CTGF can
be rapidly downstream-stimulated by high levels of TGF-β1 in PSCs [82,118]. Additionally,
CTGF contains a cysteine-rich domain (CR) that interacts with the corresponding domains
of BMP and TGF-β. This interaction hinders BMP4 from binding to its receptor while
enhancing the binding of TGF-β1 to its receptor [80].

Interleukins are a class of immunoregulatory mediators that play vital roles in in-
flammatory responses. Currently, their effects on PSC activation manifest with a diverse
spectrum of promotive or inhibitory actions. IL-10 is a potent anti-inflammatory and
anti-fibrotic factor that demonstrates strong efficacy in liver inflammation and acute pancre-
atitis [119]. Studies have shown that IL-10 can limit plasma TGF-β1 levels and activated PSC
numbers during recurrent acute pancreatitis episodes, effectively restraining the production
of type I and type III collagen proteins and mitigating potential fibrosis and glandular
atrophy processes associated with CP [120]. IL-10 has no impact on PSC proliferation,
although reports suggest its potential to promote collagen and α-SMA synthesis [121]. Ac-
tivated PSCs express IL-33 in their nuclei, a process promoted by IL-1β through pathways
including NF-κB, ERK, p38 MAPK, and PDGF-BB via the ERK pathway. IL-33 may regulate
PDGF-induced PSC proliferation [122]. IL-13 inhibits PSC proliferation by suppressing NF-
κB transcriptional activity, leading to reduced autocrine TGF-β1 production [123]. Other
cytokines, such as PSC autocrine factor IL-1, promote α-SMA synthesis without affecting
collagen production. IL-6 promotes α-SMA synthesis while inhibiting PSC proliferation
and collagen deposition [6]. However, it is noteworthy that IL-6, via the transmembrane
receptor gp130, activates the Jak/STAT pathway, particularly Jak2/STAT3, to govern genes
associated with survival and inflammation. Inhibition of Jak1/2, such as with ruxolitinib,
reduces STAT3 phosphorylation and cell proliferation, thus suppressing this process [86].
TNF-α promotes collagen deposition, α-SMA synthesis, and the proliferation of PSCs. Acti-
vators of PSCs also include IL-8, MCP-1, and RANTES, where IL-8 and MCP-1 secretion is
upregulated by IL-1β and TNF-α, and RANTES secretion is mainly induced by TNF-α [6].
The origins and actions of these inflammatory factors are multifaceted, originating from
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immune cells, acinar cells, and even PSCs themselves. The use of PDTC and TPCK to
inhibit NF-kB activation has significantly reduced the mRNA expression of chemotactic
factors induced by IL-1β and TNF-α. PDTC and TPCK are potent inhibitors of NF-kB
activation induced by IL-1β or TNF-α [6].

PDGF secreted by platelets has been reported as a proliferative factor secreted by
platelets for PSCs [28,97,105]. It can induce rapid activation of Raf-1, ERK 1, and ERK 2,
as well as AP-1 protein, thereby promoting mitosis in PSCs [109]. PDGF leads to ECM
synthesis in PSCs and, among them, PDGF-BB is the most potent mitogen for PSCs. Acti-
vated PSCs express PDGF α and β receptors, and PDGF-BB induces autophosphorylation
of its receptor, subsequently activating the PI3-K, Akt, and ERK pathways, endowing PSCs
with high migration and proliferation capacities [124]. PDGF receptors on PSCs can also
be upregulated by TGF-β, wherein PSCs increase proliferation and collagen synthesis
in response to the cytokines PDGF and TGF-β [97]. Moreover, PDGF can stimulate the
activation and migration of PSCs through the TRPC3 and KCa3.1 channels, characterized
by Ca2+ influx in PSCs [125].

Endothelin-1 and the pro-inflammatory chemokine CX3CL1, similar to PDGF, are also
activators of PSCs. PSCs express ET(A) and ET(B) receptors, and upon ET-1 stimulation,
cytoplasmic Ca2+ levels increase, enhancing PSC contraction and migration without sig-
nificant proliferation [126,127]. External stimuli can induce PSC activation and CX3CL1
release [32], promoting the proliferation of activated PSCs through its receptor, CX3CR1,
rather than secretion of inflammatory factors [33]. Furthermore, it is noteworthy that
human PSCs conspicuously express cyclooxygenase-2 (COX-2) and proficiently synthesize
prostaglandin E2 (PGE2). Notably, PGE2 plays a pivotal role in orchestrating several critical
processes within PSCs, encompassing cellular proliferation, migration, and invasion, as
well as the upregulation of genes associated with ECM and MMPs. This intricate cascade
of events is intricately modulated through the mediation of EP4 receptors resident in PSCs,
a relationship substantiated and validated through rigorous experimentation employing
targeted receptor antagonists [128]. The stimulatory effect of fibrosis itself on PSCs is often
overlooked. Fibrinogen directly stimulates the production of IL-6, IL-8, MCP-1, vascular
endothelial growth factor, angiopoietin-1, and type I collagen in PSCs. It increases the
expression of α-SMA and activates NF-κB, Akt, and three categories of mitogen-activated
protein kinases [129]. Wnt2 and β-catenin are also significantly increased factors in pan-
creatic fibrosis, which are highly expressed in PSCs. They have been shown to elevate the
expression of collagen 1α1, TGFβRII, PDGFRβ, and α-SMA in PSCs. Meanwhile, Dickkopf-
related protein 1 (Dkk1) upregulation induces apoptosis in PSCs [130]. Retinoic acid (RA),
a vitamin A derivative, has diverse biological functions, including regulating cell differen-
tiation and proliferation, and mitigating progressive fibrosis in various organs. RA also
induces apoptosis in PSCs and reduces the extent of pancreatic fibrosis by downregulating
Wnt2 and β-catenin [90]. Hence, Wnt2 and Dkk-1 might serve as potential therapeutic
targets for CP.

3. Prospects for PSC Therapy

The various factors and pathways involved in PSC activation have been reviewed in
the previous sections. Efforts have also been made to identify potential targets within
these mechanisms to provide therapeutic approaches for the management of fibrosis
in CP. Several factors with inhibitory effects on PSC activation have been discussed
earlier [6,90,107,113–115,130]. Apte et al. have summarized the significant effects of drugs
targeting oxidative stress, TGF-β inhibition, TNF-α inhibition, anti-inflammatory agents,
and PSC activation signaling molecules on reversing pancreatic fibrosis in experimental
models, which demonstrate the potential reversibility of early-stage pancreatic fibrosis [18].
In recent years, new studies have focused more on regulating PSC activation pathways,
key genes involved in PSC activation, and on the use of novel regulatory mediators to
counteract PSC activation, which offers broader relief for pancreatic fibrosis (summarized
in Table 1).



Biomedicines 2024, 12, 108 11 of 20

Table 1. Summary of regulatory agents counteracting PSC activation and their mechanisms.

Regulatory Mediators Primary Mechanisms of Agents on Pancreatic Stellate Cells

FTY720 FTY720 activates the mTOR pathway to mediate apoptosis
in PSCs.

DHA DHA reduces ROS in PSCs to inhibit the expression of
autocrine cytokines.

I-Smads
I-Smads inhibit intracellular signaling of TGF-β in PSCs, and
the activation of Smad6 and Smad7 can downregulate
activation markers in PSCs.

MCC950 MCC950 inhibits the activation of NLRP3 in PSCs by
suppressing the TGF-β1/Smad3 pathway.

17AAG
17AAG degrades TGFβRII through the ubiquitin-proteasome
pathway, thereby inhibiting TGFβ1-induced activation of
PSCs and extracellular matrix accumulation.

Puerarin Puerarin inhibits the activation of MAPK family proteins
(JNK1/2, ERK1/2, and p38 MAPK) in PSCs.

Mitoquinone (MitoQ) MitoQ balances free radical levels and intracellular
antioxidant system levels, thereby inhibiting PSC activation.

Imatinib (IMT) IMT inhibits the TGF-β1/Smad signaling pathway in PSC
activation.

S1P
Modulating the binding of S1P to S1PR2 can regulate
autophagy and NLRP3 inflammasome-promoted activation
of PSCs.

TLRs Regulation of Toll-like receptors (TLRs) can mitigate the
effects of TGF-β.

Nintedanib (Ninte) Ninte inhibits the activation and proliferation of PSCs through
the JAK/STAT3 and ERK1/2 pathways.

SPARC
In the recovery phase of recurrent acute pancreatitis and
during the activation of PSCs in chronic pancreatitis, the
SPARC gene is highly expressed.

miR-34b
The silencing of SNHG11 attenuates PSC proliferation,
migration, and matrix accumulation through the
miR-34b/LIF axis.

miR-141 Regulation of long non-coding RNAs (LncRNAs) may play a
role in controlling PSC autophagy and activation.

miR-301a
The silencing of miR-301a mediates effective inhibition of the
Tsc1/mTOR and Gadd45g/Stat3 pathways, thereby
maintaining PSC activation and fibrosis.

miR-15a
The miRNA modification of miR-15a to 5-FU-miR-15a
significantly reduces the viability, proliferation, and migration
of PSCs.

Reg1-3

Deletion of the Reg gene in mice can lead to reduced
pancreatic parenchyma loss, decreased collagen deposition,
and reduced expression of inflammatory cytokines in chronic
pancreatitis.

JUN JUN is a key transcription factor in maintaining the quiescent
state of PSCs.

Regarding the regulation of PSC activation pathways by novel regulatory mediators,
FTY720 can attenuate chronic pancreatic fibrosis by inhibiting T-cell infiltration. It has
been found that FTY720 suppresses PSC activation by promoting apoptosis and inhibiting
autophagy. This is achieved by inhibiting AMPK and activating the mTOR pathway, which
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leads to a significant negative regulation of PSC survival, proliferation, and migration [131].
Docosahexaenoic acid (DHA) has anti-inflammatory properties, and recent research indi-
cates that DHA inhibits cytokine expression and NF-κB activation induced by poly (I:C) or
TNF-α by reducing intracellular and mitochondrial ROS levels in PSCs. Consumption of
DHA-rich foods might help prevent CP by inhibiting cytokine expression in PSCs [132]. In-
hibitory Smad proteins (I-Smads) inhibit TGF-β intracellular signaling in PSCs. Promoting
I-Smads during CP creates a negative feedback loop that inhibits PSC activation, similar to
the action of TGF-β receptor I kinase inhibitor SB431542 [133]. Activation of the NLRP3
inflammasome plays a significant role in the development of pancreatic fibrosis. During CP,
NLRP3 is directly involved in PSC activation. The NLRP3 inhibitor MCC950 suppresses
NLRP3-mediated PSC activation by inhibiting the TGF-β1/Smad3 pathway [134]. Hsp90
inhibitor 17AAG can degrade TGFβRII within PSCs through the ubiquitin-proteasome
pathway, thereby blocking the TGFβR-mediated Smad2/3 and PI3K/Akt/GSK-3β sig-
naling pathways. This inhibits TGFβ1-induced PSC activation and ECM accumulation,
making it a potential therapeutic strategy for pancreatic fibrosis [135]. Puerarin, a flavonoid
derived from the traditional Chinese medicine kudzu root, exhibits anti-fibrotic effects
in various fibrotic diseases. Experimental evidence indicates that puerarin significantly
inhibits phosphorylation of MAPK family proteins (JNK1/2, ERK1/2, and p38 MAPK)
in PSCs in a dose-dependent manner, making it a promising candidate for targeting the
MAPK pathway [136]. In CP, the impaired retinoic acid receptor-related orphan receptor
A (Rora)/nuclear receptor subfamily 1, group D, member 1 (Nr1d1)/aryl hydrocarbon
receptor nuclear translocator-like (Arntl or Bmal1) loop, known as the circadian stabilizing
loop, contributes to the fibrogenic properties of PSCs. Disruption of the balanced antag-
onistic action between Nr1d1 and Rora due to PSC activation leads to cytoplasmic loss
of retinol-laden lipid droplets. The administration of melatonin and Rora agonist SR1078
can restore the stability of the circadian stabilizing loop, thereby stabilizing PSC regula-
tion of extracellular mechanisms [137]. The antioxidant Mitoquinone (MitoQ) balances
free radical levels and intracellular antioxidant systems in activated PSCs, inhibiting PSC
activation and subsequent fibrotic phenotype development [138]. This finding aligns with
the description by Apte et al. [18]. The collagen family receptor tyrosine kinase receptors
DDR1/DDR2 inhibitor Imatinib (IMT) suppresses ECM deposition and PSC activation in
CP. IMT also inhibits the TGF-β1/Smad signaling pathway, making it a promising candi-
date for CP [139]. Sphingosine-1-phosphate (S1P) is a biologically active lipid molecule
that regulates various functions through its receptors (S1PR) present in different cells. The
binding of S1P to S1PR2 promotes PSC activation and pancreatic fibrosis by regulating
autophagy and the NLRP3 inflammasome. These findings provide a theoretical basis for
targeting the S1P/S1PR2 axis in the treatment of pancreatic fibrosis [140]. Toll-like receptors
(TLRs) regulate the transition of stellate cells. Excessive expression of TLR5 is required
for TGF-β-mediated activation of PSCs. Regulation of TLRs could alleviate the effects of
TGF-β [141]. Nintedanib (Ninte), approved for treating pulmonary fibrosis, also inhibits
PSC activation and proliferation through the JAK/STAT3 and ERK1/2 pathways. These
findings suggest that Ninte may constitute a potential anti-inflammatory and anti-fibrotic
treatment for CP [142].

In terms of the key genes involved in PSC activation, secreted protein acidic and rich in
cysteine (SPARC) is an extracellular glycoprotein involved in tissue remodeling, embryonic
development, and tumor progression. It binds to various ECM components and is highly
expressed in PSCs during the recovery phase of recurrent acute pancreatitis and CP, along
with a high expression of fibrotic phenotype markers (collagen I, fibronectin). SPARC is not
only a potential therapeutic target but also a potential biomarker for the progression of pan-
creatic diseases [143]. Long non-coding RNA small nucleolar RNA host gene 11 (SNHG11)
is highly expressed in the plasma of CP patients and TGF-β1-treated PSCs. SNHG11 reg-
ulates leukemia inhibitory factor (LIF) expression by sequestering miR-34b. Considering
the promotive role of miR-34b in PSC proliferation, migration, and matrix accumulation
induced by TGF-β1, silencing SNHG11 through the miR-34b/LIF axis, shows promise for
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treating CP [144]. Long non-coding RNAs (LncRNAs) have also been recognized as key
regulators of fibrosis-related diseases. One such molecule, Lnc-PFAR, upregulates RB1CC1-
induced autophagy by reducing miR-141 expression, thereby promoting PSC activation and
pancreatic fibrosis [145]. In addition, miR-301a, a pro-inflammatory microRNA activated by
various inflammatory factors in the tumor microenvironment, maintains PSC activation and
fibrosis through the Tsc1/mTOR and Gadd45g/Stat3 pathways. Silencing miR-301a has the
potential to alleviate fibrosis [146]. Replacing miR-15a with 5-FU-miR-15a through miRNA
modification significantly reduces PSC viability, proliferation, and migration, concurrently
downregulating YAP1 and BCL-2 levels. This results in promising targeting of CP using
ectopic transfer of miRNA mimics [147]. Reg proteins stimulate PSC activation. Global
deletion of the Reg1–3 (Reg1, 2, 3a, 3b, 3d, 3g) genes in mice leads to reduced pancreatic
parenchyma loss, decreased collagen deposition, and a lower expression of inflammatory
cytokines in CP. Regulation of human Reg gene expression could become a key element
in future CP therapy [148]. The transcription factor JUN is crucial for maintaining the
quiescent state of PSCs, providing a theoretical foundation for the treatment of various
pancreatic injuries caused by PSCs [149].

4. Conclusions

CP is widely regarded within the medical field as a progressively debilitating con-
dition characterized by sustained and irreversible damage to the pancreas. This damage
encompasses multifaceted impairments such as acinar cell necrosis and the deposition of
fibrotic substances within the pancreatic interstitium. Emerging research emphasizes the
pivotal role of PSCs in orchestrating this process.

Our review aims to comprehensively conclude the post-activation behavior of CP,
particularly delineating its influence on modulating the balance of ECM deposition. A
succinct overview of the activation of PSCs is instrumental in unraveling the etiology and
pathogenesis of CP. We expound upon the fibrotic mechanisms of PSCs in this context,
considering both micro- and macro-factors, including alcohol consumption, smoking,
hyperglycemia, mechanical stress, acinar cell injury, and the role of inflammatory cells.

Our focus extends to the regulatory factors and pathways governing the activation of
PSCs, encompassing pivotal cellular factors such as TGF-β, CTGF, interleukins, and PDGF,
alongside their involvement in PSC activation pathways. The conclusion of this article
delves into targeted drugs aimed at mitigating these regulatory factors and genes, thereby
providing foundational medical evidence for the development of therapeutic interventions
inhibiting PSC activation in CP.

The integration of prevalent immunotherapy and cell-based therapies, such as pre-
clinically studied anti-inflammatory effects of mesenchymal stem cells and Treg cells for
pancreatic protection and repair in damaged tissues, suggests that intervening in PSCs
holds promise in augmenting clinical management and improving prognostic outcomes for
CP patients.

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with poor prognosis,
which accounts for over 90% of all pancreatic tumors. Multiple studies have shown that CP
is an established risk factor for PDAC, both of which involve PSC activation and pancreatic
fibrosis [150–152]. Therefore, preventing or curing CP is also an effective measure to reduce
the incidence of PDAC, and limiting the activation of PSCs in the early stages of CP holds
the prospect to improve the carcinogenic potential in patients with early-stage CP.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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and cellular characteristics of pancreatic stellate cells before and after activation.
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